MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I BCA

SUBJECT CODE: STATISTICAL METHODS AND IT APPLICATIONS I

SUBJECT NAME: 23UECA12A

SYLLABUS

UNIT-II

Measures of location: Arithmetic mean, median, mode, geometric mean and Harmonic mean and their properties.

2. Measures of Location (central tendency) There are three types of Central frequency * Median

*. Mean

* Mode.

Mean

Sum of all the values and divided it by the total number of Values & called mean.

Median

Write all the Values in Ascending Order and find out the middle values is Called as median

See Contine C

Mode The mode is Simply the most frequently assigning values

Verage Average is an attempt to find one Single figure to describe whole of the figure. Arithmetic Mean: Arithmetic Mean = Sum of the observation

Total no of observation Methods for tendeng frithmetic mean. There are three types * Direct Method * Short cut Method * Step Deviation Method Individual Direct Method X = 2xApril X = meanZx = Sum of Variables

N = no of observation Short cut method $\bar{X} = A \pm \frac{1}{2} \frac{1}{N} d = x - A$ where X = Arithmètic mean Smallest value A = Assumed mean 2d = Sum of deviation N = no. of observation Peoblem. Calculate mean from following Data 48,50,60,22,26,25 Mean. 48 + 50 + 60 + 22 + 26 + 25 = 231 mean = 38.5

	$Y = \frac{2x}{y}$		
X	= 48+5	0 + 60+ 22	1+26+25
5		6	and the second
X	= 38.5		
Shorte	ut		
X	A	d = x - A	
48	22	26:	$\bar{X} = A + \frac{1}{2}d$
50	22	28	$\bar{x} = 22 + \frac{99}{6}$
60	22	38	= 22 + 16 3
22	22	0	X = 38 T
26	22	4	
25	22	3	
	to to.	99/6	
		=16.5	

Discrete Direct $\bar{X} = \mathcal{L}_f(x)$ X = Arithmetic mean If(x) = Sum of the product N = No. of items (or) frequency. Shortcut $X = A^{\pm} 2fd d = x - A$ X = Arithmetic mean A = Assumed mean f = frequency N = No of items Poblem Calculate mean from the following data ALL SAL

15	39 409 16	†													
7 2	26 39 4			B								No.		The state of the s	9/14
2	00			×	3	99	478	09)	130	204	280	11	135	240	2 Jx=
0	30 28							全			9				
	25		(S) N	P	7	30	% %	100	26	34	note	6	15	57	Sf =300
Value	houmbay	Direct	1 = 1	×	-	24	~	4	6	9	_	00	6	01	"
				1,											

			Seption 1 to 1	THE REAL PROPERTY OF THE PERTY	109 bins - Ju	the Austrontate	0=x-1	1-4-1-84	-90	25- 19 7-	- 40	0	34	2 80	35	7 40	571. 1. 285 19-216
$\overline{X} = \frac{2fx}{N}$	= 1416 300	=5.72	$\overline{x} = 5.72$	Shortaut-	X= A ± 250	25 0=x-A	A J	4	30 5000 60	28 5	10.50000	36 5	34 5	5 07	5 6	5 51	57 5 1111
	5						×	-	7	~	I	h	و		<i>∞</i>	6	(0)

Sum of the frequency Sum of devicition Assumed mean × M - mid point 2) Shortcut method Method Continuous Soules X= A ± 2 f@ devitation 4+ N= 2f 1 Prect

1	21 = Jum of transmites	
	i = Length of	Length of the class interval
Problem		
out of	from the fol	the following data find mean profits
Profit	profit for shop	pt No of Shops
100-200	200	100 00 01
200 - 300		300 800 87 500
300 -400	00/0	20 00
Joo - 500	005	36 cod con
2009		
	600 - 700	88
- 00/ 1/00	80000	18
(%)	031	(f)
Direct method	500	+ October 1
×		wf fro
*	A CA	
200-300	170	oash &
300 - 400		
400 - 500		26 11700
	650	
700 - 800		18 200

$x = \frac{2fm}{N}$ $x = \frac{2fm}{N}$ $x = \frac{2fm}{N}$ $x = \frac{2fm}{N}$ Shortur method	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	where $a = \frac{x^2}{m^{-1}}$
Shorten	300 - 300 300 - 300 300 - 300 500 - 500 500 - 800 X	Step Dew

			2 9 4	c= 2925		64160	1-2-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-	2 4 4 340 5 54 = 18225	= 5+0.416 = 5.416
nect . X = 1	1× 4×	55 100 57 165 78 397	6 56 360 7 7 73 8 35 280 9 43 387	240	$ \dot{X} = \frac{3935}{540} $ $ \dot{X} = \frac{9935}{540} $ $ \dot{X} = 6.416 $ Short cut	x f A d=	hhhhh	5 5 t 5.54 5.54 5.54 5.54 5.54 5.54 5.54	= 5 + 23500

frequency [4	0-1	ה ה ה	30	5	45	99	70-801-45			9 =	10	0 = 10	25=5	01.0	30 = 10	45 = 20
Value	Less than 10.	Jess than 20	Jess than 30	Jess than to		0	Jess than 80		Value	0-10 to 10 1 10 10 10 10 10 10 10 10 10 10 10 1	10-20	20-30 15-10=5	30-40	40-50 30-20	30-00	60-70	4-99 65-4

		00 to
	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4=m-A
1	25 25 25 25 26 2 2 0 2 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A ± 250 25
間が	7 - 32.35 X - 32.35 X - 49.76 X - 49.76	
11×	20-10 10-20 10-20 10-20 10-30 10-80 10-80	Shortcut

by t d=m-d + fd	0-10 5 -30 -35 4 -120	15 -20	20-30 25 -10 35 5 -50	30-40 35 0 35 10 0	05 -5 58 01 54 05-04	55 20 35	65 30 35 10	15	24-65 23d=960	X = 35 + 960	92	x = 35 + 14.769	69£6H = X		Step Deviation	$\frac{1}{x^{-}}$ 4+ 5fd; $0 = m - A$	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		65	= 35+(1,446 ×10)	11	9£.6h =		
-----------------	-----------------------	--------	-----------------------	--------------------	----------------------	----------	-------------	----	---------------	--------------	----	-----------------	-----------	--	----------------	---------------------------------------	---	--	----	------------------	----	---------	--	--

35 -20 -2 6 -12 35 -20 -2 6 -12 35 -10 -1 5 -5 35 20 0 0 0 0 35 20 0 0 0 0 35 20 2 5 5 10 10 5 35 30 3 10 5 35 40 4 20 80	average wage paid to workers 45 150 140 155 45 40 55 40 215
51 08-06 52 08-08 53 08-08 54 08-08 55 08-08 51 08-08 51 08-08	wages more than 75 more than 155 more than 105 more than 125

	no of workers 10 25
95-105 (05-115 115-125 125-125	
S F M	15 25
continuous $ \begin{array}{l} \text{Orrect} \\ \overline{x} = 2fm \\ 2f \end{array} $	100 100 100 100 100 100 100 100 100 100
f m X	
45-85 80 10 85-95 90 25 95-100 100 20	
105-115 110 86 115-125 120 10 125-135 130 20	2750 1,200 2,600
10	3,750
2/=120	

X = 14450 = 116.333	
Shortout 150	+
pf f V-m=p & wh x	
75-86 10 -30 10 -300	
000	
2	
95-105 100 110 -10	
105-115 110 110 0 25	
-	
130	
140	
$\bar{X} = 110 + 6.333$	
x = 116.333	
p desightion	
x m & m-4 d=m-4 f to	
35 80 110 -30 -3 10 -30	
06	
011 001	
110 0 0 25	
01 01 10 10 10 10	
120	
011	
011 051 551	
x = #\$ 550 x? xp=180 Spd=95	26
SF x 10	
1 10 th 10 111 223	1

of the following		reguency	7	12						x=2fm	14	916=	39	$\overline{x} = 23.4$			
the mean		*			01	40	2			nut t	8	15 210	10 200	8 272		7	39 916
9		internal		61	29	39	bH-	65		W	2	h/	24		44	25	G1
my -	dala	class	6-0	10-19	20-29	30-39	64=04	52-59	Direct	×	6-0	61-01	20-29	30-39	6h-0h	92 - SP	

m h o m	19 10 24 -20 10 61	24 24	34 24	49 44 24	-59 : 54 24 30 1 50 29 29 20	= 4+ 2fd = 24+80 = 24+80 = 24+80 = 23.4 x = 23.4
	61-01	20-29	30 - 39	64-04	23	

Size of (N) the lem + Size of (M+1) the 9, 10, 15, 19, 25 -> ascending order containing values egreater than it other half lonlaining values ber two equal parts on stems which divides the find but the median of the following is no of items) may be defined (ppo) N+ 1 5+1)# (n+1)+4) Size of 10, 15, 9, 25, 19 N- no of items Value of the (where into median Median= Seules Individual hay and Median than

8, 10, 5, 9,12, 11 deng order	
[2] # stem = 15 [2] # stem 5,8,9,10,11,12 > ascending order (2) # (\frac{n}{2} + 1) #	2 2 4 2 4 1

Discrete Motion = Size of (M+1) In them Motion = Size of (M+1) In them (0) Size of (M) Ibun+ Size of (M+1) Itun Size of (M) Ibun+ Size of (M+1) Itun	where N=Ef calculate median for the following	Space of 8hoes 6 53 6 65 7 1.9 8 Frequency 10 16 28 15 30 40 34	Spee of May Frequency Ct 55.5 8.6 5.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5
Disi.	when calcul	Since Since	35 2 3 3 17 8

Continent: L+ (x) - (x+1) the motion of the	When, L = lover limit of the median day f = frequency of median day Cf = Conndodive frequency of preceding class i = class intend of Median day	Calculate median from the following lable. Made Made bequency bequency 10-25 25-40 25-40 25-70 26 270-85 20 20 20 20 20 20 20 20 20 2
---	---	---

Yespectively as a whole. Salary of the employing 100 and 80 Persons respection 225 respectively that the Compani salony Paid by the two Companies 1. There are two branches of o Componies +80 (225) of the 80081+ 005+8 N+1/N 100 + 200 mean of the 180 253.77 = 100 (275) 1× = 00 NI= 100, 335 3+5 ama arithmetic employed 08 N2 = |X

60	30	27	00	49 6
2	91	248	90	30 8
	7		fx	+
	000		20	
	91		340	
	48		1296	76
	96		2970	40
	30		38	30 %
	∞		4	432
	1 = 1 × 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	= 200	25	28x=914 +30x
		11	31.87	
		/×	2fx	
			W	111. +303
		18.16	11	300
	\$ 18 x 00 x 3 1 . 8 7	x31.87	() 11	5114+30x 5114+30x
	9	6374	1	5114 = 30x

Geometric mean is defined us the Objective mean is the santilog gram of the product of Niteurs various Idem. awithmetic average of 5H where, n. + number of items GI.M = M/XIXXXXXX dogovithms of different data 50,72, X, 1 X2,, XM DOUGgeometric G.M = Antilog of Mean: Individual series x= 42 calculate 1260 Heometric following N# MOOF

G. M. Antilog [617.88] G. M. = Antilog [25 tog an] G. M. = Chitlog [25 tog an] G. M. = Chitlog [25 tog an] G. Calculate G. M. April 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 18.5 - 18.5 Weld 4.5 - 10.5 10.5 - 13.5 18.5 - 18.5 18.5 - 18.5 Too. of 5 9 19 83 7 Tour X = Anticlog [25 log m] X = Anticlog [25 log m]		mbor f f m bor m x	1 9	0 6 16±0.1	6 1401 6	15 1.140 19 18 1.3552 32	11 1.2392 +	1.380%	27 1.4313 1 1.4313 bg	5 16 3
--	--	----------------------	-----	------------	----------	-----------------------------	-------------	--------	-----------------------	--------

		.0103				monthly income of 10 families in a certain Willage due giver below.											
1409 - 82 - 12	x = 441 log [81.904] = 411 log (1.2047) X = 16.0103	Geometric mean = 16.0103	HARMONY	- x Z - x Z - x	N N N N N N N N N N N N N N N N N N N	thly income of 10 certain Willage ave	income	10 80	2	0 1	75	200	8	48	2050.	70	36
r politi	X = X	Gleon	INDIVIDUAL - HARMONY	\ ×	\ ×	(The mon	Landy		68	6	I	2	9	7+	S	6	

Sin of $\frac{1}{4}$
--

							42				int					
1 - f	0.45	0.286	651.0	60.0	0.195	# +0.0	25 - 1-341				The Values which divides an array into	Deules.			m	
- *	6.02.6	0.072	810.0	0.015	6.0.0	0.011			03)		divides "	called as	P1 = Value of (N+1) th tem	value of (2 (N+1)) theten	In = Value of (9(1/1)) #, tern	
VII.	35	45	b	59	*	885			12 = 55.03		us awhich	ten equal parts are called as	itn) &	8 (N)) b) for	
+	15	18	00	9	19	10	4 4 4	2 + 5 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	X = 40 1.272		The valu	equal po	7 = Value	De = Value	n = Value	
×	30-40	es-0h	30-60	ot -09	99-0€	80 - 90	021-01	X		Deute :		ten				1

the following toto		calculate the mode forom the following table	81 19 51	8 4 3 2		C5 (C6 124	37 27
~	3, 4, 2, 3, 3, mode = 3	mode from the	12 13 14	02 61 51		(2) (3) (4)	22. 24. 34. 34. 44. 55. 44. 57. 44. 59. 44. 59. 44. 59. 44. 59. 59. 59. 59. 59. 59. 59. 59. 59. 59
Made Individual.	Discuste: 3, 7, 3, 4, 2, 3, 3	calculate the	STR × 10 11	10 12	Chrouping	Stze 4	10 101.7 12 12.7 13 19.7 16 4.7 16 4.7 18 20.7 18 20.7 18 20.7 18 20.7 19 3.7 19 3.7 1

	manks 10-19 20-29 30-39 40-49 50-59
	4 90
中	to following table shows wage distribution of
	Person in a particular region
	Age (418) bedow 20 30 410 50 60 to to
	no. 0f. person 2 5 9 12 14 15 155 151
2	5) yind mean from the following data.
	Values frequency
	0-20
	20-40
	40-60 130
	00 08 -09
	80 - 100
9	find median from the following date &
The same of the sa	mean.
	mean "+ d' td'
m	median (I, M., f, cf

115 115 115 115 116 115 116 116 117 1185 118 118 1185 118 1185 118 1185 118 118

Some and or a	following data	30-40 40-50	25 8	thithmetic Mean thithmetic Mean thought the observation or algebraic treatment to compute to compute the thick of sampling affected by fluctation of sampling affected by extreme Items the by extreme Items he determined if a single. not known or the extreme prequency distribution are not frequency distribution are not be determined by inspection.
find the casithmetic mean of the whole.	10 find GIM and HM for	Marks 0-10 110-20 20-30	mo. Of 5 7 115 Students	f an s is based a is based a is suitab is suitab is auty is auty in a in a in a

* Artified value of its occurs most fuquency * It is affected by Sampling fluctuations It is an affected by extreme values * It is not affected by extreme value It is easy to understand it is * In certain cases, It can be found It is not based on allitems. is not suitable for algebraic * It is easy to understand * It is not well defined cannot be accurate Easy to calculate as in the average. Demouts of median Merits of mode determined. y in inspection the Sevies median Month of Treatment

* It is not give wieight to extreme them Demoits of Mode: * It is not Suitable for further mathematical * The Value of mode (auto be determined) * It is Stable only when the Sample * It is less expected by extreme * It is Capable of further algebraic * It is based on all observation * It is rigidly defined Meits of Ogeometric Mean by the enouging method * If is brimple dreatment. Jarge. Values.

See Calculations A The has restricted application A The has restricted application The values which divides an array into A = kalue of (2(1/4)) thitem A = Value of (2/4) thitem A = Value of (2/4) thitem A = Value of (2/4) the model class B = A = A = A = A = A = A = A = A = A =	* / " of	Alternal .	to an	dentiam	þ
Quarther The values which divide an array tento The values which divide an array tento for equal ports are called as quartle for equal ports are called as quartle for the ports are called as quartle for the ports are called as quartle for the ports are following data (alustate mode for the following data 83 = Value of (2/M1)) them (alustate mode for the following data 35-35 = 5-10 (0-15) 15-20 20-25 25-30 Size 0-5 5-10 (0-15) 15-20 20-25 25-30 Size 0-5 5-10 (0-15) 15-20 20-25 25-30 Surequerus 20 24 32 28 28 20 16 Salt-10-10 x, 10-10 x, 10-1	* Non mathe	motival	Person	Conno	T
3 10	* It has no	strical o	pplicatio	2	
42 = Value of (2/41) thitem 42 = Value of (3/41)) thitem 43 = Value of (3/41)) thitem 40 = Value of the model day 5 = Lower Junt of the model day 5 = Lower Junt of the model day	Quartities The Volues which four equal parts a	h divides	an an	riay articles	into
(2) - Value of (2 (MH)) Witern (2) = Value of (3 (MH)) Witern (3) = Value of (3 (MH)) Witern (4) = Value of (4) = 16 (3 (MH)) Witern (4) = Value of (4) = 16 (3 (MH)) Witern (5) = Value of (4) = 16 (3 (MH)) Witern (6) = Value of (4) = 16 (3 (MH)) Witern (6) = Value of (4) = 16 (3 (MH)) Witern (6) = Value of (4) = 16 (MH) (7) = Value of (4) = 16 (MH) (8) = Value of (4) = 16 (MH) (9) = Value of (4) = 16 (MH) (10) =	91 = Value	1 (1/4) yo	" thin		
(alwelde mode for the following data Size 0-5 5-10 10-15 15-20 20-25 25-30 graquency 20 24 32 28 20 16 30-35 85-40 40-45 mode J+ 11-10 20 20-45 butinous butinous Journ Janit of the model Jani Journ Janit of the model Jani	42 - Value	1 (2 (MIN) 10	-1) thite	Z.	
Stree 0-5 15-10 10-15 15-20 20-25 25-30 Sugarum 20 211 32 28 20 16 30-35 85-40 40-45 8 80-35 85-40 8 60th wow 20 20-35 25-30 10 8 60th wow 20 20-35 25-30 10 10 8 10 20-45 8 10 2	(aludate mode for	# # f	thousage of	ten data	
frequency 20 24 32 28 20 16 30-35 85-40 40-45 80-35 10 88-40 800-45 60th mode = 1+ f1-f0 xi 7-class internal 3-lower limit of the model class	SFZE 0-5 5-10	10-15	15-20	20-25	25-30
(bodinuous) So-35 85-40 40-45 8 10 88 10 88 6odinuous 1-10 10 20 1-10 interval 1-10 10 10 10 10 10 10 10 10 10 10 10 10 1	freducing 20 24	33	88	30	91
Continuous Journ Janit of the model class	30-35	95-40	Str-ot		
Continuous J. Lower Simit of the model class	34	10	90		
Continuous Jewes Simil of the model class	Mode = 1+ F1-F0	2 x to	- class in	tenal	
. 0.	Continuous 4- Lower Limit	of the 1	model c	lass	
A = trequency of model class the model	A = frequency	of model	etass needing	the mos	Sal

$A_2 = J + \frac{N}{2} - Cf$ $A_3 \qquad J + \frac{3N}{4} - Cf \times i$ f f f f f f f f	7 2 3 3 1 1 1 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	18-20 13 57 20-22 7 10 67 22-24 7 74 22-24 6 80 24-26 4 84
--	---	--

an allay which divides cf =11, f=11, 44-33 Values hundred 22-11 1 + N per centiles 5- C +01= Percentiles 00 92 unto

