MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I BCA

SUBJECT CODE: STATISTICAL METHODS AND IT APPLICATIONS I

SUBJECT NAME: 23UECA12A

SYLLABUS

UNIT-IV

Measures of Skewness: Karl Pearson's, Bowley's, and kelly's and coefficient of Skewness and kurtos is based on moments.

Measures Of Skewness.

Skewness:

Skewness is a measure to study a statistical distribution is not symmetrical is called skew.

If the frequency exect as a long tool to the right is called skew to the right.

If the frequency curve as a long toil to the left.

1. Pearsons co-efficient of skewners:

Mean - Mode
[or] = 8 (mean-median)

standard deviation

Standard deviation

Emprical Relation: [It is med when there is a same no in Analysis to bleft.

Mean-Hode = 3 (made - median)

2. Bowley co-efficient of skewners:

$$Q_{3}+Q_{1}-2M$$

$$Q_{3}+Q_{1}-2Q_{2}$$

$$Q_{3}-Q_{1}$$

$$Q_{3}-Q_{1}$$

Where:
$$Q_1 = l_1 + \frac{N_{14} - m_1}{f_1} \times c$$

$$Q_2 = l_2 + \frac{N_{12} - m_2}{f_2} \times c$$
where, $l_1 = lower limit of the Q_1 class
$$m_1 - c \cdot f \circ f \quad preceeding class$$

$$f_1 = f \cdot requency of the Q_1 class$$

$$C = class \quad loterval$$

$$N = Total \quad frequency$$$

Q, - Second quartile is called median. Individual Discrete Continuous. W = 2 N withing the SX x = A+ 2 xc N-no. 01. observation - N-total frequency where Mean A- argumed mean 1 wit me to the story - tot. frequency (x) C- Clar Interval d= x1-A $\overline{x} = \underbrace{\overline{stn}}_{N} \cdot \Omega + \underbrace{\overline{N}}_{H} = L + \underbrace{\frac{N}{2} - m}_{A} \times C$ TO DELL'AND Median (M) EVEN 2 and (2+1) N- lotal

frequency

		Individual	Discrete	Continuous
1			i div	mode = l+ +1-to xc
			1 - Oc	27,-4042)
, a			0.5	where,
		6 6	Valle (See	1- lower limit of the
	Mode		ne et	model class
		(1)	et is	fi - freq. of model class
	الابتداء	A CONTRACTOR	a Process	to- treq. of premodel class
2		e gje	enr_li	12 - " petmodel
	101			class.
1				c-class Interval
1				0 = [= N2 - Zn] 2
	i jen	$\sigma = \frac{\sum (x \cdot - \overline{x})^2}{\sum n}$	$\sigma = \sqrt{\frac{2}{1}(xi - x)^2}$	$\sigma = \sqrt{\frac{2n^2}{n} - \left(\frac{2n}{n}\right)^2}$
			(m)	$\sigma = \sqrt{\frac{\Sigma d^2}{n} - \left(\frac{\Sigma d}{n}\right)^2}$
	411	(84)	- / C+	
A CHANGE		$\sigma = \sqrt{\frac{zd^2}{n} - \left(\frac{zd}{n}\right)^2}$	σ = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\sigma = \left[\frac{z_1 d^2}{N} - \left(\frac{z_1 d}{N}\right)^2 \right] \times c$
42	147	8.4	* + CO ,	1 n LN

1. Find the pearsons co-efficient of skewners for the following frequency, distribution:

1	7.4	
Annual sala (in '000 Rs)	No. of. items	
0-20	20	
2ο-μο	50	
Lo- 60	59	1000
60-80	30	
8৮-१००	25	
100-120	16	

9-14-K				+	1	
X	M:d	+	d = x-A	d ²	49	fd2
0-20	10	20	- 2 0-50	4	-40	80
20-40	30	f50	-1 ²⁰⁻⁵⁰ ₂₀	1	-50	50
40-60	A (50)	f159	0 20-50	0	O	0
60-80	70	£30	1	1	30	30
80+100	90	25	2	4	50	100
100-120	110	16	3	9	48	144.
		N = 200			219 =	² 1 ² = 404

(4.10)1

[0800]

A=70]

* (*) - + 1 . 0

Mode = 4423

$$5. \sqrt{\frac{404}{200}} - \left(\frac{33}{200}\right)^{2} \times 20$$

standard deviation = 28.16.

pearson's co-efficient. Mean-Mode standard deviation

pearoni coefficient = 0.32.

2 Calculate the peasing welficient of skewner for

the following data: (Individual)

25, 15, 23,40, 27, 25, 23,25,20

Sol:

-	And the		
	N	d= n-A	d2 /
	25,	2 -1.1	4
1	15	-12	144
	.23	-4	16
	400	13	169
	27 ^A	0	0
	.25) i-2 n	1 4
	23	-4	16
	25	-2	L _j
	20	-1 -1 0 H -	49
	2/=	2do-20	242
	223		406

Mean =
$$\frac{2\pi}{N}$$
 $\overline{x} = 24.7$

Hode = 25

Repealed Value

standard deviation (o) =

$$\int \frac{zd^2}{N} - \left(\frac{zd}{N}\right)^2$$

$$\int \frac{406}{9} - \left(\frac{-20}{9}\right)^2$$

$$= \sqrt{45.11 - (-2.22)^2}$$

8 tandorid deviation = 6.339.

$$\frac{24.7-25}{6.339}$$

$$= \frac{-0.3}{6.339}$$

pearson's co-efficient = -0.04

10-

3 Calculate the pearsons coefficient of skooners of

the following data:

7, 4,10,9,15, 4,12,7,9,7

Sol.

7	d=n-A	d2
ন	-8	64
4	-11	121
10	-51	25 /
9	-6.	36
(5) A	0	0
12	-3	9
7	-8	64
9	-6.	36
7	-8	64
zn = 80	5d:-55	EJ2=419
		-

$$Mean = \frac{2n}{N}$$

$$= \frac{80}{9}$$

Standard

deviation =
$$\sqrt{\frac{zd^2}{N} - \left(\frac{zd}{N}\right)^2}$$

$$= \sqrt{\frac{419}{9} - \left(\frac{-55}{9}\right)^2}$$

$$= \sqrt{46.55 - (-6.11)^2}$$

Standard deviation = 3.03

$$\frac{8.88 - 7}{3.03} = \frac{1.88}{3.03}$$

pearsonie cu-efficient = 0.62

4. Find the pearson's co-efficient of skewness from the following data:

u	3	4	5	6	7	8	9	10
Size	7	10	14	3,5	102	136	,43	8

Sol;

N	+	-tv	d= x-A	d2	12 01	-{d2
3	7-6	21	-4	16	-28	112
ц _	10	Цо	r -3	9	-30	90
5	, lu=-,		-2	4 8	-28	56.
6	35	210	-1	8 .	-35	35
PO	.10 2	714	0	D	0	0
8	136	1088	1 110		136	136
9	743	387	2 114 23	4	86	172
10	8	80	3	9	24	72
	2/=355	2610			2 125	5/42 =

Mode. Initial value (3)

$$3.0 = \frac{513^{2}}{.N} - \left(\frac{514}{N}\right)^{2}$$

$$= \frac{673}{655} \cdot \left(\frac{125}{355}\right)^{2}$$

$$= \sqrt{1.895} - 0.123$$

$$= \sqrt{1.772}$$

pearson's co-efficient = 3.269

5. Find the pearson's coefficient of skewners from following data:

class	10-19	20 - 29	30-39	40-49	50-59	60-69	70 -19	80 -89
frequency:	Charles a vict	9	14 😞 🗓	20	25	É15	.8	4

301:

m 14.5 24.5	- 5	$d = \frac{M - A}{c}$ $\frac{14.5 - 54.5}{10} = -4$	d2	fd	1d2
- 1 1	5	14.5-54.5			
21. 5	7.7.7.4.4.4.	1 10	16	-20	80
74.3	9	-3	9	-27	81
34.5	14	-2	4	- 28	56
44.5	2010	-1	1	-20	20
54.5	25/1	6	6	0	0
64.5	(5)12			15	15
74.5	8	2	4	16	32
84.5	4	. 3	9	12	36
	٤٤.=			z[q=	350 Elg=
	64.5 64.5 64.5	44.5 2010 64.5 2911 64.5 (51)2 74.5 8 84.5 4	44.5 20^{40} -1 54.5 2541 6 64.5 512 1 74.5 8 2 84.5 4 3	44.5 20^{40} -1 1 54.5 $25+1$ 6 6 64.5 $5 _{2}$ 1 1 1 1 14.5 8 2 4 84.5 4 3 9 $2 _{5}$	34.5 14 -2 4 -28 44.5 20^{40} -1 1 -20 54.5 2541 0 0 0 64.5 3 4 16 84.5 4 3 9 12 $21d=$

Mean =
$$A + \frac{214}{N} \times C$$

= $54.5 + \frac{(-52)}{100} \times 10$

= 54.5 - 5.2

$$2(25)-(20+15)$$

Bowley's co-efficient of skewners:

1. Find Dut the Bowley's co-efficient of skewness from the following data: + 21- midvolue 18 - 24 ×(m=21) 21-27 - (difference 6) 21 27 33 6 39 6 45 Mid value 51 18 frequency 4 .22 40 50 38 12

301:

257		9.3	W.
C-I	Mid	+	c
18- 54	21	181	. 18
ग्र _म -30	27	22	40-
30-36	33	1'40	7800,
36-42	39	th 60	(3002
73-78	45	1388	168)Q3
48-54	51	12	180
54-60	57	4	184
Lochier	in a	2/=184	
	F1		

$$B = \frac{Q_{3} + Q_{1} - 2Q_{2}}{Q_{3} - Q_{1}}$$

$$Q_{1} = \lambda_{1} + \frac{\frac{N_{4} + m_{1}}{f_{1}}}{x^{2}}$$

$$= 30 + \frac{6}{40} \times 6$$

$$= 30 + 0.9$$

$$Q_{1} = 30.9$$

$$Q_3 = l_3 + \frac{3 \frac{N}{H} - m_3}{f_3} \times c$$

$$= l_3 + \frac{3 \left(\frac{184}{H}\right) - 130}{38} \times 6$$

$$=42+\frac{8}{38}\times6$$

$$Q_3 = 43.26$$

$$Q_2 = l_2 + \frac{\sqrt{-m_2}}{f_2} \times c$$

$$= 36 + \frac{184}{2} - 80$$

$$= 36 + \frac{12}{50} \times 6$$

Bowley's co-efficient of skewners:

Bowley co-eff. = -0.058

\sim		
٠,	٠	
_		

Payments of commission	No. of sales man
100-120	4
120 -140	lo
140-160	115 + 16
160 -180	29
180-200	52
200-220	80
220 - 240	42
240-260	43
260 - 280	17
280 - 700	7

801.

(제시)		
C·I	4	c.t
100 -120	- Lymin -	4
120-140	10	14
140 - 160	16	30
160 - 180	29	69 mi
L 180 - 200	62) + 1	m2 (11) Q1
li 200-220	80) 12	m3 (91) (),
13 220-240	4243	(233) Q ₃
240-260	43	256
260-280	17	213
210-300	7	280
	2 = 280 -	
ATTOMIC PORT OF A STATE OF	-	- PERCHANA

$$Q_1 = \left(\frac{N}{4}\right)^{1/2}$$
 item = $\frac{280}{4} = 70$

$$Q_2 = \left(\frac{N}{2}\right)^{\frac{1}{1}} \text{ item} = \frac{280}{2} = 140$$

$$Q_{1} = \lambda_{1} + \frac{N_{1} - m_{1}}{4} \times C$$

$$= 180 + \frac{10 - 59}{52} \times 20$$

$$= 180 + \frac{1}{52} \times 20$$

$$= 180 + 4 \cdot 23$$

$$Q_{1} = 184 \cdot 23$$

$$Q_{2} = \lambda_{2} + \frac{N_{2} - m_{2}}{42} \times C$$

$$= 200 + \frac{140 - 111}{80} \times 20$$

$$= 200 + 0.3625 \times 20$$

$$= 200 + 1.25$$

$$Q_{2} = 201.25$$

$$Q_{3} = \lambda_{3} + \frac{3(\frac{N_{1}}{4}) - m_{3}}{42} \times C$$

$$= 220 + \frac{190 - 191}{42} \times 20$$

$$= 220 + \frac{19}{42} \times 20$$

$$= 220 + \frac{19}{42} \times 20$$

Q3 = 229:04 1

$$= 229.04 + 184.23 - 2(207.25)$$

$$= 229.04 - 184.23$$

For a distribution Bowley's coefficient of 8kewness is -0.36. lower Quarkle is 8.6 and Median is 12.3. What is the Quarkle w-efficient of dispression.

801:

Quartile co-efficient of dispersion =
$$\frac{Q_3 - Q_1}{Q_3 + Q_1} \rightarrow 0$$

Gin:

Bowley's coefficient of skewness =
$$\frac{Q_3 + Q_{1-2}Q_2}{Q_3 - Q_1}$$

$$-0.36 = \frac{Q_{3} + 8.6 - 2(12.3)}{Q_{3} - 8.6}$$

2 NORTH 10 100 100 0 TE 5

Est : Sub l Q3 and Q, in requ Do 1800 - 21

4. Find out the Bowley's coefficient of skewness from the following data:

Mid Value	75	100	125	150	175	200	225	250
frequency	35	40	43	100	125	30	50	22

501:

Har	1-4	c.J
75	35	35
100	40	75
125	48	m 123
150	100/1	m 223 Q1
175	125/12	m3 (348) (22
200	80 13	(12 8) Q3
225	50	478
250	22	500
	z = 500	
	75 100 125 150 175 200 225	75 35 100 40 125 43 150 00 11 175 25 12 200 80 13 225 50 250 22

$$Q_1 = \left(\frac{N}{4}\right)^{\frac{1}{1}} = \frac{500}{4} = 125$$

$$\Re 2 = \left(\frac{N}{2}\right)^{\frac{1}{h}}$$
 item = $\frac{500}{2} = 250$

$$Q_3 = 3\left(\frac{N}{4}\right)^{16}$$
 item = 3 (125) = 375

$$Q_1 = J_1 + \frac{Y_1 - m_1}{4}$$

=
$$137.5 + \frac{500}{4} - 123 \times 25$$

$$= 162.5 + \frac{250 - 223}{125} \times 25$$

$$Q_{2} = 167.9$$

$$Q_{3} = l_{3} + \frac{3(\frac{N}{11}) - m_{3}}{l_{3}}$$

Bowley's Co-efficient of skewners
$$= \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$$

$$= \frac{195.93 + 138 - 2(167.9)}{195.93 - 138}$$

$$= \frac{333.93 - 335.8}{57.93}$$

In distribution mean = 65, Median = 70 and

Co-efficient of skewners is -0.6. Find

iib Co-efficient of Variation

801.

Gin:

Mean $\bar{x} = 66$

Median = 70

Coefficient of skewners = -0.6

Co-efficient of Variation = = x100 -> 1

Co-ellivent Of skewners = 3 (Mean-Median)

Slandord deviation

$$S.D = \frac{3(65-70)}{skewners}$$

Coefficient 01 Variation =
$$\frac{25}{65} \times 100$$

to be because the land of

Skewners.

Sol:

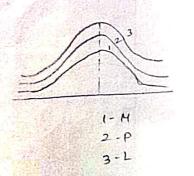
$$G = \frac{20}{100} \times \frac{20}{100}$$

In a distribution sum of two quadrants is. 78.29.

and its difference is 14.3 and it its median is 35.

find the welficient of skewners.

Sol;


kurtosis Based On Homents:

kurtosis is a measure of platness or

peakness of a distribution

Types Of kurbsis:

- 1. Mesokurpic
 - 2 Platykurkic
 - 3. Leptokurtic.

1 & 1. Meso kur Act: 11 1

Normal curve (Bell shaped) is called Herokustic

2. Platy kurtic:

The curve which is more flat topped that the normal curve is called platy kurke. Lepto kurke:

The curve which is more peaked than the normal curve is called leptokurtic.

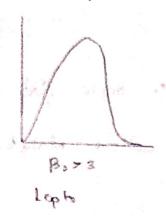
Measures of kurtosis:

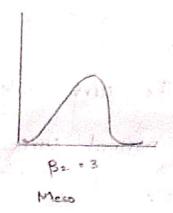
The measures of kurbosis, of a frequency distribution are based upon the fourth moment about the mean of the distribution.

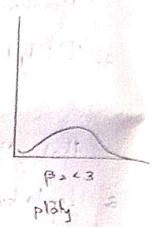
 $\beta_2 = \frac{\mu_4}{\omega_0^2}$

where

M4 - 4th moment.
M2 - 2nd moment.


hormal. and the curve is a normal curve. (mesokurtice)


**If B2=3, the distribution is said to


be more peaked, and the curve as leptokurtice.

*II B<3, the distribution is sold to

Hat hopped and the curve is platykustic.

* Central moments = ur

(M .= 4.

$$M_3 = M_3 - 3\mu_2 \mu_1^2 + 2\mu_1^3$$
 $M_4 = \mu_4^2 - 4\mu_3^2 \mu_1^2 + 6\mu_2^2 \mu_1^2 - 3\mu_1^2$
 $M_1 = M_1^2$
 $M_2 = M_2^2 - (\mu_1^2)^2$

1. The first 4 central moments of a distribution are 0, 2.5. 0.7, 8.75. Test the skewness and known of a distribution.

· μ'= 0 ; μ'= 2,5 ; μ'= 0,1 ; μ'= 8,75

The coefficient of skewner, B. = Mis

$$\beta r = \frac{(0.7)^2}{(2.5)^3}$$

$$= \frac{0.49}{15.625}$$

$$\beta_1 = 0.031$$

positively skewed.

 $M_3 = M_3' - 3M_2' M_1' + 2M_1'^3$ $0? = 01\pi - 3(2.5)(0) + 2(6)^3$

M 3 = 0.7

 $M = M_2' - (\mu_1')^2$ $= 2.5 - (0)^2$

H 2 = 2.5

B = = \frac{\mu_4}{\mu_2}

 $\frac{(M4 = M4' - 4M3' M' + 6M2' M' - 3M' + 6M2' + 6M2'$

M4= 8.75

Ma = (2.5)

 $\beta_{2} = \frac{6.75}{(2.5)^{2}} = \frac{8.75}{6.25}$

.. The gr kurtosis is play learlic.

2. The first 4 moments of the distribution about the values are 2.20.40, 160 find the Heaves of kurbsis and commont the distribution 861:

Mi = 20 , Mi = 20 , Mi = 40 , Mu = 150

 $\beta_1 = \frac{\mu_3^2}{\mu_1^3}$

 $M_2 = y_2' - (y_1')^2$ = 20 - (2)²

M2 = 16

M3 = Ma'-3 M2 M1+ 291,3

: 40-3(20)(2)+2(2)3

:40-120+16

M3 = - 64

μω = μω - μμ3 μι' + 6μ1 μ! - 3μ! " = 150 - 4 (40)(2) +6 (00)(2) - 3(2)"

$$B_{1} = \frac{M_{3}^{2}}{M_{2}^{3}}$$

$$= \frac{(-64)^{2}}{(16)^{3}}$$

$$\beta_2 = \frac{\mu^4}{\mu_2^2}$$

$$\beta_2 = 1.023$$

Coeff. of.
$$5k = \frac{Q_3 + Q_1 - 2(Q_2)}{Q_3 - Q_1}$$

$$= \frac{25 + 18 - 2(19)}{25 - 18}$$

$$= \frac{25 + 18 - 38}{7}$$

$$= \frac{5}{7}$$
Coefficient of $5k = 0.714$

From a moderately skewed distribution of retail prices for men's shoes, it is found that the mean price is Re. 20 and the median price is 125.17. If the coefficient of variation is 20%, find the pearsonian st of distribution.

pearsons co-efficient of sk = 3 (mean-median)

mean = 20 ; median = 17

mean

$$20 = \frac{80 \times 100}{20}$$

$$\frac{10}{100} = \frac{6}{20} \times 100$$

$$\frac{1}{5} = \frac{6}{20} \times 100$$

$$\frac{1}{5} = \frac{7}{20} \times 100$$

$$\frac{1}{5} = \frac{1}{20} \times 100$$

$$\sigma = 4$$

Co-efficient of
$$8k = \frac{3(20-17)}{0.04}$$

$$=\frac{3(3)}{0.04}$$

$$=\frac{9}{0.04}$$

$$=\frac{9}{0.04}$$

2. For a moderally skewed dato, the axithmetic mean is 200, the conflicient of variation is 8 and keal peasions conflicient of stewness is 0.3.

801:

Inean

$$0.3 = \frac{200 - \text{mode}}{16}$$

13. For a group of 20 items, ZN=1452 and
$$2N^2 = 144 \longleftrightarrow 280$$
 and mode = 63.7. Find the pearson's co-efficient of skewness.

$$Mean = \frac{2N}{N} = \frac{1452}{20} = 72.6$$

$$\sigma = \sqrt{\frac{z_N^2}{N} - \left(\frac{z_N}{N}\right)^2}$$

$$= \sqrt{\frac{144280}{20} - \left(\frac{1452}{20}\right)^2}$$

the two groups on below, which group ?

Mark	A	B
55-58	12	20
58-61	17	22
61-64	23	25
64-67	18	13

301:

For group A:

17	- 10 PM
17	29) 🔄
23	,52
18	70
V=70	6

$$Q_1 = L_1 + \frac{N_1 - m_1}{+1} \times c$$

$$= 58 + \frac{17.6 - 12}{17}$$

$$= 58 + \frac{5.5}{17} \times 3$$

$$Q_2 = L_2 + \frac{\frac{N}{2} - m_2}{f_2} \times C$$

$$= 61 + \frac{35 - 29}{23} \times 3$$

$$=61+\frac{6}{23}\times 3$$

$$Q_3 = L_3 + \frac{3(\frac{N}{H}) - m_3}{43} \times C$$

$$= 64 + \frac{3(17.5) - 52}{18} \times 3$$

For group B:

	4	
C.I	1	cf
55-58	20	20 01
58-61	22	42 Q7
61-64	25	67 ^{Q3}
64-67	13	80
3-1-7-31	≥{= 80	Δ

$$Q_1 = 2_1 + \frac{\frac{N}{4} - m_1}{1} \times c$$

$$= 55 + \frac{20 - 20}{20} \times 3$$

$$Q_2 = L_2 + \frac{N_2 - m_2}{f_2} \times C$$

$$= 58 + \frac{40 - 20}{22} \times 3$$

$$Q_3 = L_3 + \frac{3\left(\frac{N}{L}\right) - m_3}{-\frac{1}{3}}$$

$$= 61 + \frac{3(20) - 42}{25} \times 3$$

$$=61 + \frac{18}{25} \times 3$$

Bowley's coefficient of
$$3k = \frac{Q_{3} + Q_{1} - 2Q_{2}}{Q_{3} - Q_{1}}$$

HomeWork:

1. Calculate koul peauon's coefficient of skewners but the gr duta:

Income 400- 500- 600- 700- 800 No. 0 f. 800 90 employer 8 16 20 17 3						
No. 01.	Income	400-				800.
		2	16	20	17	3

<u>Sol:</u>

C·I	1	m ₍₄₎	d'= m-A	+4'
400-500	8	4 50	- 2	716
500-600	1-16 1	550	- Nil 650	Market Control
600-700	20	650	6	6
700 - 880	17	750	,	17
800-900	3	850	2	6
8 11	= 64			zja'=-9

$$= 650 + \frac{(-9)}{64} \times 100$$

Mode:

Grouping Table:

						AUG BANKE
C·Z	e,	Ca	Cz	CH	Cs	C6
400 - 500	8	9 + 16	7	43.44	· gledo y f	
500-600	16	24	(6 * 2 7	5 46 Jan	-r)(572	
600 - 700	20	37)	(36)	44	16+3°1' 53	20417 43
700-800	10	eje.v	£	onv Vite	wast?	40
800-900	3		20			

	1.11 9						
C· I	Cı	C2	C ₃	Сц	C5	C6	T
400-506100	, m	1		1			-(
500- 600	21 	\$	1	- 1	1		3
600-700	1-	1	1,000	113	,	1	(6)
700 - 800	330	P G		24 V.		,	3
200-960	r.			-20	- m		1
	no st	to serve il	1	337	or-11:0	2 1	

$$\int 0 = 16$$
, $\int 1 = 20$, $\int 20 - 16$

$$= 600 + \left[\frac{20 - 16}{2(20) - 16 - 17} \right] \times 100$$

$$= 600 \text{ f} \left[\frac{20 - 16}{2(20) - 16 - 17} \right] \times 100.$$

CI	1+	m	d': m-1	d' 2	441
400-500	8	450	-2	4	-16
500-600	16	550	g -1	1000	-16
606-700	20	650	O	0	6
700 - 800	17	750	1	1	17
800-900	3	850	2	Ly och	6
	= 64			\$0°	-9 -9

$$S \cdot \Omega = \sqrt{\frac{17}{64} - \left(\frac{9}{64}\right)^2}$$

$$= \sqrt{1.203 - (0.019)}$$

$$= \sqrt{1.184}$$

$$SD = 1.088$$

Difference blu dispersion and skewners:

Dispersion	Skewners
*It shows us the spread of Individual Values about the central	* It shows us deposture
Value	
The state of the s	* It is weful to study
the variablity in data.	the concentration in lower
	or higher voseables.
etter e i i i i i i i i i i i i i i i i i i	* * 1

A It judger the truthfullness

* It gudges the difference

average of deviation Average of the second Order. * It shows the degree * It is a type of vocability central we of the tream, the ruedian between the central concentration is in higher or lower value. and tendery but is measured by the + It shows whether the the mode

2. From the given data given below:

Mean = 150. Median = 142. Q1 = 62, Q3 = 195,

d1 = 30. dq = 230, T = 30

it karl pearson's co-eff. of skewners

it Bowley's co-eff. of skewners

it kaylagic kelly's co-eff. of skewners

801:

iii) kelly's co-efficient of skewness:

gn: d1=30, d9=230, median=142

$$= \frac{230 + 30 - 2(142)}{236 - 30}$$

il karl peareon's co-efficient Of skewners:

= 3 (Mean-Median)

S.12

$$=\frac{3(150-142)}{30}$$

$$=\frac{3(8)}{30}=\frac{24}{30}$$

iile Boroley's co-efficient of skewners:

$$= \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$$

$$= \frac{195 + 62 - 2(142)}{195 - 62}$$

$$=\frac{-27}{133}$$