MARUDHAR KESARI JAIN COLLEGE FOR WOMEN VANIYAMBADI

PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE

CLASS: Il BSC COMPUTERSCIENCE
SUBJECT CODE : FCS 31

SUBJECT NAME: PROGRAMMING IN JAVA

SYLLABUS

UNIT-I

Declaration and Access control:Identifiers and Keywords:Oracle’s Java Code convention

Define Classes:Import Statements and the java API-Static Import statements .Use interfaces
Declaring an interface Constants.Declare Class members: Access modifiers-Non access modifires-
Constructor Declaration-Variable Declarations.Declare and Use Enums:Declaring Enums.Object
orientation:Encapsulation-Inheritance and  Polymorphism-Polymorphism  over  riding/Over

Loading:Over ridden Methods-Overloaded methods




UNIT -1

INTRODUCTION TO JAVA
PROGRAMMING

|

.~ 1.1 INTRODUCTION TO JAVA PROGRAMMING

JAVA was developed by James Gosling at Sun Microsystems
in the year 1991, later acquired by Oracle Corporation. Java allows

- writing, compiling, and debugging programming easy to the
programmer. It helps to create reusable code and modular programs.

Java is a class-based, object-oriented programming language.

A general-purpose programming language made for developers to
~ write once run anywhere that is compiled Java code can run on all
platforms(operating systems) that support Java. Java applications are
- compiled to byte code that can run on any Java Virtual Machine.

- Java Terminology

Java Virtual Machine(JVM): This is generally referred to as

~ JVM. There are three execution phases of a program. They are written,

~ compile and run the program.

7%  Writing a program is done by a java programmer.

#%  The compilation is done by the JAVAC compiler which is a
primary Java compiler included in the Java development kit
(JDK). It takes Java program as input and generates bytecode
(.class file) as output.

#%  Inthe Running phase of a program, JVM executes the bytecode
generated by the compiler.



12 Java Programmiﬁn_g‘

The function of Java Virtual Machine is t0 execute the bytecode ..
produced by the compiler. Every Operating System has a diff.erent |
JVM but the output they produce after the execution of bytecode is the
same across all the operating systems. This is why Java is known as a
platform-independent language.

Bytecode: Javac compiler of JDK compiles the java source code
into bytecode so that it can be executed by JVM. It is saved as .class
file by the compiler.

Java Development Kit(JDK): It is a complete Java development
kit that includes everything including compiler, Java Runtime |
Environment (JRE), java debuggers, java docs, etc. For the program
to exccute in java, we need to install JDK on our computer in order to
create, compile and run the java program.

Java Runtime Environment (JRE): JDK includes JRE. JRE
installation on computers allows the java program to run, but cannot
compile it. JRE includes a browser, JVM, applet supports, and
plugins.

Garbage Collector: In Java, programmers cannot delete the
objects. To delete or recollect that memory JVM has a program called
Garbage Collector. Garbage Collectors can recollect the objects that
are not referenced. So, Java itself handling memory management.
Garbage cannot recover the memory of objects being referenced.

ClassPath: The classpath is the file path where the java runtime
and Java compiler look for .class files to load. By default, JDK provides
many libraries. If you want to include external libraries they should b
added to the classpath,

Primary/Main Features of Java

Platform Independent: Compiler converts source code '
bytecode and then the JVM executes the bytecode generated by the §
compiler. This bytecode can run on any platform be it Windo"W>

%



Introduction to Java Programming 1.3

Linux, macOS which means if" we compile o program on Windows,
then we can run it on Linux and vice versa. Fach operating system
has a different JVM, but the output produced by all the OS is the same
after the exccution of bytecode. That is why we call java a platform-
independent language.

Object-Oriented Programming Language: Organizing the
program in the terms of collection of objects is a way of object-oriented
programming, each of which represents an instance of the class.

The four main concepts of Object-Oriented programming are:
%  Abstraction
%  Encapsulation
% Inheritance
* ‘Polymorphism

Simple: Java is one of the simple languages as it does not
have complex features like pointers, operator overloading, multiple

inheritances, explicit memory allocation.

Robust: Java language is robust that means reliable. It is
developed in such a way that it puts a lot of effort into checking errors
as early as possible, that is why the java compiler is able to detect
even, those errors that are not easy to detect by another programming
language. The main features of java that make it robust are garbage
collection, Exception Handling, and memory allocation.

Secure: Injava, we don’t have pointers, and so we cannot access
out-of-bound arrays i.e it shows ArrayIndexOutOfBoundsException if
we try to do so. That is why several security flaws like stack corruption
or buffer overflow is impossible to exploit in Java.

Distributed: To create distributed applications using the java
programming language. Remote Method Invocation and Enterprise



1.4 Java Programming

Java Beans are used for creating distributed applications 1n java. T'he
java programs can be easily distributed on one or more systems that are
connected to each other through an internet connection.

Multithreading: Java supports multithreading. Itis a Java feature

that allows concurrent execution of two or more parts of a program for
maximum utilization of CPU.

Portable: Java code written on one machine can be run on

another machine. The platform-independent feature of java in which
its platform-independent bytecode can be taken to any platform for

execution makes java portable.
Basic Java Program Example
Sample. java

import java.io.*;

class Sample

{
public static void main(String[] args)
{
System.out.println("Hello World")?
}
}
Compile
Javac Sample.java
[Zun
Java Sample
Jutpuat

Hello World



[ntroduction to Java Programming

Explanation:

Comments: Comments are used for explaining code and are used in
a similar manner in Java or C or C++, Compilers ignore the comment
entries and do not execute them. Comments can be of a single line or

multiple lines.
Single line Comments:

Syntax

// Single line comment
Multi-line comments:

Syntax

/* Multi line comments™/

import java.io.*: This means all the classes of io package can be
imported. java.io package provides a set of input and output streams
for reading and writing data to files or other input or output sources.

Class: The class contains the data and methods to be used in the
program. Methods define the behavior of the class. Class sample has

only one method Main in JAVA.

static void main(): static keyword tells us that this method is accessible

without instantiating the class.

yoid: keywords tell that this method will not return anything. The
main() method is the entry point of our application. '

System.in: This is the standard input stream that is used to read
characters from the keyboard or any other standard input device.

System.out: This is the standard output stream that is used to produce
the result of a program on an output device like the computer screen.



1.6 Java ngmmmiug

printin(): This method in Java 18 also used to display text on the

. : + CUrsor moves .
console. It prints the text on the console and the cursor MOVEs to the

start of the next line at the console. The next printing takes place frop,

the next line.
1.2 DECLARATIONS AND ACCESS CONTROL

Java Refresher

Class - A template that describes the kinds of state and behavioy
that objects of its type support.

Object - At runtime, when the Java Virtual Machine (JVM)
encounters the new keyword, it will use the appropriate class to make
an object that is an instance of that class.

State (instance variables) - Each object (instance of a class) will
have its own unique set of instance variables as defined in the class

Behavior (methods) - A programmer creates a class also creates
methods for that class. Methods are where the class logic is stored and
where the real work gets done.

Declarations And Access Control

Source File Declaration

A Java file can have only one public class. If one source file
contains a public class, the java filename should be the public class

name. Also, a Java source file can only have one package statement and
unlimited import statements.

Identifiers Declaration

Identifiers in Java can begin with a letter, an underscore, of ?
currency character. Other types of naming are not allowed. They can
be of any length. Only in the case of JavaBeans methods, they must
be named using camelCase, and counting on the methods purpose‘

B



[ntroduction fo Java Programming 1.7
55
must start with set, get, is, add, or remove. In Java, we have vanables,

methods, classes, packages, and interfaces as identifiers.
Local Variables Declaration

The scope of local variables will be only within the given method
or class. These variables should be initialized during declaration.
. Access modifiers cannot be applied to local variables.

ic static void main(String[] args)

-
¥
J

ing helloMessage;
//local variable helloMessageée

helloMessage = “Hello, World!”;
System.out.println(helloMessage);
}
" Instance Variables Declaration

Instance variables are values that can be defined inside the class
" but outside the methods and begin to live when the class is defined.

Here,unlike local variables, we don’t need to assign initial values..
% It can be defined as public, private and protected.
% It can be defined as a final.

& It cannot be defined as abstract and static.

Example

ff.class Page
& (

public String pageName; // instance variable
with public access

private int pageNumber; // instance variable
with private access




Java Programm;,,
—1g

1.8 et

Classes and interfaces Declarations

-y , ' veral S .
The first letter should be Cﬂplmh‘"cd’ and if s¢ words dare

linked together to form the name, the first letter of the inner worgg

ime d "Cam n
should be uppercase (a format that's sometimes calle elCaseny.

For classes, the names should typically be nouns.
Example for Classes

Dog

Account

PrintWriter
Example for interfaces

Runnable

Serializable

‘Methods Declaration

The first letter should be lowercase, and then normal CamelCase
‘rules should be used. In addition, the names should typically be verb-

noun pairs.

Examples
getBalance
doCalculation
setCustomerName

Coﬁstants Declaration

Java constants are created by marking variables static and
final. They should be named using uppercase letters with underscore
characters as separators.



[utroduction to Java Programming 1.9

E‘ﬂ:ﬂpk
MIN HEIGHT
MAX HEIGHT
Constructors Declaration

Constructor is used to create new objects, Constructors can take
arguments, including methods and variable arguments. They must have
‘ the same name as the name of the class in which it is defined. They

can be defined as public, protected, private. Static cannot be defined
because they have a responsibility to create objects. Since they cannot
be overridden, they cannot be defined as final and abstract. When the
constructor is overloaded, the compiler does not define the default
constructor, so we have to define it. The constructor creation order 1S
from bottom to top in the inheritance tree.

Static Declaration

It allows invoking the variable and method that it defines without
the need for any object. Abstract and static cannot be defined together,
because the method presented as static can be called without creating
| objects and by giving parameters directly. The abstract is called to

override a method.

ENUM Declaration

It is a structure that allows a variable to be constrained to be
predefined by one value. With Enum’s getValues method. This is the
most elegant way to define and use constants in our Java program.

Class Modifiers ( non-access) Declaration
# Classes can be defined as final, abstract or strictfp.
# Classes cannot be defined as both final and abstract.

#  Sub classes of the final classes cannot be created.



Java Programmiy
ning

+ ghin 1] !‘ (". cr ‘2 *
* lnstﬁ“ccs Of IleII‘:lCl Clil.ibLh e h

.o clags, this class sho
% Evenif there is one abstract method 1N & class, ass shouly
also be defined as abstract.

the non-abstract methg

an contain both
ny abstract methog,

% The abstract class € .
y not contain a

and abstract method, or it ma
d be overridden by the first concrete

&  All abstract methods shoul
ds the abstract class.

(non-abstract) class that exten

Class Access Modifiers Declaration

Access modifiers stay an important part of a declaration that can
be accessed outside the class or package in which it is made. Access
modifiers enable you to decide whether a declaration is limited to 4
particular class, a class including its subclasses, @ package, or if it i
freely accessible. Java language has three access modifiers: public,

protected and private.

% public: Enables a class or interface to be located outside of its
package. It also permits a variable, method, or constructor to be
located anywhere its class may be accessed.

# protected: Enables a variable, method, or constructor to be
accessed by classes or interfaces of the same package or by
subclasses of the class in which it is declared.

%  private: Prevents a variable, method, or constructor from being
accessed outside of the class in which it is declared.

1.2.1 ldentifiers

Identifiers in Java are symbolic names used for identification-
They can be a class name, variable name, method name, packag®
name, constant name. There are some reserved words that cannot be

used as an identifier. For every identifier there are some conventio™
that should be used before declaring them.



I,,mduct:'on to Java Programming 1.11

.--""""__ -
Legal identifiers

Legal identifiers The compiler uses to determine whether a

®
name is legal.

& Legal identifiers mustbe composed of only Unicode characters,
numbers, currency symbols, and connecting characters (such
as underscores).

+ Identifiers must start with a letter, a currency character (S), or
a connecting character such as the underscore (). Identifiers
cannot start with a digit.

%  Afterthe first character, identifiers can contain any combination
of letters, currency characters, connecting characters, or
numbers.

& There is no limit to the number of characters an identifier can
contain.

% Can'tuse a Java keyword as an identifier.

% Identifiers in Java are case-sensitive; foo and FOO are two
different identifiers.

Examples
int _a;
int Sc;
int 2 w;
int _S;

int this_is_a_very detailed name_for_an_identifier;
e, = e =A% ]

Illegal Identifiers

*

We cannot include a space in an identifier



rogrammin
Java Prog g

.oin with numbers
#  The identifier should not begin with

¢ The plus (+) symbol cannot be used
s  Hyphen symbol is not allowed
%  Ampersand symbol is not allowed

; e i
%  We cannot use an apostrophe symbol in an identifi

Examples
int java books
int java+
int e#
int .f
int 7g
int —a
1.2.2 Keywords

%  Java has a set of built-in keywords. These keywords must not
be used as identifiers. Java reserved keywords are predefined
words, which are reserved for any functionality or meaning.

*  We cannot use these keywords as our identifier names, such as

class name or method name. These keywords are used by the
syntax of Java for some functionality.

* In Java, Cvery reserv



Introduction to Java Programming 1.13
.
Complete List of Java Keywords

r;l;;l’f;t clse long super
boolean extends iitle switch
break final synchronized
new
byte finally this
ackage
case float packag throw
catch for private throws
char goto protected transient
class if public t['y
const implements void
P return
continue import volatile
) short ,
default instanceof while
do - int static assert
. istrict
double iriterfice | fp enum

1.2.3 Oracle‘s Java Gode Gonventions

Oracle's recommendations for naming classes, variables, and
methods. Oracle estimates that over the lifetime of a standard piece
of code, 20 percent of the effort will go into the original creation
and testing of the code, and 80 percent of the effort will go into the
subsequent maintenance and enhancement of the code.

The only standards that are followed as much as possible in the
‘eal exam are the naming standards. Here are the naming standards that

Jracle recommends.



Iy :
Java l mgmrmm,,
8

B
1.3 DEFINE CLAS - om which abjects are ereqy,
: raed prototyPe 10 ed,
A class 182 us:.rdchnull W methods that arc common (g
i

. Y wes L
- ” - » ot “’11{"‘1{':‘ : ) l'll1 . “
.presents the set of p . declarations can include

objects of one type.

components, in order: l
. has default acCess.
1. Modifiers: A class can be public 0F has defautt: g
' cate a class
5 class keyword: class kcyword is used t0 creatc a Class.
3. Class name: The name should begh with an initial letter.
2
g parent (superc :
4 Superclass: The name of the class’s P (superclass), it
ds. A class can only exteng

any, preceded by the keyword exten

(subclass) one parent.

5. Interfaces: A comma-separated list of interfaces implemented
by the class, if any; preceded by the keyword implements. A
class can implement mOre than one interface.

The class body surrounded by braces{ }-

alizing new objects. Fields are
lass and its objects, and methods

6. Body:

Constructors are used for initi

variables that provide the state of the
are used to implement the behavior of the class and its objects.

arations, the rules associated with declaring

Before class decl
rce file.

classes, import statements, and package statements in a sou

Syntax

public class <class name>

{

//Instance Variable Declarations

//Method Declarations
),




[ntroduction to Java Programming 1.15

Source File Declaration Rules

H
*

There can be only one public class per source code file.

Comments can appear at the beginning or end of any line in the
source code file.

If there is a public class in a file, the name of the file must match
the name of the public class. For example, a class declared as
public class Dog { } must be in a source code file named Dog.

java.,

If the class is part of a package, the package statement must
be the first line in the source code file, before any import

statements that may be present.

If there are import statements, they must go between the
package statement (if there is one) and the class declaration.
If there isn't a package statement, then the import statement(s)
must be the first line(s) in the source code file.

If there are no package or import statements, the class
declaration must be the first line in the source code file.

Import and package statements apply to all classes within a

source code file.

In other words, there's no way to declare multiple classes in
a file and have them in different packages or use different

1mports.
A file can have more than one nonpublic class.

Files with no public classes can have a name that does not

match any of the classes in the file.



Java ng"“?nm,-
h

1.16 erpret with javd command
ier

th javac and 1 |
oke Java compiler. The jj,
achinec (JVM). a

Compiling Wi
to NV

Ll 2 . ‘(-
and i8 us© '
- virtual M

The javac comm |
command is used 10 invoke the Jé
sublic class MyClass

g[] args)

{
' . o rin
public static void main (St

{
System. out.println (args[0]

)

nm n + args[l]) ;

}

javac MyClass. java
java MyClass
ain(String[ ] args) main() is the methgg

Using public static void m
that the JVM uses to start execution of @ Java program
The following are all legal declarations for the main():
static public void
o0id main(String.. . x)
bang_a_gongl])

main (String[] args)

public static' Vv
static public void main(String

1.3.1 Import Statements and the Java API

Import is a keyword in java language used to import the
predefined properties of java API into current working java program.

Syntax

import packagename;
| Javz? API is a collection of package, package is a container whict
is collection of predefined classes and interfaces

The Java API has thousands of classes and the Java comm“ﬂir-

has written the rest.



sduction to Java Programming 1,17

o Imire
¥ .--.-“-—_ "
E,\‘dm[”‘" .

public class ArraylLilst

i
pub}ic static void main(Stringl] arqgs)

(

system.out.printin("fake At rayList class");

This is a perfectly legal class, but as it turns out, onc of the most

commonly used classes in the Java API is also named ArrayList, can
also use the ArrayList class from the APL. The API version's actual

name is java.util. ArrayList( below example). That's its fully qualified

name.
public class MyClass

{
public static void main (String[] args)
{
java.util.ArrayList<String> a = new java.util.
ArrayList<String>();
)
}

In this program, interpret the import statement as saying Java API
there is a package called 'util', and in that package is a class called
'ArrayList’.
import java.util.ArrayList;
public class MyClass
{

public static void main (String[] args)

{



P il B A o

— )

i ﬂl‘rﬂ}’l'is I,*:Str‘iﬂg} {) -

 from mcjlell-lllil pﬂCkﬂgC: ArmYLigl

ot classes .
rent LLN-I 4 ¥) 10 your import Statclncm

a few difte
an add a wildear¢

Touse paracter (

and TreeSet. €

args)
public static
= new aArrayList<Strings ),
new TreeSet<String> () ;

ArrayList<String> a

TreeSet<String> t

!
}

1:3.2 Static Import Statements

Classes will contain static members. Static class members cap

exist in the classes in the Java APL In most of time many classes ar
Static members are extensively used in

mport feature allow programmer {0 us
f the class and no need to invoke with it

having Static members in it.
java APL In java 5, static 1
directly any static members 0

class name.

Syntax

fmport static package.class name.static member name;
Should be "import static", not "static import".

Before static imports

public class TestStatic
{

public static void ;
m ;

Syst '
ystem.out.printlnp (Integer.MaX VALUE) :



[ntroduction to Java Programming =
System.out.println (Integer. toHexString(42)) :

!

After static imports

import static java.lang.System.out;
import static java.lang.Integer.*;

public class TestStaticImport

{
public static void main(String/[] args)

{
out.println(MAX VALUE);

out.println(toHexString(42));

J
Output

2147483647
2a
The syntax MUST be import static followed by the fully qualified

name of the static member we want to import.

Rules for using static imports:

*  Only can do astatic import on static object references, constants
(they are static and final), and static methods.

A  Must say import static; you can't say static import.

%  Can do ambiguously named static members. For instance, if
you do a static import for both the Integer class and the Long
class, referring to MAX_VALUE will cause a compiler error,
since both Integer and Long have a MAX_VALUE constant,

and Java won't know which MAX_VALUE you're referring to.



¢ t
of static impor ' ;
jtics and less coding (sqy

gction capab!

[

Advantage
Greater kcystrokc-rcd
typing):

pisadvantage of static import |
e less readable. If two clagg

.. makes €0 e
Many people arguc th,;sezbers hen We will get ambiguity.
¢

have the sam¢ for its gtati

1.4 USE INTERFAGES

1.4.1 Declaring an Interface

Like a class, an interface can ha
interface arc

methods declared in an 1
signature, no body).

ve methods and variables, but the
by default abstract (only methog

Syntax

interface <interface_name=

{
// declare constant fields

// declare methods that abstract

/
Example

jnterface Player

{
final int id = 10;

int move();

eritanc®

Interfaces can be implemented by any class, from any inh
bu!

y



mtradm?”ﬂ" to Java Programming 121

Toy while Fire extends only java.lang.Object. But by making both Ball
and Tire implement Bounceable. Like an abstract class, an interface
defines abstract methods that take the following form:

abstract void bounce();

An abstract class can define both abstract and nonabstract
methods, an interface can have only abstract methods.

The relationship between interfaces and classes

What you declare :

interface Bounceable
void bounce( );

void setBounceFactor(int bf);

What the compiler sees:

interface Bounceable
public abstract void bounce( );

| public abstract void setBounceFactor(int bf);

What the implementing class must do. All interface methods must
_ be implemented, and must be marked public.

Class Tire implements Bounceable

public void bounce( )

{

// statements

J

public void setBounceFactor(int bf)

{

// statements

}




>
jad rogmmmih

2 / ic ¢ (N
1,22 Timplicitly public and abstrye( I

s are
e AL dnmalcs msiher ‘lll ced tO actually type the puby;.
not n : r
sther words, you do ~laration, but the me
othe i the method declarat Methg ;-
abstract modifiers 10 the 1§

bod stract.
still always public and abstr

an interface must be public, static, "
[

:bles defined 10
#  All variables de ¢ can declare only constants, s

final in other words, interface

instance variables.

Interface methods must not be statiC.

Because interface methods are abstract, they cannot be Markeg

final, strictfp, or native.
An interface can extend one of more other interfaces.

An interface cannot extend anything but another interface.

An interface cannot implement another interface or class.

* ok o+ %

An interface must be declared with the keyword interface.

% Interface types can be used polymorphically.

The following is a legal interface declaration:

public abstract interface Rollable { }

public interface Rollable { }

Typing in the abstract modifier is considered redundant,
interfaces are implicitly abstract whether you type abstract of

not.

#  The public modifier is required if you want the interface 0
have public rather than default access.

L'or example, the following five method declarations, if declared
+ ithin their own interfaces, are legal and identical

void bounce();




1.23

"[rﬂdﬂc“”" fo ’(lwl ”]'llgrum",hlg

o public void bounce();

abstract void bounce();
pnhlic abstract void bounce();

abstract public void bounce();

The following interface method declarations won't compile:

final void bounce(); // final and abstract can never be used
together, and abstract is implied

static void bounce(); / interfaces define instance methods
private void bounce(); // interface methods are always public

protected void bounce();

Example
import, java.io.*;

interface Inl

{ . ,
final int a = 107 // public, static and final
void display ()7 // public and abstract

}

// A class that implements the interface.

class TestClass imple ts Inl

{ .

public void display() // Implementing the capa-
bilities of interface. :

{

System.out.println("Java Programming") ;

/

public static void main (String[] args)

{

TestClass t = new TestClass();

t.display() -



Java l’mgrummh '
_ i

V’ j‘fl r']} ;
",.-v|‘_,1:‘f; .II\_! i 11

Qutput
Java Programming
10
1.4.2 Declaring Interface Constants

% By placing, the constants in the interface, any clagg thay
iniplemcnts the interface has direct access to the constants, just
as if the class had inherited them.

*  Interface constants must always be public static final, There are
no different from any other publicly accessible constants,
they obviously must be declared public,static, and final.

*  Interface constants are defined in an interface, they do not have
to be declared as public, static, or final. They must be public,
static, and final, but you don't actually have to declare them

that way,
Example
interface Foo
{
int BAR = 48 1t constant Variables
| void go() ; £/ Abstract method

class Zap ifﬂpleme

Nts Foo
{

Public VOid g0 “
{
BAR F— 27.

r



128

T L B

mtesedie oK B0 Jav Beageimming

R AR T W i S T S oS L PR T S

L

Detine constiantse but without exphivitly using the  required
wodifiers: Forexample, tho tollowing we all identical;

lmhlic mt X = 1 Looks nonsstatie and non-final,

int x o LA Looks detaalt, non-final, non-static,

static mtx = 17 Doesn't show final or public

final int X = 1, /7 Doesn't show static or public

public static int x = 13/ Doesn't show final

public finalint X = 13 /7 Doesn't show static

static final int x = 1 // Doesn't show public

public static final int X = 1 // what you get implicitly
1.5 DECLARE CLASS MEMBERS

Methods and instance (nonlocal) variables are collectively known
as members, can modify a member with both access and non-access

modifiers.

Class Declaration

class MyClass

{
//Intance Variables;
//Methods ;
}
Class Access

Code from one class (class A) has access to another class (class

B), it means class A can do

%  Create an instance of class B.



" ? |
Java I rogramm;,

» / subclass of clags 122
1.26 vords, pecome & lass B)

ass B (1 other .
ithin class B, dcr’“'ldin

r

nd variables. g

®  Extend ¢l
jvariables W

« cortain methods ant  §
ss certan e illt‘ihﬂdh a

_ ACch -
AN

on the access control of th

Here, access means visibility.

Class Modifiers
, declaring classes, Ip the

f the four access congyg
four.

W o a6 ‘her
There are WO modifiers used whe
qss can use just tve o

access modifiers, a ¢l
). members can use all

evels (default or public
4 Access modifiers (public, protected; private, default)

% Non-access modifiers (including strictfp, final, and abstract)

You need to understand two different access issues:
&  Whether method code in one class can access a member of
another class
%  Whether a subclass can inherit a member of its superclass

Access occurs when a method in one class tries to access a method
or a variable of another class, using the dot operator (.) to invoke a

method or retrieve a vanable.

Example

class Zoo

s,

public String coolMethod ()
/

return "k
tu Wow babyrr;

0
S
v
n
(n
g
]
O
Q



~ utroduction to Java Programming 1.27
’#ﬂ;Lblic void useAZoo()

{

7200 z = new Zoo();.

System.out.println("A Zoo says, "+ z.cool-
Method () ) ;

/
1.5.1 Access modifiers (public, protected, private, default)

Default Access

A class with default access has no modifier preceding it in the
declaration. If default access as package-level access, because a
class with default access can be seen only by classes within the same

package.

For example, if class A and class B are in different packages, and
class A has default access, class B won't be able to create an instance
of class A or even declare a variable or return type of class A. In fact,
class B has to pretend that class A doesn't even exist, or the compiler

will complain.
Example

First source file :
package cert;

class Beverage

{

// statements

}

Second source file:
package exam.stuff;

import cert.Beverage;



) is in a differem'

"l Bev ’t,rdbe
quperclass |
In the above L\dl“hlL.Tc The nnpoﬂ ltcn]ent at the t()p of.

Beverd gec
the we get Something-

package from t
i1 the Ted ‘ s

the Tea file i trying (0 impo
compiles fine, but when try 10 comp!

like this: _
Jass Of interface must be

Can't access class cert. Beverage:
public, in same package. O ¢
verage, has default

superclass, Be
t both classes in the

Tea won't compile because its
[n this case, PY

in a different package.

access and is
verage as public.

same package, or declare Be

Public Access
A class declaration with the public keyword gives all classes from
public class. In other words, all classes in the

all packages access to the
ess to a public class. To add the keyword

Java Universe (JU) have acc
public in front of the superclass (Beverage) declaration, as follows:

Example
package cert;
public class Beverage
{
// statements

}

This changes the Beverage class so it will be visible to all €
in all packages. The class can now be instantiated fro 1] other cl
and any class is now free to subclass (extend fro SR
class is also marked with the nonaccess modlﬁeI:lt)i:aTnless et

135565
asse
is, t

1 ]

»



s to Java Programming

129

T m‘raducﬁm

p-ackage book s
; ; .
' . cert.*s // Import all classes 1n

LA s0L
1M pa ckage
class GoO

{
publicC static void main(String(] args)
r

{
sludge o = new Sludge()

o.testIt()/

}
~ Now look at the second file:

package cert;
' public class Sludge

1 public void testIt()
{
System.out.println("sludge");
/
}

the cert

Goo and Sludge are in different packages. However, Goo can
invoke the method in Sludge without problems, because both the

Sludge class and its testIt() method are marked public.

Private Members

_ Members marked private can't be accessed by code in any class
~ other than the class in which the private member was declared.

Example :

package cert;
public class Roo
{



1.30

private String doRooThings ()

/

- " .
recturn run-;

The doRooThings() method is private, s

If try to invoke the method from any other class,output will be

package notcert;

import cert.RooO;
class UseARoO
{
public void testIt ()

{
Roo r = new Roo () s

System.out.println(r.doRooThings());

}

3 )

If try to compile UseARoo, get a compiler error something like this:
cannot find symbol
symbol : method doRooThings()

1.5.2 Non-access Class Modifiers(strictfp, final and abstract)

%  To modify a class declaration using the keyword final, abstract,

or strictfp.

4 These modifiers are in addition to whatever access control is on |
the class, for example, declare a class as both public and final.

#  Can't always mix with nonaccess modifiers like mark a class as
both final and abstract.

#*  Use strictfp in combination with final.

o no other class can use it. |

Java Programming

¥

k

- g v




o

mmniucrhm to Java I’rtlgr(lmmhlg 1.31
e e

n a class declarati B
In a Cld aration, the finy| keyword means the class cannot

LY M b v - M 5 1 ] :
be subclassed . any classes in (he Java core libraries are final. For
example, the String class cannot be subelagsed

Example
package cerkt;

public final class Beverage

{
public void importantMethod() { }

package exam.stuff;
import cert.Beverage;

class Tea extends Beverage

{
//statements

/
Qutput

Can't subclass final classes: class
cert.Beverage class Tea extends Beverage {
| error

Final Methods

The final keyword prevents a method from being overridden in a
subclass, and is often used to enforce the API functionality of a method.

For example, the Thread class has a method called isAlive() that
checks whether a thread is still active. If extend the Thread class, there
is really no way that you can correctly implement this method so,this

- method made it final.



Java Pro,gram,,1 i
No &

I i\“ﬂ!ﬂpht

class Superclass

{

public final void showSample“
{

" .
k 'n . ) ’
System,out.println ("One thing

It's legal to extend SuperClass, since the class 1ls not marked fing,
but we cannot override the final method showSamp e().
Example

class SubClass extends SuperClass
{

public void showSample ()

{
System.out.println("Another thing.") ;
}

}

Output

Javac FinalTest.java

FinalTest.java:5: The method void showSample() declared in class
SubClass cannot override the final method of the same signature,
declared in class SuperClass, Final methods cannot be overridden.

public void showSample() {}
1 error
Final Arguments
Method arguments are the variable

between the parentheses in g method de
declaration with multiple arguments log

declarations that appear in _
claration. A typical method.
ks like this:



1.33

l'.a-l

;,,mulurrinn to Java Programming

*’ﬁh‘ Record getRecord(int fileNumber, int recNumber) {}

5 \ethod arguments are essentially the same as local variables. In
- ihe preceding example, the variables fileNumber and recNumber will

"+ poth follow all the rules applied to local variables. This means they can
~jls0 have the modifier final:

public Record getRecord(int fileNumber, final int recNumber) {}

In this example, the variable recNumber is declared as final,

h of course means it can't be modified within the method. In this

~whic
ther

case, "modified" means reassigning a new value to the variable.Ino
words, a final argument must keep the same value that the parameter
nad when it was passed into the method.

Abstract Classes

An abstract class can never be instantiated.

. Example
abstract class Car

3
private double price;
private String model;
private String year;
public abstract void goFast() ;-
public abstract void goUpHill () ;
public abstract void impressNeighbors () ;

~ Thepreceding code will compile fine. However, if try to instantiate
- aCar in another body of code,will get a compiler error something like
- this: |

- AnotherClass.java:7: class Car 1s an abstract class. It can't be
.- instantiated.

- Car x = new Car();



For

1.34 Java I’mgmmmifg

——

1 error

Nore: that the methods marked abstract end in a semicolon rather thay, I
curly braces,

Abstract Method |

An abstract method is a method that's been declared (as abstract) "

but not implemented. In other words, the method contains no functional |
| o
code. '

]

It is illegal to have even a single abstract method in a class that is |
not explicitly declared abstract, following illegal class:

public class IllegalClass

public abstract void dolt();

i
’

The preceding class will produce the following error if you try to i
compile 1t:

IllegalClass.java:1: class lllegalClass must be declared abstract.
It does not define void dolt() from class IllegalClass.

public class IllegalClass{

1 error

If have an abstract class with no abstract methods. The following
example will compile fine:

public abstract class LegalClass
{

void goodMethod ()
{

// lots of real implementation code here
}



mn—oducﬁcm to Java Progmmml'ng 1.35

In the preceding example, goodMethod() is not abstract. Three
gifferent things tell, it's not an abstract method:

% The method is not marked abstract.

% The method declaration includes curly braces, as opposed
to ending in a semicolon. In other words, the method has a
method body.

#  The method might provide actual implementation code inside
the curly braces.

Any class that extends an abstract class must implement all
abstract methods of the superclass, unless the subclass is also abstract.

Rules

% The first concrete subclass of an abstract class must implement
all abstract methods of the superclass.

% Concrete just means nonabstract, so if you have an abstract
class extending another abstract class, the abstract subclass
doesn't need to provide implementations for the inherited
abstract methods. |

The following example demonstrates an inheritance tree with two
abstract classes and one concrete class: |

public abstract class Vehicle
{
private String type;
public abstract void goUpHill();
public String getType ()
{
return type;

}
}

public abstract class Car extends Vehicle



Java ngmmnu,,g

1.36
. Still 4
‘A t‘n:n'f'PH.f 31 (4 // th-
public abstract VoIt =
stract "
public void doCa rThings
{
//statements
¥
|
}
public class Mini extendS car {
public void goUpHill () {
// Mini-specific going uphill code
}
Determining Access to Class Members
—
ot 0]
Visibility Public | Protected Default | Private
- -——-_—-_.___.______.___ ]
From the same Class | Yes Yes Yes Yes |
{From any class in | Yes Yes Yes No
| same package
| From a subclass in | Yes Yes Yes No
the same package
rom a subclass | Yes Yes Yes No
outside the same
~kage
i a subclass Yes Yes, No No
e the same through
hage inheritance
____._..---""""'
'y non-sub- | Yes No No No
s outside
VET




m,‘,-mlun‘inu to Java ngmmming
f— I '37
1.5.3 Constructor Declarations

In Java, objects are constructed. Every time you make a new
object, at leastone constructor is invoked, Every class has a constructor,
although if do not create one explicitly, the compiler will build onc.

Example
class Foo
{
protected Foo() { } // this is Foo's constructor

protected void Foo() { } // this is a badly
named, but legal, method

Constructor declarations can however have all of the normal
access modifiers, and they can take arguments (including var-args),
just like methods constructors is that they must have the same name
as the class in which they are declared. Constructors can't be marked
static (they are after all associated with object instantiation), and they
can't be marked final or abstract (because they can't be overridden).

Legal and illegal constructor declarations:

class Foo2
{
// legal constructors
Foo2() { }
private Foo2 (byte b) { }
Foo2 (int x) { }
Foo2 (int x, int... y) { }

// illegal constructors
void Foo2() { } // it's a method, not a con-
structor
Foo() { } // not a method or a constructor

Foo2 (short s); // looks like an abstract method
static Foo?2(float f) { } // can't be static



]awt | G B - TR SRR 4
_....-na"""""' —

169 f}'”":’l'i
1. /
38 T ) // can b be abstract

final Foo2 (long x) () // cd ;
g i E— syntay
abstract Foo2 (cha! X ) /7 pad var=ard e
Foo2 (int..- %7 int t) (
}
1.5.4 Variable peclarations
There are two types of vyariables in Javd: har, boole
- es: chaf, an,
Primitives A primitive ¢2" be 21 Ogclgeht'lt};primitive has been
: or float. nee € .
e o . never cha ge, [though 11 most cases
n

declared, its primitive tyP€ ca
its value can change.

iables A reference variable 18 used to refer to (or

able i declared t0 be of a specific
ference variable can be

rofa subtype of the

Reference var
access) an object. A reference varl
type, and that type cafl never be changed. A T€
used to refer to any object of the declared type ©

declared type (a compatible type)-
Declaring Primitives and Primitive Ranges

Primitive variables can be declared as class variables (statics),
method parameters, OF local variables primitive
laring a primitive variable causes the
emory where the value assigned to the
size of the storage container reserved

instance variables,
variable declarations. Dec

computer to reserve some m

variable can be stored. The
depends on type of the primitive.

Example
byte b;

boolean myBooleanPrimitive;

int X, y, Z; // declare three int primitives

Java has eight different primitive variables. These are:



-~ pduction to Java Programming 1.39

X poolean (a truth value: cither true or false),

4 byte (a byte containing 8 bits, between the values -128 and
127),

& char (a 16-bit value representing a single character),

« short (a 16-bit value that represents a small integer, between
the values -32768 and 32767),

+ int (a 32-bit value that represents a medium-sized integer,
between the values -231 and 231-1),

4 long (a 64-bit value that represents a large integer, between
values -263 and 263-1),

% float (a floating-point number that uses 32 bits), and double (a
floating-point number that uses 64 bits).

Declaring Reference Variables

All of the variables provided by Java (other than the eight
primitive variables mentioned above) are reference type. A programmer
s also free to create their own variable types by defining new classes.
" Any object instanced from a class is a reference variable. Reference
~ variables can be declared as static variables, instance variables, method
parameters, or local variables. Can declare one or more reference

._ variables, of the same type, in a single line.
Object o;
Dog myNewDogReferenceVariable;
String s1, s2, s3;
- Difference between primitive and reference variables:

%  Primitives (usually numbers) are immutable. The internal state
of reference variables, on the other hand, can typically be



1
£

Java Programming b
T iy
_]; .4()

ue of a primitive variable jg

et e

: . {11 » val . .
mutated which means that the nereas the value of a reference |
tored directly in the variable, whereas _ its interna |
S ‘L‘ . ,‘l % ’ l.e“' [ - : ¢ i
variable is a reference to the variable's data,

s
state, |

. ‘ iti subtraction, an( |
% Arithmetic operations, such as addition, s 'Lblcs thes
. . " a 2Q i

multiplication can be used with primitive vari ’ :

. 2

P——

operations do not change the original values of the variables, ?
Arithmetic operations create new values that can be stored
in variables as needed. Conversely, the values of reference

variables cannot be changed by these arithmetic expressions.

— T T T
- s = Mg

Instance Variables

Instance variables are defined inside the class, but ou

tside of any
method, and are initi

alized only when the class is instantiated. Instance

Example

class Employee

{
Private String name ;
Private String Citle,

bPrivate String Manager;

J

T e



.‘

i S S o b

SR R o

oy

rx!rm!m‘ff“” to Java Programming 1.41

json of n g -
Compariso wdifiers on variables Vs, methods

x flﬂwul\hrhuﬂvs (N"H~hﬂﬂﬂ)-‘m.r n1cﬂuﬁﬁ .?
: {
| ~ Variables |
: Irmul final public | Final public i
I |
protected private | protected private |
static transient | static abstract |

volatile synchronized strictfp

native

| |

Local (Automatic/Stack/Method) Variables

& A local variable is a variable declared within a method. That
means the variable is not just initialized within the method, but

also declared within the method.

+ The local variable starts its life inside the method, it's also
destroyed when the method has completed.

4  Local variables are always on the stack, not the heap.

4 - Local variable declarations can't use most of the modifiers that
can be applied to instance variables, such as public, transient,
volatile, abstract, or static but local variables can be marked

final.

Example
class TestServer

{
public void logIn()

int count = 10;

}
public void doSomething (int i)




Java Ii'mr;q‘;rmrnmEE
1.42

'+ arcess count outslde methog
count = 1 Can’'t acces:

loalnt)

It is possible to declare a local variable with the same 'namc asg
3 "o » J
an instance variable. It's known as shadowing, as the following code
demonstrates:

class TestServer
;

int count = 9; // Declare an instance variable
named count

public void logIn ()

{
int count = 10; // Declare a local variable
named count '
System.out.println("local variable count is " |
+ count) ;
}
public void count ()
{
System.out.println("instance variable count is |
" + count) ; ' :
} !
public static void main (String[] args) :
{ | |
new TestServer() logIn(); E
new TestServer () -count () ; E
)
)
Output
local variable count is () f
Instance varigpe count is 9 |
;
.




nrmzlm'h'ml fo Javae !’f‘ﬂ.’mmmhlg 1.43

]
arinbles -

pinal ¥

e \u.“"hk‘ with the final keyword makes it impossible
o rom ”Tm.\.illlilhlc onee 1t has been initialized with an explicit
value. For primitives, this means that once the variable is assigned a
value, the value can't be altered
eg: final int a=10;

gfiect of final on variables, methods, and classes

final final class Foo
class
final closs
cannot beo
subclassed
5, i L
clasgs }i\{ ax:/ﬁfﬁdc Foo
final clase Baz
st final void go( } final method
cannot be
overridden by
a subclase
class Rat extends Baz
£ znw gal }
{
final ' class Roo
varable final varioble cannot be
final int size » 4% assigned a now value, once
the initlal method is made
void changegizal ) (thomimlaislgnnmtofa
% . 1? : { value must happen before
} the constructor completes)




S TR RS R v TN s WV SRR VTS, . - 1

Java Programm;,, |
1.44 —4

1.6 DECLARE AND USE ENUMS

Declaring enums

Using enums can help reduce the bugs in the code. For instancg |
in coffee shop application might want to restrict the CoffeeSiz, 'f_:
selections to BIG, HUGE, and OVERWHELMING. With th|
following simple declaration, you can guarantee that the compiler wij| |
stop you from assigning anything to a CoffeeSize except BIG, HUGE,
or OVERWHELMING: |

enum CoffeeSize { BIG, HUGE, OVERWHELMING };

only way to get a CoffeeSize will be with a statement something like |
this:

CoffeeSize cs = CoffeeSize.BIG;

It's not required that enum constants be in all caps, but borrowing |
from the Oracle code convention that constants are named in caps.

An example declaring an enum outside a class:

enum CoffeeSize { BIG, HUGE, OVERWHELMING } // this cannot
be private or protected

class Coffee

{
CoffeeSize size;
}
public class CoffeeTestl
{
public static void main(String([] args)
{
Coffee drink = new Coffee() ;
drink.size = CoffeeSize.BIG; // enum outsidé
class



Intrﬂd
An €
clas

{

xample of declaring an enum insjge

uction to Java ngmmming L

a class:

5 CoffeeZ

enum CotteeSize (BIG, HUGE, OVERWHELMING )
CoffeeSize size;

}

subliC class CoffeeTest?

[

public static void main (String[] args)

{

/

Coffee2 drink = new Coffee2();

dring.size = Coffee2.CoffeeSize.BIG; // en-
closing class name required

1.7 OBJECT ORIENTATION

7.1 Encapsulation

*

Javaare multi-paradigm high-level programming languages that
means they support both OOP and procedural programming,.

Encapsulation is defined as wrapping up of data and information

under a single unit.

In Object Oriented Programming, Encapsulation is defined as
binding together the data and the functions that manipulates
them.

This is a prdgramming style where implementation details are
hidden. It reduces software development complexity greatly.

With Encapsulation, only methods are exposed. The
programmer does not have to worry about implementation
details but is only concerned with the operations.



1.46

~ Java ngm""“"ng

/ i ; -—'-—-.\ .
s to use dynamic link hbrﬁry

»®

1.7.2

+ developer wants (0
a develof qve to WoITy about th |

docs not hi
ither he would simply use thg

ariables to call it up

For example, if
to display date and
codes in the date and time class r‘-
data and time class by using public v

d in Java by creating Privat|

then using publj;

time, he

ation 18 achieve

In essence encapsul '
dden classes 10 and

variables to define hi
variables to call them up for usc.
B

With this approach, a class can be updated or maintained |
s using them. Once the clasg |

without worrying about the method _
is changed, it automatically updates the methods accordingly,

res that your data is hidden from

n—
ol

Encapsulation also ensu
external modification.

i

T e,
S e g

Encapsulation is also known as Data-Hidden.

Encapsulation can be vis,wed as a shield that protects data from

getting accessed by outside code.

Inheritance

Inheritance (OOP) is when an object or class is based on another |

object or class, using the same implementation specifying

implementation to maintain the same behavior.

Objects can interact with one another by using the properties of |
each block or extending the functionalities of a block through E

inheritance.

Inheritance ensures that codes are reused. There are millions of

Java libraries that a programmer can use through inheritanc®
The properties of a class can be inherited and extended by oth¢!

classes or functions.

Th:i:re are two. types of classes. One is the Parent or base clas
and the other is the child class which can inherit the properti€®

of the parent class.

{oa oyl

e T T O
A e e T T, e



T

sy
- 4

s =

lurroducﬁan to Java ngmmmin!:
% A real-world example 147
The child may inherit
color. The mother ¢

attributes as wel|

oF inheritance is g mother and child.
attributes such as height, Voice patters,
an . : :

4t reproduce other children with the same

1.7.3 Polymorphism

Polymorphism

Run time
polymorphism

Compile time
polymorphism
Y

Function Virtual
Overloading Functions

Polymorphism means existing in many forms. Variables,
functions, and objects can exist in multiple forms in Java. There are
two types of polymorphism which are run time polymorphism and
compile-time polymorphism. Run time can take a different form while
the application is running and compile-time can take a different form

Operator
Overloading

during compilation.

An excellent example of Polymorphism in Object-oriented
programing is a cursor behavior. A cursor may take different forms like
an arrow, a line, cross, or other shapes depending on the behavior of the

user or the program mode.

1.8 OVERRIDING / OVERLOADING

 1.8.1 Overloaded Methods

%  Method Overloading is a Compile time polymorphism.

% In method overloading, more than one method shares the same
method name with different signature in the class.



Java Programming i

: cal
: e can Of
%  Inmethod overloading return 1yl

nramclcr
but we must have 10 change the p : iy g I
cannot achieve the metho

d overloadin

return type of the method.

Example

lass MethodoOverloa dingEx

~ )

static int add(int a, int b)
{

return a+b;

}
static int add(int a, int b, int c)

f

{
return a+b+c;

}

public static void main(String args(])
{

System.out.println(add(4, 6));

System.out.println(add(4, 6, 7)) ;
B
}

Output

/ladd with two parameter method runs

10

/ladd with three parameter method runs

17

1.8.2 Overridden Methods
*

)

il

because in java, [

od 2




In mm‘umon to Java Programming 1.49
.—-"-—_
In method overriding, return type must be same or co-variant
(return type may vary in same, direction as the derived class).

Erampl"
B lass Animal
B
3 roid eat ()
b {
system.out.println("eating.") ;)
J
By claqs Dog extends Animal
¥, 1:_-:..- I‘ ]
void eat ()
{
System.out.println ("Dog is eating. ") ;)

i class Me thodOverridingEx
£
% public sta tic void main(String args[])
Dog dl=new Dog ()7
r Animal al=new Animal();
B
B dl.eat ()’
_,* al.eat ()’
E
}
¥ Output
fi // Derived class method eat() runs

Dog is eating

u_-.--“,...
¥ ""-.?‘.‘7‘{4&5)."_~n
S VR r iy

2 2 !

// Base class method eat() runs

eating

A method eat() has overridden in the derived class name Dog
Animal. When create

ﬂlat is already provided by the base class name

e v e R rON LS e
Fo TR BN S R W N W

TSP e O
LS 2y




1.50

.~

Java Programm,-ngg‘

the instance of class Dog an
class eat() method run instead of
the instance of class Animal and ¢ e
class eat() method run instead of derived ¢

L ONE
d call the eat() method, that only deriveg
base class method eat() and create;
all the eat() method, that only basei
thod eat(). So, thy

!
L5

e instances on the run tiy, |
in method overriding, method is bound to the inst e
]' 2

which is decided by the JVM. So, it i8 called Run time polymorphisp, |

Difference between Method Overloading and Methog!

Overriding in Java

= T Ry

S.No | Method Overloading Metliod Cverriding |
1. | Method overloading | Method overrid.ing 1S @ run
is a compile time | time polymorphism.
polymorphism. -
2. Ithelp to rise the readability | While it is used to grant the ||
of the program. specific implementation of ||
the method which is already |
provided by its parent class
or super class.
3. Itis occur within the class While it is performed in
two classes with inheritance
=8 relationship.
__-—___":"""'"--—-—-—._.__—'—--—-.___ -
4. Method over loading may or While method overriding
| may not require Inheritance. always needs inheritance.
3. In this, met TP
o hods mufst have While in this, methods must
éi tname and different have same name and same
signature. -
?lg\ Signature,
: N method overloadj :
e ading, | While i this, return type
) YP€ can or cap notbe | must he SaME Or co-variant
© Same, byt ye must haye -Varian
| Change the



	MARUDHAR KESARI JAIN COLLEGE FOR WOMEN VANIYAMBADI
	PG AND RESEARCH DEPARTMENT OF COMPUTER SCIENCE
	SYLLABUS
	UNIT-I

