Marudhar Kesari Jain College for Women, Vaniyambadi PG & Research Department of Mathematics PG-Mathematics Curriculum frame work

	Semester– I					
Code	Course Title]	С			
		L	T	P	S	
24PMAC11	CC-1Algebraic Structure	2	1	1	1	4
24PMAC12	CC-2 Real Analysis I	3	1	1	1	4
24PMAC13	CC-3 Ordinary Differential Equations	2	1	1	1	3
24PMAE11/ 24PMAE12	EC-1 Graph Theory and Applications / Number Theory and Cryptography	2	1	1	1	3
24PMAE13/ 24PMAE14	EC-2 Discrete Mathematics /Fuzzy Sets and theirApplications	2	1	1	1	3
24PMAA11	AECC –1 Mathematical Documentation Using LATEX	1	0	1	0	2
24PCHR11	VE-1 Human Rights	1	1	0	0	2
					30	21

Semester- II										
Code	Course Title			ours ibuti	on	C				
		L	T	P	S					
24PMAC21	CC-4 Advanced Algebra	3	1	0	1	4				
24PMAC22	CC-5 Real Analysis II	3	1	0	1	4				
24PMAC23	CC-6 Partial Differential Equations	2	1	1	1	3				
24PMAC24	CC–7 Difference Equations	2	1	1	1	3				
24PMAE21/ 24PMAE22	EC-3 Tensor Analysis and Relativity Theory /Mathematical Statistics	2	1	0	1	3				
24PMAE23/ 24PMAE24	EC-4 Machine Learning /Neural Networks	2	1	0	1	3				
24PMAS21	SEC -1(NME) Numerical Methods	1	0	1	0	2				
					30	22				

	Semester-III					
24PMAC31	CC-8 Complex Analysis	3	1	1	1	5
24PMAC32	CC-9 Probability Theory	3	1	1	1	4
24PMAC33	CC-10 Topology	3	1	0	1	4
24PMAC34	CC-11 Mechanics	3	1	1	1	4
24PMAE31 /24PMAE32	EC-5 Fluid Dynamics/ Algebraic Number Theory	2	0	1	1	3
24PMAS31	SEC–2 Research Tools and Techniques	2	0	0	1	2
24PMAIN31	Internship	0	0	0	0	2
					30	24

Semester-IV										
CC-12 Functional Analysis	3	1	1	1	5					
CC-13 Differential Geometry	3	1	1	1	5					
CC-14 Project	0	0	5	1	5					
EC-6 Resource Managemen Techniques / Financial Mathematics	2	1	1	1	4					
PEC-1 Stochatic Process	2	0	0	1	2					
SLC-1Mathematical Modelling	2	0	1	1	2					
				30	23					
TotalCredits	TotalCredits 90+2*									

Students must complete at least one online course (MOOC) from plat forms like SWAYAM, NPTEL, or Nanmudalvan with in the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory To qualify for the degree, and successful participation will be acknowledged with an extra creditof2*.

CC	CoreCourse	14
EC	ElectivePaper	6
SEC	SkillEnhancementCourse	2
AEC	AbilityEnhancementCompulsoryCourses	1
VE	ValueEducations	1
	Internship	1
PEC	ProfessionalEnhancementCourse	1
SLC	Self-LearningCourse	1

								Mark	XS .			
Cours Code	se	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PM	AC31	Complex Analysis	Core Course-8	3	1	1	1	5	6	25	75	100
Learning Objectives											•	
LO1	To a	nalyze and evaluate loca	l properties of	anal	ytica	al fui	nctic	ns a	nd def	finite		
LO2	To d	emonstrate the concept of	of the general f	form	of C	aucl	ıy's	theo	rem.			
LO3	To describe the concept of definite integral and harmonic functions.											
LO4	Тос	develop Taylor and Laure	ent series									
LO5	To le	earn the infinite products	s, canonical pro	oduc	ts ar	ıd Je	nsen	's fo	rmula	ı.		
Unit			Conte	ent							Н	lours
1	Cauchy's Integral Formula The Index of a point with respect to a closed curve – The Integral formula – Higher derivatives. Local Properties of analytical Functions: Removable Singularities-Taylors's Theorem – Zeros and poles – The local Mapping – The Maximum Principle. Chapter 4: Section 2: 2.1 to 2.3 Chapter 4: Section 3: 3.1 to 3.4											18
2	The Chair Cauc Mult:	General form of Cauch ns and cycles- Simple Co hy's Theorem - Proof of iply connected regions - oter 4: Section 4: 4.1 to oter 4: Section 5: 5.1 and	y's Theorem onnectivity - H 'Cauchy's theo Residue theor o 4.7	orem	ı - Lo	ocall	y ex	act d	iffere	ntials-	of	18
3	Evalu prope Chap	uation of Definite Integral pation of definite integral erties - Mean value properter 4: Section 5: 5.3 oter 4: Sections 6: 6.1 to	ls - Definition erty - Poisson	of H	Iarm				and b	oasic		18
4	Harmonic Functions and Power Series Expansions Schwarz theorem - The reflection principle - Weierstras's theorem - Taylor's Series - Laurent series. Chapter 4: Sections 6:6.4 and 6.5 Chapter 5: Sections 1:1.1 to 1.3											18
5	Partia Jense Chap	Partial Fractions and Entire Functions Partial fractions -Infinite products – Canonical products – Gamma Function- Jensen's formula – Hadamard's Theorem. Chapter 5: Sections 2: 2.1 to 2.4 Chapter 5: Sections 3:3.1 and 3.2										18
		าาเ	Tota		m 1	000/						90
		Tr	eory 80% Pr	oble	111- 2	U%						

СО	Course Outcomes								
CO	The Students will be able to								
CO1	Analyze and evaluate local properties of analytical functions and definite integrals								
CO2	Work out on general form of Cauchy's theorem and multiply connected regions								
CO3	Evaluate definite integral and harmonic functions.								
CO4	Apply Taylor and Laurent series.								
CO5	Examine the infinite products, canonical products and Jensen's formula.								
Textbo	oks:								
1	Lars V. Ahlfors, Complex Analysis, (3rd edition) McGraw Hill Co., New York, 1979								
Refere	nce Books:								
1	H.A. Presfly, Introduction to complex Analysis, Clarendon Press, oxford, 1990								
2	J.B. Conway, <i>Functions of one complex variables</i> Springer - Verlag, International student Edition, Narosa Publishing Co.1978								
3	E.Hille, Analytic function Theory (2 vols.), Gonm and Co, 1959.								
4	M.Heins, Complex function Theory, Academic Press, New York, 1968.								
5	James Ward Brown, R.V. Churchil, <i>Complex Variables and Applications</i> , McGraw Hill Education Private Limited,8th Edition, 2014								
Web re	esources:								
1	http://mathforum.org								
2	http://www.opensource.org								
3	http://en.wikipedia.org								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	2	3	3	2	2
CO2	2	2	3	2	3	3	2	2	3	2	3
CO3	3	2	3	2	3	3	3	3	3	2	2
CO4	2	2	3	2	3	3	2	2	3	2	3
CO5	3	2	2	3	3	3	2	3	3	2	2
Total	13	10	14	11	15	15	11	13	15	10	12
Average	2.6	2	2.8	2.5	3	3	2.5	2.6	3	2	2.4

										Mark	KS .	
Cou Co		Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PM	IAC32	Probability Theory	Core Course-9	3	1	1	1	4	6	25	75	100
	Learning Objectives											
LO1	To understand Random Events, Random Variables, to describe Probability, to apply I to define Distribution Function, to find Joint Distribution function, Marginal Distribution and Conditional Distribution function.									stributi	on	
LO2		fine Expectation, Mome and second types.	nts and Cheby	shev	's In	equa	ality	, to s	olve F	Regressi	on of t	he
LO3		arn Characteristic function	ons, distributio	n fui	nctio	n, to	fino	d pro	babili	ty gene	rating	
LO4	To de	scribe One point, two-po										ions.
LO5	geometric and Poisson distributions, to define Uniform, normal, gamma, Beta distribution To discuss Stochastic convergence, Bernaulli's law of large numbers, to elaborate Convergence of sequence of distribution functions, to prove Levy-Cramer Theorems at Moivre-Laplace Theorems, to explain Poisson, Chebyshev's, Khintchine Weak law of numbers, to explain and solve problems on Kolmogorov Inequality and Kolmogorov Staw of large numbers.										ate orems a law of	nd de large
Unit			Conte	ent							E	Iours
1	Random Events and Random Variables Random events – Probability axioms – Combinatorial formulae – conditional probability – Baye's Theorem – Independent events – Random Variables – Distribution										tion	18
2	Expec	neters of the Distribution ctation- Moments —The Capters —Moments of randouter 3: Sections 3.1 to 3.8	Chebyshev's Ir m vectors – Re									18
3	Characteristic functions Properties of characteristic functions — Characteristic functions and moments — semi invariants — characteristic function of the sum of the independent random variables — Determination of distribution function by the Characteristic function — Characteristic function of multidimensional random vectors — Probability generating functions. Chapter 4: Sections 4.1 to 4.7									es –	18	
4	One p (discre (conti	Probability distribution point and two point distributions —Uniformuous) distributions. ter 5: Section 5.1 to 5.10	bution ,Binomi rm – normal-		-			_				18

5	Limit Theorems Stochastic convergence — Bernaulli's law of large numbers — Convergence of sequence of distribution functions —Levy-Cramer Theorems — De Moivre-Laplace Theorem — Poisson, Chebyshev's, Khintchine Weak law of large numbers — Lindberg Theorem — Lapunov Theroem — Borel-Cantelli Lemma — Kolmogorov Inequality and Kolmogorov Strong Law of large numbers. Chapter 6: Sections 6.1 to 6.4, 6.6 to 6.9, 6.11 and 6.12. (Omit Sections 6.5, 6.10)	18						
	Total	90						
Theory 80% Problem 20%								

CO	Course Outcomes
CO	The Students will be able to
CO1	Apply Random Events, Random Variables and distribution functions.
CO2	Work on Expectation, Moments and Chebyshev's Inequality and Regression types.
CO3	Determine Characteristic functions, distribution function and probability generating functions
CO4	Solve problems on Binomial distributions, Hypergeometric and Poisson distributions.
CO5	Evaluate Stochastic convergence, Bernaulli law of large numbers, Kolmogorov Inequality and Kolmogorov Strong Law of large numbers.
Textbo	
1	M.Fisz, <i>Probability Theory and Mathematical Statistics</i> , John Wiley and Sons, New York, 1963.
Referen	nce Books:
1	R.B. Ash, Real Analysis and Probability, Academic Press, New York, 1972
2	K.L. Chung, A course in Probability, Academic Press, New York, 1974
3	R.Durrett, <i>Probability: Theory and Examples</i> , (2nd Edition) Duxbury Press, New York, 1996.
4	V.K. Rohatgi, An Introduction to Probability Theory and Mathematical Statistics, WileyEastern Ltd., New Delhi, 1988(3rd Print).
5	S.I. Resnick, A Probability Path, Birhauser, Berlin, 1999.
Web re	sources:
1	http://mathforum.org//
2	www.opensource.org//

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	2	3	3	2	2
CO2	2	2	3	2	3	3	2	2	3	2	3
CO3	3	2	3	2	3	3	3	3	3	2	2
CO4	2	2	3	2	3	3	2	2	3	2	3
CO5	3	2	2	3	3	3	2	3	3	2	2
Total	13	10	14	11	15	15	11	13	15	10	12
Average	2.6	2	2.8	2.5	3	3	2.5	2.6	3	2	2.4

										Mark	S	
Cours Code	se	Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
24PM	AC33	Topology	Core Course-10	3	1	0	1	4	5	25	75	100
			Learning O	bjec	tives	;						
LO1	interior, exterior, closure and their axioms.											
LO2	To un prope	derstand continuity, con rties.	npactness, com	necte	edne	ss, h	ome	omo	rphisn	n and to	pologi	cal
LO3	To an	alyze and apply the topo	logical concep	ots in	Fur	ctio	nal A	Analy	/sis			
LO4	To determine a point in a topological space is either a limit point or not for a given suba topological space.											
LO5	To develop qualitative tools to characterize connectedness, compactness, second coun Hausdorff and develop tools to identify when two are equivalent (homeomorphic).											able,
Unit			Conte	ent							H	Iours
1	Topol topolo	logical spaces ogical spaces – Basis f ogy on $X \times Y$ – The subster 2 : Sections 12 to 17	space topology				-	-		-	luct	15
2	Conti	nuous functions nuous functions — The pr ter 2 : Sections 18 to 21		y – T	Γhe 1	metr	ic to	polo	gy.			15
3	Conne	ectedness ected spaces- connected ctedness. ter 3: Sections 23 to 25	•	the 1	Real	line	– C	omp	onent	s and lo	ocal	15
4	Comp – Loc	pactness pact spaces — compact sual Compactness. ter 3: Sections 26 to 29	-	e Re	al lir	ne –	Lim	it Po	int Co	ompactr	iess	15
5	Countability and Separation Axiom: The Countability Axioms – The separation Axioms – Normal spaces – The Urysohn Lemma – The Urysohn Metrization Theorem – The Tietze extension theorem. Chapter 4: Sections 30 to 35.										15	
			Total									75
	l		Theory 1	100%	6						1	

СО	Course Outcomes
	The Students will be able to
CO1	Study the concept of topological spaces, open sets, neighbourhood, interior, exterior, closure and their axioms.
CO2	Understand continuity, compactness, connectedness, homeomorphism and topological properties
CO3	Apply the topological concepts in Functional Analysis
CO4	Evaluate whether a point in a topological space is either a limit point or not for a given subset of a topological space
CO5	Review qualitative tools to characterize connectedness, compactness, second countable, Hausdorff.
Textbo	oks:
1	James R. Munkres, <i>Topology</i> (2nd Edition) Pearson Education Private. Ltd., Delhi-2010 (Third Indian Reprint)
Referen	nce Books:
1	J.Dugundji, <i>Topology</i> , Prentice Hall of India, New Delhi, 1975.
2	George F.Simmons, <i>Introduction to Topology and Modern Analysis</i> , McGraw Hill Book Co., 1963
3	J.L. Kelly, General Topology, Van Nostrand, Reinhold Co., New York.
4	L.Steen and J.Subhash, <i>Counter Examples in Topology</i> , Holt, Rinehart and Winston, New York, 1970.
5	S.Willard, General Topology, Addison - Wesley, Mass., 1970
Web re	sources:
1	http://mathforum.org
2	http://www.opensource.org
3	http://en.wikipedia.org

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	3	3	3	2	3	2	2
CO2	2	2	3	2	3	3	3	2	3	2	3
CO3	3	2	3	2	3	3	3	2	3	2	2
CO4	2	2	3	2	3	3	3	2	3	2	3
CO5	3	2	3	3	3	3	3	2	3	2	2
Total	13	10	15	11	15	15	15	10	15	10	12
Average	2.6	2	3	2.2	3	3	3	2	3	2	2.4

										Mark	S	
Cour Code		Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
24PM	IAC34	Mechanics	Core Course-11	3	1	1	1	4	6	25	75	100
	Learning Objectives											
LO1	To understand mechanical systems under generalized coordinate systems											
LO2	То ар	ply mechanics technique	es in virtual wo	ork-I	Lagra	ange	Equ	atior	ns			
LO3	To de	velop students ability to	deal with Ener	rgy a	and r	nom	entu	m				
LO4	To learn the concept of Hamilton -Jacobi Theory.											
LO5	To discuss the Canonical Transformation.											
Unit			Conte	nt]	Hours
1	The Energ	anical SystemsMechanical system-Gey and Momentum.ter1: Sections 1.1 to 1.5		ordin	ates-	- C	onst	raints	s-Virt	ual wo	rk-	18
2	Deriv	ange's Equations ation of Lagrange's equa ter 2: Sections 2.1 to 2.		es -	Integ	grals	of n	notio	n.			18
3	Hami	Iton's Equations Iton's Principle - Hamilt ter4: Sections 4.1 to 4.3	-	- Otl	ner v	ariat	iona	ıl priı	nciple	s.		18
4	Hami	Iton-Jacobi Theory Iton's Principle function ter5: Sections 5.1 to 5.3		obi I	Equa	tion-	-Sep	arabi	lity.			18
5	Canonical Transformation Differential forms and generating functions - Lagrange and Poisson brackets. Chapter 6: Sections 6.1, 6.3 (Omit 6.2)									18		
			Total									90
Theory 80% Problem 20%												

CO	Course Outcomes
	The Students will be able to
CO1	Understand mechanical systems under generalized coordinate systems
CO2	Apply mechanical techniques in virtual work by Lagrange
CO3	Evaluate energy and momentum in Hamilton's Equations
CO4	Understand Hamilton-Jacobi theory
CO5	Work on Canonical Transformation.
Textbo	oks:
1	D.T. Greenwood, Classical Dynamics, Prentice Hall of India, New Delhi, 1985.
Referen	nce Books:
1	H.Goldstein, Classical Mechanics, (2nd Edition) Narosa Publishing House, New
	Delhi,1950.
2	N.C.Raneand P.S.C.Joag, <i>Classical Mechanics</i> , Tata McGraw Hill, 1991.
3	J.L.Synge and B.A. Griffth, <i>Principles of Mechanics</i> (3rd Edition) McGraw Hill Book
	Co., New York, 1970.
4	French and Ebison, Introduction to Classical Mechanics, Kluwer Academic Publishers
5	George Hrabovsky, Classical Mechanics, Penguin Books
Web re	esources:
1	https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	3	2	2	2	2	3	3	3	3
CO2	2	3	2	3	3	2	3	2	2	3	2
CO3	3	3	2	3	2	2	2	3	3	3	2
CO4	2	2	2	2	3	2	2	3	2	2	3
CO5	3	3	2	3	2	2	3	2	2	3	2
Total	13	13	11	13	12	10	12	13	12	14	12
Average	2.6	2.6	2.2	2.6	2.4	2	2.4	2.6	2.4	2.8	2

										Mark	s	
Cours Code	se	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PM	AE31	Fluid Dynamics	Elective Course-V	2	0	1	1	3	4	25	75	100
			Learning (Obje	ectiv	es	·	•		1		1
LO1	Τοι	inderstand the concepts of	f kinematics of	flui	ds in	mot	ions					
LO2	To f	and the pressure at a point	t in a moving f	luid								
LO3	Тос	liscuss Stokes stream fund	ction.									
LO4	To analyze complex velocity potential for two dimensional flows											
LO5	Тос	lerive the Navier – Stokes	s equations of r	notio	on of	a Vi	scou	ıs flui	id			
Unit			Conte	ent								Hours
1	Kinematics of Fluids in Motion Real fluids and ideal fluids – Velocity of a fluid at a point, Stream lines, path lines, steady and unsteady flows –The Velocity potential –The vorticity vector – Local and particle rates of changes –Equations of continuity – Worked examples. Chapter 2: Sections 2.1 to 2.8											12
2	Press Cond moti	sure at a point in a fluid at ditions at a boundary of two on —Discussion of the cas pter 3: Sections 3.1 to 3.	t rest – Pressure vo inviscid imr e of steady mo	nisci	ble f	luids	-E	uler's	equat	tion of		12
3	Son Intro	ne Three Dimensional Fl duction – Sources, sinks metric flows – Stokes stre pter 4: Sections 4.1- 4.3,	ows and doublets – am function.	Imaş	ges ii	n a ri	gid i	infini	te plar	ne –Axis		12
4	Son The sincon flows Thor	ne Two Dimensional Flor stream function – The com- mpressible flow –Comple s – Some worked example mpson circle Theorem. pter 5: Sections 5.3 to 5.5	ws nplex potential x velocity pote es – Two dime	ntial	s for	stan	dard	two	dimen	sional		12
5	Viscous Flows Stress components in a real fluid – Relations between Cartesian components of stress – Translational motion of fluid element –The co-efficient of viscosity and Laminar flow – The Navier –Stokes equations of motion of a Viscous fluid. Chapter 8: Sections 8.1 to 8.3, 8.8 and 8.9										12	
			Total	l								60
		7	Γheory- 60%,	Prol	olem	-40%	6				1	

СО	Course Outcomes
CO	The Students will be able to
CO1	Understand the concepts of kinematics of fluids in motions.
CO2	Evaluate the pressure at a point in a moving fluid
CO3	Work on Stokes stream function intrinsic
CO4	Analyze complex velocity potential for two dimensional flows
CO5	Solve the Navier – Stokes equations of motion of a Viscous fluid
Textbo	oks:
1	F.Chorlton, Text Book of Fluid Dynamics, CBS Publications. Delhi, 1985
Refere	nce Books:
1	R.W.Fox and A.T.McDonald. Introduction to Fluid Mechanics, Wiley, 1985.
2	E.Krause, Fluid Mechanics with Problems and Solutions, Springer, 2005.
3	B.S.Massey, J.W.Smith and A.J.W.Smith, <i>Mechanics of Fluids</i> , Taylor and Francis, New York, 2005.
4	P.Orlandi, Fluid Flow Phenomena, Kluwer, New Yor, 2002.
5	T.Petrila, Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics, Springer, Berlin, 2004.
Web re	esources:
1	http://web.mit.edu/1.63/www/lecnote.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	2	3	2	3	3	3
CO2	3	3	2	2	2	2	2	3	2	2	3
CO3	3	3	3	2	3	2	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	2	3	2	3	2
Total	15	15	14	12	14	12	13	13	13	13	14
Average	3	3	2.8	2.4	2.8	2.4	2.6	2.6	2.6	2.6	2.8

3 – Strong, 2- Medium, 1- Low

										Mark	S			
Cours Code	se	Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total		
24PM	IAE32	Algebraic Number Theory	Elective Course-V	2	0	1 1 3 4 25 75 10								
			Learning (Obje	ectiv	es								
LO1	То	learn about rings, fields a	nd factorization	n of j	olyı	omi	als.							
LO2	To know about norms and traces over ring of integers													
LO3	To understand factorization to irreducible polynomials.													
LO4	To s													
LO5	To analysis concepts of ideals.													
Unit														
1	Algebraic Background Rings and Fields- Factorization of Polynomials - Field Extensions - Symmetric Polynomials - Modules - Free Abelian Groups. Chapter 1: Sec. 1.1 to 1.6											12		
2	Alge Integ	braic Numbers braic numbers - Conjugat gral Bases - Norms and Tr pters 2: Sec. 2.1 to 2.6					oraic	Integ	gers -			12		
3	Qua Qua Trivi facto	dratic and Cyclotomic For dratics and cyclotomatic find factorization - Factroiz prization into irreducibles. pter 3: Sec. 3.1 and 3.2;	ields : Factoriz ation into irred	lucib	les -	Exa			ıonun	ique		12		
4	Cons	ne Factroization - Euclide sequences of unique facto pter 4: Sec. 4.5 to 4.9				_				•		12		
5	Fac	als me Factorization of Ideals torization in Cyclotomic l apter 5 : Sec. 5.2 to 5.4		f an	Idea	l - N	on-u	nique	;			12		
	Total 60													
	Theory-90% Problem-10%													

CO	Course Outcomes
	The Students will be able to
CO1	Study about rings, fields and factorization of polynomials.
CO2	Recall on norms and traces over ring of integers.
CO3	Solve factorization to irreducible polynomials.
CO4	Understand Euclidean Quadratic fields
CO5	Work on concepts of ideals.
Textbo	oks:
1	Steward and D.Tall. <i>Algebraic Number Theory and Fermat's Last Theorem</i> (3rd Edition) A.K.Peters Ltd., Natrick, Mass. 2002
Refere	nce Books:
1	Z.I.Bosevic and I.R.Safarevic, Number Theory, Academic Press, New York, 1966
2	J.W.S.Cassels and A.Frohlich, Algebraic Number Theory, Academic Press, New York, 1967
3	R J.W.S.Cassels and A.Frohlich, Algebraic Number Theory, Academic Press, New York, 1967
4	P.Samuel, Algebraic Theory of Numbers, Houghton Mifflin Company, Boston, 1970.
5	A.Weil. Basic Number Theory, Springer, New York, 1967.
Web re	esources:
1	http://mathforum.org//
2	http://www.opensource.org//
3	www.mathpages.com//

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	2	3	2	3	3	2	3	2	3
CO3	3	3	3	2	3	3	2	2	3	3	3
CO4	3	2	3	3	3	3	3	3	3	2	3
CO5	3	2	3	3	3	3	3	3	3	3	3
Total	15	12	14	14	14	15	14	13	15	13	15
Average	3	2.4	2.8	2.8	2.8	3	2.8	2.6	3	2.6	5

3 – Strong, 2- Medium, 1- Low

			A							Marks		
Cours Code	se	Course Name	Course Name Category L T P		P	S	Credits	Hours	CIA	Extern al	Total	
24PM	AS31	Research Tools And Techniques	SEC-II	2	0	1	1	2	3	25	75	100
	Learning Objectives											
LO1	To demonstrate the knowledge of Research methodology and research problem											
LO2		To create the knowledge on Research Design										
LO3		earn the concept of measu	arement and sca	aling								
LO4		analyze the data.										
LO5	To f	Formulate the hypothesis a			cept	of cr	itica	l valu	ıe			**
Unit	D	1 M 1 . 1 . 1 M	Conte			M	1 1	D :	1.			Hours
1	Prob Cha j	earch Methodology- Mean lem-Definition-Technique pter 1: Section:1.1 to 1.8 pter 2: Section:2.1 to 2.4	es.	s- Ty	/pes-	Met	chods	s. Res	search			9
2	Rese	earch Design-Meaning,-F earch Design- Principles a pter 3: Section:3.1 to 3.7	nd experimenta	-	• •	s- pri	incip	les- l	Differe	ent		9
3	Tech	Measurement and Scaling-Qualitative and quantitative data- Classification, Techniques, Scaling-Classification. Chapter 5: Section:5.1 to 5.7										
4	Data Collection Introduction Experiments and curvey Primery and Secondary data							9				
5	Proc	Testing of Hypothesis-Basic concepts-Critical region and critical value – Procedure. Chapter 10: Section:10.1 to 10.6							9			
	Total									45		
		ŗ	Theory-100%								,	
CO	Course Outcomes The Students will be able to											
CO1	Ţ	Understand the knowledge	e of Research n	netho	odolo	ogy a	nd r	esear	ch pro	blem.		
CO2	CO2 Frame the Research Designs.											
CO3	Work on measurement and scaling.											
CO4												
CO5	CO5 Formulate the hypothesis and learnt the concept of critical value.											
Textbo	Textbooks:											
C.R.Kothari, Gaurav Garg, <i>Research Methodology Methods and Techniques</i> , New AgeInternational Publishers, 2019.												

Reference	e Books:
1	Dr. Prabhat Pandey Dr. Meenu Mishra Pandey , <i>Research Methodology: Tools and Techniques</i> , Bridge Center, 2015
2	Ackoff, Russell L. The Design of Social Research, University of Chicago Press: Chicago, 1961
3	Allen, T. Harrell, New Methods in Social Research, Praeger Publication: New York, 197
4	Baker, R.P. and Howell, A.C. <i>The Preparation of Reports</i> , Ronald Press: New York, 1958.
5	Barzun, Jacques and Graff. F. <i>The Modern Researcher</i> , Harcourt, Brace Publication: New York, 1990
Web reso	ources:
1	http://mathforum.org//
2	http://www.opensource.org//
3	www.mathpages.com//

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	2	2	3	2	3	3	3	3	2	3
CO2	2	3	2	3	3	3	3	3	3	3	3
CO3	2	3	3	3	3	2	3	2	2	3	3
CO4	3	2	3	3	2	3	3	2	2	3	3
CO5	2	2	3	3	3	3	2	2	3	2	2
Total	12	12	13	15	13	14	14	12	13	13	14
Average	2.4	2.4	2.6	3	2.6	2.8	2.8	2.4	2.6	2.6	2. 8

3 – Strong, 2- Medium, 1- Low

							Marks				
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PMAIN31	Internship		0	0	0	0	2	25	25	75	100
	Learning Objectives										
LO1	the practical applications of theoretical knowledge.										
LO2	Analyze various aspects of developing computer-based solutions while fostering teamwork and collaboration.										
LO3	Demonstrate proficiency in probrequired for professional growth an				ft sl	kill	s, ai	nd ot	her ess	ential a	bilities
LO4	Develop additional competencies a profession.				kills	rel	evar	nt to a	chosen	occupa	ition or
LO5	Enhance interpersonal, social, and communication skills to promote effective workplace interaction.										
	REGULATIONS										
1	Every student must complete an internship program in a relevant firm, industry, or organization during the course of study to gain practical exposure.										
2	After completing the second semester, the student should identify and analyze a suitable project to be undertaken during the third semester.										
3	During the internship, students are expected to actively participate in assigned tasks and document the work performed throughout the training period.										
4	A detailed internship report must be prepared and submitted by the student in the format prescribed by the institution.										
5	The report submission will take place at the end of the third semester, followed by presentation and viva voce evaluation during the semester examination.										
6	The evaluation of the internship/project work will be for 100 marks, comprising 50 internal (25 for report and 25 for viva) and 50 externals (25 for report and 25 for viva), assessed jointly by internal and external examiners. The external examiner shall be appointed from affiliated colleges or, if necessary, from within the college.										
7	Students must secure at least 50% of the total marks to pass. Those who fail to meet this requirement must improve their performance and resubmit their report in the next available attempt. The final report must include all prescribed sections and be submitted to the Controller of Examinations within the specified date.										

CO	COURSE OUTCOMES
CO1	Identify specific areas of interest and enhance relevant skills and competencies
CO2	Cultivate greater self-awareness while fostering respect and appreciation for others.
CO3	Develop professional work habits and attitudes essential for success in the workplace.
	Recognize the significance of effective communication, interpersonal skills, and teamwork.
CO5	Promote proactive preparation to transition internship experiences and creativity into full-time employment immediately upon graduation.

$Internal\ Marks\ Awarded\ for\ the\ Internship-25\ Marks$

Component	Marks				
Internship Review I (During the	5 Marks				
Beginning of The Semester)	3 Warks				
Internship Review II (During the End of	15 Montro				
The Semester)	15 Marks				
Progress of The Internship by the Student	5 Montre				
Participated	5 Marks				

External Marks Awarded for the Internship – 75~Marks

Component	Marks
Evaluation of the Internship Report	25 Marks
Presentation	25 Marks
Viva Voce Examination	25 Marks