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General Method: 

Divide-and-conquer method: Divide-and-conquer is probably the best known general 

algorithm design technique. The principle behind the Divide-and-conquer algorithm design 

technique is that it is easier to solve several smaller instance of a problem than the larger one. 

The “divide-and-conquer” technique involves solving a particular problem by dividing it 

into one or more cub-problems of smaller size, recursively solving each sub-problem and then 

“merging” the solution of sub-problems to produce a solution to the original problem. 

Divide-and-conquer algorithms work according to the following general plan. 

1. Divide: Divide the problem into a number of smaller sub-problems ideally of about the 

same size. 

2. Conquer: The smaller sub-problems are solved, typically recursively. If the sub-problem 
sizes are small enough, just solve the sub-problems in a straight forward manner. 

3. Combine: If necessary, the solution obtained the smaller problems are connected to get 

the solution to the original problem. 

The following figure shows- 

Fig: Divide-and-Conquer technique (Typical case). 

 

 

  

 



Control abstraction for divide-and-conquer technique: 

Control abstraction means a procedure whose flow of control is clear but whose primary 

operations are satisfied by other procedure whose precise meanings are left undefined. 

Algorithm DandC(p) 

{ 

if small (p) then 
return S(p) 

else 

{ 

Divide P into small instances P1, P2, P3 ......... Pk, k≥1; 

Apply DandC to each of these sub-problems;\ 

return combine (DandC(P1), DandC(P1),…. (DandC(Pk); 

} 

} 

Algorithm: Control abstraction for divide-and-conquer 

DandC(p) is the divide-and-conquer algorithm, where P is the problem to be solved. 

Small(p) is a Boolean valued function(i.e., either true or false) that determines whether the input 

size is small enough that the answer can be computed without splitting. If this, is so the function S 

is invoked. Otherwise the problem P is divided into smaller sub-problems. These sub-problems P1, 

P2, P3 .............. Pk, are solved by receive applications of DandC. 

Combine is a function that combines the solution of the K sub-problems to get the solution 

for original problem ‘P’. 

Example: Specify an application that divide-and-conquer cannot be applied. 

Solution: Let us consider the problem of computing the sum of n numbers a0, a1,    an-1. If 
n>1, we divide the problem into two instances of the same problem. That is to compute the sum of 

the first [n/2] numbers and to compute the sum of the remaining [n/2] numbers. Once each of these 

two sum is compute (by applying the same method recursively), we can add their values to get the 

sum in question- 

a0+ a1+….+an-1= (a0+ a1+….+a[n/2]-1)+ a[n/2]-1+ ...... + an-1). 

For example, the sum of 1 to 10 numbers is as follows- (1+2+3+4+
 .......................................... +10) = (1+2+3+4+5)+(6+7+8+9+10) 

= [(1+2) + (3+4+5)] + [(6+7) + (8+9+10)] 

= ….. 

= ….. 

= (1) + (2) +…………..+ (10). 

This is not an efficient way to compute the sum of n numbers using divide-and-conquer 

technique. In this type of problem, it is better to use brute-force method. 
Applications of Divide-and Conquer: The applications of divide-and-conquer methods are- 

1. Binary search. 

2. Quick sort 

3. Merge sort. 

 

 



Binary Search: 

 
Binary search is an efficient searching technique that works with only sorted lists. So the 

list must be sorted before using the binary search method. Binary search is based on divide-and- 

conquer technique. 

The process of binary search is as follows: 

The method starts with looking at the middle element of the list. If it matches with the key 

element, then search is complete. Otherwise, the key element may be in the first half or second 

half of the list. If the key element is less than the middle element, then the search continues with 

the first half of the list. If the key element is greater than the middle element, then the search 

continues with the second half of the list. This process continues until the key element is found or 

the search fails indicating that the key is not there in the list. 

 

Consider the list of elements: -4, -1, 0, 5, 10, 18, 32, 33, 98, 147, 154, 198, 250, 500. 
Trace the binary search algorithm searching for the element -1. 

Sol: The given list of elements are: 

 

Low              High 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 

-4 
 

-1 
 

0 
 

5 
 

10 
 

18 
 

27 
 

32 
 

33 
 

98 
 

147 
 

154 
 

198 
 

250 
 

500 

 
Searching key '-1': Here the key to search is '-

1' First calculate mid; 

Mid = (low + high)/2 

= (0 +14) /2 =7 

Low Mid High 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 

-4 

 

-1 

 

0 

 

5 

 

10 

 

18 

 

27 

 

32 

 

33 

 

98 

 

147 

 

154 

 

198 

 

250 

 

500 

< First Half   > < Second Half > 



Here, the search key -1 is less than the middle element (32) in the list. So the search process 
continues with the first half of the list. 

Low    High  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 

-4 
 

-1 
 

0 
 

5 
 

10 
 

18 
 

27 
 

32 
 

33 
 

98 
 

147 
 

154 
 

198 
 

250 
 

500 

Now mid = (0+6)/2 

=3. 
Low   Mid  High  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 

-4 
 

-1 
 

0 
 

5 
 

10 
 

18 
 

27 
 

32 
 

33 
 

98 
 

147 
 

154 
 

198 
 

250 
 

500 

<     First Half     > <  Second Half  > 

The search key ‘-1’ is less than the middle element (5) in the list. So the search process 

continues with the first half of the list. 
Low High  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 

-4 
 

-1 
 

0 
 

5 
 

10 
 

18 
 

27 
 

32 
 

33 
 

98 
 

147 
 

154 
 

198 
 

250 
 

500 

Now mid= ( 0+2)/2 

=1 

Low Mid High  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
 

 

-4 
 

-1 
 

0 
 

5 
 

10 
 

18 
 

27 
 

32 
 

33 
 

98 
 

147 
 

154 
 

198 
 

250 
 

500 

Here, the search key -1 is found at position 1. 

The following algorithm gives the iterative binary Search Algorithm 

Algorithm BinarySearch(a, n, key) 

{ 

// a is an array of size n elements 

// key is the element to be searched 

// if key is found in array a, then return j, such that 

//key = a[i] 

//otherwise return -1. 

Low: = 0; 

High: = n-1; 

While (low  high) do 

{ 

Mid: = (low + 

high)/2; If ( key = 

a[mid]) then 

Return mid; 

Else if (key < a[mid]) 

{ 

High: = mid +1; 

} 

Else if( key > a[mid]) 

{ 



Low: = mid +1; 

} 

} 

The following algorithm gives Recursive Binary Search 

Algorithms Binsearch ( a, n, key, low, high) 

{ 

// a is array of size n 

// Key is the element to be searched 

// if key is found then return j, such that key = a[i]. 
//otherwise return 

-1 If ( low  high) then 

{ 

Mid: = (low + high)/2; 
If ( key = a[mid]) 

then Return mid; 

Else if (key < a[mid]) 

Binsearch ( a, n, key, low, mid-

1); Else if ( key > a[mid]) 

Binsearch ( a, n, key, mid+1, high); 

} 

Return -1; 

} 

Advantages of Binary Search: The main advantage of binary search is that it is faster than 

sequential (linear) search. Because it takes fewer comparisons, to determine whether the given 

key is in the list, then the linear search method. 

Disadvantages of Binary Search: The disadvantage of binary search is that can be applied to only 

a sorted list of elements. The binary search is unsuccessful if the list is unsorted. 

Efficiency of Binary Search: To evaluate binary search, count the number of comparisons in the 
best case, average case, and worst case. 

Best Case: The best case occurs if the middle element happens to be the key element. Then only 

one comparison is needed to find it. Thus the efficiency of binary search is O(1). 

Ex: Let the given list is: 1, 5, 10, 11, 12. 

 

 



12 

 

 

The reduction step of the quick sort algorithm finds the final position of one of the 

numbers. In this example, we use the first number, 12, which is called the pivot (rotate) element. 
This is accomplished as follows- 

Let ‘I’ be the position of the second element and ‘j’ be the position of the last element. 
i.e. I =2 and j =8, in this example. 

Assume that a [n+1] =∞, where ‘a’ is an array of size n. 

[1] [2] [3] [4] [5] [6] [7] [8] [9] i  j 

12 6 18 4 9 8 2 15  2  8 

First scan the list from left to right (from I to j) can compare each and every element 

with the pivot. This process continues until an element found which is greater than or equal to 

pivot element. If such an element found, then that element position becomes the value of ‘i’. 

Now scan the list from right to left (from j to i) and compare each and every element 

with the pivot. This process continues until an element found which is less than or equal to pivot 

element. If such an element finds then that element’s position become ‘j’ value. 

Now compare ‘i’ and ‘j’. If i <j, then swap a[i] and a[j]. Otherwise swap pivot element 

and a[j]. 

Continue the above process the entire list is sorted. 

[1] [2] [3] [4] [5] [6] [7] [8] [9] i  j 

12 6 18 4 9 8 2 15  2  8 

12 6 18 4 9 8 2 15  3 
 

7 

12 6 2 4 9 8 18 15  7  6 

Since i = 7 j=6, then swap pivot element and 6th element ( jth element), we get 

8 6 2 4 9 18 15 

Thus pivot reaches its original position. The elements on left to the right pivot are 

smaller than pivot (12) and right to pivot are greater pivot (12). 

8 6 2 4 9 18 15 
 

 

Sublist 1 Sublist 2 



 

Now take sub-list1 and sub-list2 and apply the above process recursively, at last we 

get sorted list. 

Ex 2: Let the given list is- 

8 18 56 34 9 92 6 2 64 

 
[1] [2] [3] [4] [5] [6] [7] [8] [9]  [10] i j 

8 18 56 34 9 92 6 2 64  2 98 

8 18 56 34 9 92 6 2 64  2 8 

8 2 56 34 9 92 6 18 64  3 7 

8 2 6 34 9 92 56 18 64  4 3 
 

 

Since i j, then swap jth element, and pivot element, we get 

 

6 2 34 9 92 56 18 64 

< > < > 

Sublist 1 Sublist 2 

Now take a sub-list that has more than one element and follow the same process as 

above. At last, we get the sorted list that is, we get 

2 6 8 9 18 34 56 64 92 

The following algorithm shows the quick sort algorithm- 

Algorithm Quicksort(i, j) 

{ 

// sorts the array from a[i] through a[j] 

If ( i <j) then //if there are more than one element 

{ 

//divide P into two sub-
programs K: = partition 

(a, i, j+1); 

//Here K denotes the position of the partitioning element 
//solve the sub 

problems Quicksort(i, 

K-1); Quicksort(K=1, 

j); 

// There is no need for combining solution 

} 

} 

Algorithm Partition (a, left, right) 

{ 

// The element from a[left] through a[right] are rearranged in such a manner that if initially 

// pivot =a[left] then after completion a[j]= pivot, then return. Here j is the position where 

// pivot partition the list into two partitions. Note that a[right]= . 

pivot: a[left]; 

i: left; 

j:=right; repeat 



{ 

repeat 

i: =i+1; 

until (a[i] ≥ pivot); 

repeat 

j: =j-1; 

until (a[j] < pivot); if( 

i<j) then Swap (a, i, 

j); 

}until (i ≥ j); 

a[left]: = 

a[j]; a[j]: = 

pivot; return 

j; 

} 

Algorithm Swap (a, i, j) 

{ 

//Example a[i] with 

a[j] temp:= a[i]; 

a[i]: = 
a[j]; 

a[j]:= 

temp; 

} 

Advantages of Quick-sort: Quick-sort is the fastest sorting method among all the sorting 

methods. But it is somewhat complex and little difficult to implement than other sorting 

methods. 

Efficiency of Quick-sort: The efficiency of Quick-sort depends upon the selection of pivot 
element. 

Best Case: In best case, consider the following two assumptions- 
1. The pivot, which we choose, will always be swapped into the exactly the middle of 

the list. And also consider pivot will have an equal number of elements both to its left 

and right. 

2. The number of elements in the list is a power of 2 i.e. n= 2y 

 

Merge Sort: 
 

Merge sort is based on divide-and-conquer technique. Merge sort method is a two 

phase process- 

1. Dividing 

2. Merging 

Dividing Phase: During the dividing phase, each time the given list of elements is divided into 

two parts. This division process continues until the list is small enough to divide. 

Merging Phase: Merging is the process of combining two sorted lists, so that, the resultant list 

is also the sorted one. Suppose A is a sorted list with n element and B is a sorted list with n2 

elements. The operation that combines the elements of A and B into a single sorted list C with 

n=n1 + n2, elements is called merging. 

 

. 



Algorithm-(Divide algorithm) 

Algorithm Divide (a, low, high) 

{ 

// a is an array, low is the starting index and high is the end index of a 
 

If( low < high) then 

{ 

Mid: = (low + high) /2; 

Divide( a, low, mid); 

Divide( a, mid +1, 

high); Merge(a, low, 

mid, high); 

} 
 

} 

The merging algorithm is as follows- 
 

Algorithm Merge( a, low, mid, high) 

{ 

L:= low; 

H:= 

high; 

J:= mid 

+1; K:= 

low; 
 

While (low  mid AND j  high) do 

{ 

If (a[low < a[j]) then 

{ 

B[k] = 

a[low]; K:= 
k+1; 

Low:= low+1; 

} 

Else 

{ 

B[k]= 

a[j]; K: 

= k+1; 

J: = j+1; 

} 

} 
 

While (low  mid) do 

{ 

B[k]=a[lo

w]; K: = 

k+1; 



Low: =low + 1; 
} 

 

While (j  high) do 

{ 

B[k]=a[

j]; K: = 

k+1; j: 

=j + 1; 

} 
 

//copy elements of b to a 

For i: = l to n do 

{ 

A[i]: =b[i]; 

} 

} 

 

 

 

 



 

 

 

 

 

 

 

 



Finding Maximum and Minimum Problem 

In this approach, the array is divided into two halves. Then using recursive approach maximum and 

minimum numbers in each halves are found. Later, return the maximum of two maxima of each half 

and the minimum of two minima of each half. 

Problem: Analyze the algorithm to find the maximum and minimum element from an array. 

Algorithm: Max ?Min Element (a []) 

Max:  a [i] 

Min:   a [i] 

For i= 2 to n do 

If a[i]> max then 

max = a[i] 

if a[i] < min then 

min: a[i] 

return (max, min) 

Maximum and Minimum: 

1. Let us consider simple problem that can be solved by the divide-and conquer 
technique. 

2. The problem is to find the maximum and minimum value in a set of ‘n’ elements. 
3. By comparing numbers of elements, the time complexity of this algorithm can be 

analyzed. 
4. Hence, the time is determined mainly by the total cost of the element 

comparison. 

 

Explanation: 

a. Straight MaxMin requires 2(n-1) element comparisons in the best, average & worst 
cases. 

b. By realizing the comparison of a [i]max is false, improvement in a algorithm can be 
done. 

d. On the average a[i] is > max half the time, and so, the avg. no. of comparison is 3n/2-
1. 

A Divide and Conquer Algorithm for this problem would proceed as follows: 



a. Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem. 

b. Here ‘n’ is the no. of elements in the list (a [i],….,a[j]) and we are interested in finding 
the maximum and minimum of the list. 

c. If the list has more than 2 elements, P has to be divided into smaller instances. 

d. For example, we might divide ‘P’ into the 2 instances, P1=([n/2],a[1],……..a[n/2]) & 
P2= ( n-[n/2], a[[n/2]+1],….., a[n]) After having divided ‘P’ into 2 smaller sub problems, 
we can solve them by recursively invoking the same divide-and-conquer algorithm. 

Algorithm: 

 

 

 

 

 

 



 

Example: 

 

 
Recurrence Equation for Divide and Conquer 

A divide-and-conquer algorithm consists of three steps: 

• dividing a problem into smaller subproblems 

• solving (recursively) each subproblem 

• then combining solutions to subproblems to get solution to original problem 

We use recurrences to analyze the running time of such algorithms. Suppose Tn is the 

number of steps in the worst case needed to solve the problem of size n. Let us split a 

problem into a ¥ 1 subproblems, each of which is of the input size nb 

where b > 1. 

Observe, that the number of subproblems a is not necessarily equal to b. The total 

number 

of steps Tn is obtained by all steps needed to solve smaller subproblems Tnêb plus the 

number needed to combine solutions into a final one. The following equation is called 

divide-and-conquer recurrence relation 

Tn = a Tnêb + f HnL 

As an example, consider the mergesort: 

-divide the input in half 

-recursively sort the two halves 

-combine the two sorted subsequences by merging them. 

 

 



 
Tn = 2 Tnê2 +QHnL 

Other examples of divide and conquer algorithms: quicksort, integer multiplication, 

matrix multiplication, fast Fourier trnsform, finding conver hull and more. 

There are several techniques of solving such recurrence equations: 

• the iteration method 

• the tree method 

• the master-theorem method 

• guess-and-verify 

Tree method  

We could visualize the recursion as a tree, where each node represents a recursive call. The root is the initial 

call. Leaves correspond to the exit condition. We can often solve the recurrence by looking at the structure of 

the tree. To illustrate, we take this example THnL = 2 TK n 2 O +n 2 TH1L = 1 Here is a recursion tree that 

diagrams the recursive function calls 

  



 
 

Selection Sort 

The selection sort enhances the bubble sort by making only a single swap for each pass through 

the rundown. In order to do this, a selection sort searches for the biggest value as it makes a pass and, after 

finishing the pass, places it in the best possible area. Similarly, as with a bubble sort, after the first pass, the 

biggest item is in the right place. After the second pass, the following biggest is set up. This procedure proceeds 

and requires n-1 goes to sort n item since the last item must be set up after the (n-1) th pass. 

ALGORITHM: SELECTION SORT (A) 

1. 1. k ← length [A]   

2. 2. for j ←1 to n-1   

3. 3. smallest ←  j   

4. 4. for I ← j + 1 to k   

5. 5. if A [i] < A [ smallest]   

6. 6. then smallest ←  i   

7. 7. exchange (A [j], A [smallest])   

 

 

 

 



How Selection Sort works 

In the selection sort, first of all, we set the initial element as a minimum. 

Now we will compare the minimum with the second element. If the second element turns out to 

be smaller than the minimum, we will swap them, followed by assigning to a minimum to the third element. 

Else if the second element is greater than the minimum, which is our first element, then we will 

do nothing and move on to the third element and then compare it with the minimum. 

We will repeat this process until we reach the last element. 

After the completion of each iteration, we will notice that our minimum has reached the start of 

the unsorted list. 

For each iteration, we will start the indexing from the first element of the unsorted list. We will 

repeat the Steps from 1 to 4 until the list gets sorted or all the elements get correctly positioned. 

Consider the following example of an unsorted array that we will sort with the help of the 

Selection Sort algorithm. 

A [] = (7, 4, 3, 6, 5). 

A [] = 

 

1st Iteration: 

Set minimum = 7 

o Compare a0 and a1 
 

As, a0 > a1, set minimum = 4. 

o Compare a1 and a2 

 

As, a1 > a2, set minimum = 3. 

o Compare a2 and a3            

As, a2 < a3, set minimum= 3. 

Compare a2 and a4                                  

 

 



Stassen‟s Matrix Multiplications  

Consider two n x n matrices A and B 

Recall that the matrix product C = AB of two n x n matrices is defined 

as the n x n matrix that has the coefficient 

ckl = ∑ akm ∑ ml 

         in row k and column l, where the sum ranges over the integers from 1 to n; the scalar 

product of the kth row of a with the lth column of B. 

The straightforward algorithm uses O(n3) scalar operations. 

Can we do better? 

Idea: Use Divide and Conquer 

The divide and conquer paradigm is important general technique 

for designing algorithms. In general, it follows the steps: 

- divide the problem into subproblems 

- recursively solve the subproblems 

- combine solutions to subproblems to get solution to original problem 

Divide-and-Conquer 

• Divide matrices A and B into four submatrices each 

• We have 8 smaller matrix multiplications and 4 additions. Is it faster? 

 Let write the product A B = C as follow 

 

 



 

Divide matrices A and B into four submatrices each  We have 8 smaller matrix multiplications and 4 additions. 

Is it faster? 

Let us investigate this recursive version of the matrix multiplication. Since we divide A, B and C into 4 

submatrices each, we can compute the resulting matrix C by 

• 8 matrix multiplications on the submatrices of A and B, 

• plus Θ(n2) scalar operations 

Running time of recursive version of straightfoward algorithm is T(n) = 8T(n/2) + Θ(n2) and T(2) = Θ(1) where 

T(n) is running time on an n x n matrix • Master theorem gives us: ! ! T(n) = Θ(n3) • Can we do fewer recursive 

calls (fewer multiplications of the n/2 x n/2 submatrices)? 

 

P1 = (A11+ A22)(B11+B22) 

P2 = (A21 + A22) * B11 

P3 = A11 * (B12 - B22) 

P4 = A22 * (B21 - B11) 

P5 = (A11 + A12) * B22 

P6 = (A21 - A11) * (B11 + B12) 

P7 = (A12 - A22) * (B21 + B22) 

C11 = P1 + P4 - P5 + P7 

C12 = P3 + P5 

C21 = P2 + P4 

C22 = P1 + P3 - P2 + P6 
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