MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I BCA

SUBJECT CODE: STATISTICAL METHODS AND IT APPLICATIONS I

SUBJECT NAME: 23UECA12A

SYLLABUS

UNIT-V

Correlation - Karl Pearson – Spearman's Rank correlation - concurrent deviation methods. Regression Analysis: Simple Regression Equations.

& CORRELATION CO-EFFICIENT

Introduction:

Bivariant distribution med to find out if there is any correlation or co-variation between two voicables.

addistres sylpe

I wall aldinger calls all her Bivariate distribution:

In certain series each term of the series may assume the values of two or more variables is called bivariate distribution.

eg: If we measure the height and weight of Certain group of persons is known as bivariate distribution. One voziate relative to height and other variable relative to Weight. It is med to study whether there is any correlation or co-variation between two variables.

Definitions:

* Correlations:

Correlation defines if changing one vaciable affects change in the other vaxable. Correlation

determines the relationship between two or more variable.

Positive correlation:

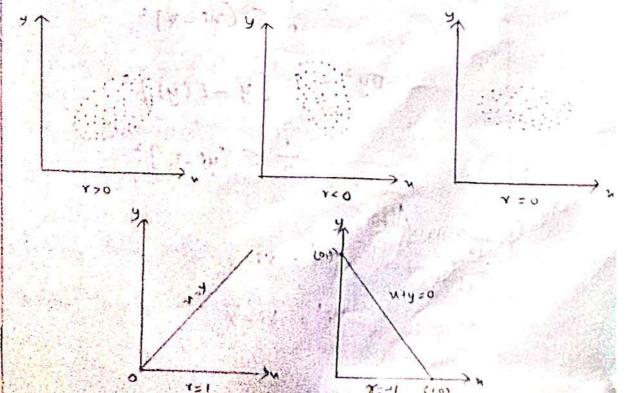
This correlation is said to be direct or positive if two variables deviate in the same direction .i.e , if one variable increase (decrease and the other variable also Increases (decrease) Eg: Income and Expenditure.

Negative Correlation: This correlation is said to be diversed or negative if they constantly deviate in the Line thought all progression was opposite direction. i.e; if Increasing one result corresponding decrese in the other. eg: Prize and demand of a commodity

Perfect Correlation:

The correlation is said to be perfect. if the deviation in one vaxiable is followed by corresponding professional deviation in the other.

* Scatter Dragram:


for a bivariate distribution (ui, yi)

n and y are plotted along n-anis and yanis verpectively. in the my plane

The diagram of dots so obtained in known as scattered diagram.

the variables correlated er not correlated. i.e.; if the points are very dense (very close) to each other. We say that fairly good amount of correlation he tween the variables and if the points are Widely scattered the poor correlation is expected.

The figures of scattered data for r=0, v<0, r=0, r=±1 are given below.

KARL PEARSON'S CO-EFFICIENT OF CORRELATION (Or) CO-EFFICIENT OF CORRELATION:

Correlation between two random

Variables wand y usually denoted as r(x,y)or r_{xy} is a numerical measure of linear

velation between them and is defined by

$$Y = Y(x,y) = \frac{Cov(x,y)}{\sigma_{x,\sigma_{y}}}$$

where to home lay what it por still

$$Cov(x,y) = E[(n-E(n))(y-E(y))]$$

$$= \frac{1}{n} \leq (ni-\overline{n})(yi-\overline{y})$$

$$\nabla x^2 = E[x-E(x)]^2$$

$$= \frac{1}{n} \leq (ni - x)^2$$

Also.

Karl Pearson's Coefficient of Correlation:

By this method of measuring the magnitude of linear relationship between two variables.

karl pearson's method is the most widely used method in practise and known as pearsonian coefficient of correlation is it denoted by small "r",

ile r = co-variance of my prosition and some of my or ty consulto. soft manifestation

iib y _ Eng

er er or Non Xoy" les col provi

 $\frac{1}{1} = \frac{1}{2} = \frac{1}$

·· ~ = (~- 5); y = (y-y)

on = standard deriation of series x

oy = standard deviation of series y:

When the deviation of items take from the actual means.

where

1. Find karl pearsons co-efficient of correlation

from the following data:

Wages	100	101	102	102	100	99	97	98	96	9:
Cost Of living	98	99	99	97	95	92	95	94	90	91

801:

1			14 15			
X	du = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Zu ² (or) d ² (n)	у	dy =	=y²(01) d²(y)	don
100		. 1 . 1	98	13.1	9 -	3
101	2,	4	99	4	16	8
102	3	9	99	4	16	12
102	å	9	97	, 2	4.	6
100	1	7	95	0	٥	0
99	O	0	92	-3	9	0
97	-2	4	95	٥	•	0

98	-1	,	94	-1	107	
96	-3	9	90	-5	25	15
95	-4	16	91	4	16	16
2u = 990		En2=	2y = 950	: ecital	2y2 = 96	5d n Edy = 61

$$\overline{\lambda} = \frac{2u}{n}$$

$$= \frac{990}{10}$$

$$\overline{\lambda} = 99$$

$$\overline{y} = \frac{2y}{n}$$

$$= \frac{950}{10}$$

$$\overline{y} = \frac{3}{10}$$

$$\sqrt{\frac{2\pi y}{\sum_{n}^{2} \sum_{y}^{2}}}$$

$$= \frac{-61^{11}}{\sqrt{5134}} = \frac{61}{12}$$

2 Calculate koul pearson's co-efficient of correlation
from the following stable:

^	12	91	8	10	11	13	17
y	14	8	9	9	11	12	3

So1:

The computation of karl pearson's co-efficient

of correlation;

×	y	N2	y²	ny
12	14	144	196	168
09	8	81	64	72
8	9	84 64	- 3)	72
10	9 1/1	100	81	90
110	11 11	121	121	121
13	12	169	144	156
7	3	49	9	21
2 k = 70	5y = 66	£u2=728	Ey : 696	Eug = 700

88.0 = 7

+ (01) Using Assumed Hean:

		M C	1.0		<u> </u>	
'n	y	du =	dn2	dy=	dy2	dudy
12	14	2.	4:	5	2 5	lo
9	9,8,0	-1	r. 1	-1	1	1
8	9	-2	24	0	10	0
A (i)	B (9)	0	(0	Ø	0	0
- 11 . d	T E	I	1.1	2	24	2
13	12	3	9	3	g	4
71%	3	- 3	9	-6	36	18
f*	r Elkowacia i	zdu=	2du'=	=2dy =	Zdy2=	Edudy:

NENY - ENSY

[NSh2-(EN)2. JNEY2-(EY)2

7×40- (0)(3)

17x28-10) 1 7x75-(3)2

196. 1516

r = 0.88

3. Find calculate the co-efficient of correlation

between a and y from the following data.

N	'	2	3	4	Б . <u>1</u>	6	7
y	2	4	5	3	8	6	7

801

n	y	du= n-A	Ju2	dy= y-B	dy2	dug
	2	- 3	9	-1	\$	8
ိုဍ	4	-2	4	101	101	-2
43	5	-1	1	2	14	-2
(4)*	⁶ (3)	0	0	Ö	26	0
5	8	等化于	٤١-	5.	25	5
G	6	2	4	3	9	6
7	7	3	9	4	16	12
	1.	2du = 0"	Edu = 28	Edy =		Edudy 22

NEdudy - EduEdy

IN Edu2-(Edu)2 . TRUEdy2-(Edy)2

= 7x 22-0(M) 7(28)-02. 7(56)-(14)2

1 1 (CEPT (14) 2

= 154

154

r = 0.7857

4. Tind the co-efficient of correlation in the following case,

Height Of Father	65	- 66	67-	- 61	68	69	71	73
Weight Of Son	67	68	64	68	72	76	69	70

801:

71 - 1 -						
N	ч	dn = 0	dn2	dy=	dy 2	dndy
65	67	-3	9	-5	25	T 15
66	68	-2 11	c 4	-4	16	8
67	64	-1 =	1-1-	- 8	GL,	8
67	68	-1	1 1 -	-4	16	4
1 68	B (12)	0	O	0	0	0
69	70,	illigit .	स्टार्ड	312 21	j: 4	ੑਫ਼ - 2
71	69	3	9	-3	, ,9	- 9
43	70	5.0	25	-2	4	-10
		5dn = 2	Edu2= 50	Zdy =	Idy 2 = 1	Edudy =

r = Nzandy - Zanzdy

1,0 Edu? (52m)2. 1,18 Edy? - (Edy)2

$$\frac{3 \times 14 - 2(-29)}{3(50) - (2)^{2}} \cdot \sqrt{3(129) - (-29)^{2}}$$

$$= \frac{112 + 56}{396} \cdot \sqrt{1320}$$

$$= \frac{168}{396} \cdot \sqrt{320}$$

$$= \frac{168}{355.97}$$
There is any significant correlation between and weight given below.

Find if there is any significant correlation between the height and weight given below.

Height of (in Inches)	57	59	62	63	64	65	55	58	57
Weight (in Inches)	113	117	126	126	13 0	129	JJ t	116	11 2

N , 4	. y	n-A	dn²	dy = 10	dy2	dudy
57	113	- 7	49	-17	28 9	119
59	1117	- 5	2.5	-13	169	65
62	126	-2	4	-4	16	8
63	126	-1	1	-4	16	4
A (84)	(130 B	10	0	0	0	0
65	129	1	,	-1	1.	-1
55	111	- 9	81	-19	361	17)
58	116	-61	36	-14	196	84
57	112	-7	49	-18	324	126
7-	P. 1. 1. 1.	Edu =	Zdn2=	3dy =	Edy2=	2 dudy =
		- 36	246	-90	1372	576

r = NEdnzy - Ednedy

IN Edu2-(Edu)2. IN Edy2-(Edy)2)

= 9×576 - (-36)(-90)

79(246)-(-36)2. 19(1372)-(-90)2

5184 - 3240

J2214-1296 · J12348-8100

= 1944 Jai8: Ju248

Man 7:0.9877

1944

r = 0.9844

Rank Correlation:

Let (xi, yi) i= 1,2,3,... n be the rank

of the ith Individual in two characteries A and

B respectively.

Rearson co-efficient of correlation behoven in X:'s and V:'s is called rank correlation co-efficient between A and B for that group of Individual.

L = 1-6 \frac{5}{1-1} D: 2 Pearson: formula for n (n^2-1) Rank correlation

Co-efficient

Tred Rank 1. State Contact Contact Contact

Let us suppose that 'm' of the Individual say (K+1)th, (K+2)th, ... (K+m) are hied then each of this Individual assigned a common rank which is the authoretic mean of the ranks [(K+1), (K+2), ... (K+m)th]

$$P(u,y) = \frac{n(n^2 - 1)}{6} - \sum D^2 + Tx + Ty$$

$$\left[\frac{n(n^2 - 1)}{6} - 2Tx\right]^{\frac{1}{2}} \left[\frac{n(n^2 - 1)}{6} - 2Ty\right]$$

(F. K. F. G. - W

Where,
$$Tx = \frac{1}{12} \sum_{i=1}^{3} (mi^{3} - mi)$$

$$Ty = \frac{1}{12} \sum_{i=1}^{3} (mi^{3} - mi)$$

Problems:

The ranks of same 16 students in Hathematics and Physics are as follows: (1,1) (2,10) (3,3) (4,4) (5,5) (6,7), (7,2) (8,6) (9,8) (10,11) (11,15) (12,9) (13,14) (14,12) (15,16) (16,13). Calculate the rank correlation for profisiency of this group, Mathe and Physics.

 $\theta = 1 - 6 \pm \Omega^{3}$

Assistant Location	Allerian .	リンを到っし、こ	
Rank in Hather	Rank in Physica	D=x-y	D 2
1 / 2	t e	1 - 0 t	0
2	10	11)28 1	4 64
3 - 4	3 2	0	0
Фец (M) + €	Ly 20	10 16	0
5	5 S	0,	0
c. 6 8 &	The Feb	A N	100
	2	5 -	
? 2. (4)	6	Visit Service	25
9	8	3-1200	N. Contraction
to .	January Company	-1.80	range
11	15	-4	16
12	9	3	9
13	14	-1	
NU .	1.2	2	4
15	16	-1	To Lucy CAR
16	13	3	9

$$P = 0.8$$

$$|P = 0.8|$$

$$|P = 0.8|$$

$$|P = 0.8|$$

$$|P = 0.8|$$

Rank correlation for proficiency of

2 Calculate the correlation co-efficient for the following height (in Inche) of fathers (x) and their sons(y)

ัน	.66	66	67	67	68	69	70	72
y	67	68	65	68	72	72	69	7/

801:-

				1 30	
14	y	u2	y2 3	uy	
65	_67	4225	4439	4355	
66	68	4356	4624	4488	
67	65	4489 .	4225	4355	
67	63	4489	4624	4556	
68	7.2	4 6 284	5184	4896	
69	72	4761:	5184	4968	
70	69	4900	4761	4830	
72	ייור	5184	5041	5112	
ZN = 544	2y=	5 42 = 3702 8	5y2: 38132	Eny =	

$$\overline{x} = \frac{5u}{N}$$

$$= \frac{544}{8}$$

$$\overline{x} = 68$$

$$\overline{y} = \frac{5n}{N}$$

$$= \frac{552}{8}$$

$$\overline{y} = 69$$

Correlation Co-efficient:

$$r = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

$$\sigma_{x^{2}} = \frac{1}{n} \mathcal{L}(37028) - (68)^{2}$$

$$\sigma_{x}^{2} = 4.5, \sigma_{x} = 2.12$$

$$Gy^2 = 5.5$$
 $Gy = 2.34$

... Correlation co-efficient is 0.604

Math,	75	30	60	80	53	35	15	40	38	48
Stat.	क्ट	45	54	91	58	63	35	43	45	HL

801:

<u>×</u>	У	X 2	1/2	xy	
75	\$ 85	5625	1225	6375	
30	45	900	2025	1350	
60	54 -	3600	2916	3240	
80	91	6400	3281	7280	
53	63 1225		3367	3074	
35			3969	2205	
15	35	225	1225	525	
40	43	1600	1849		
3.8	45	1444		1720	
48.	44	2304	2025	1710	
2x =	2y=	2x 2,	1936	2/12	
474	563	26132	24812	2xy =	

$$\bar{x} = \frac{5u}{N}$$
 $= \frac{474}{10}$
 $= \frac{563}{10}$
 $= \frac{47.4}{10}$
 $= \frac{56.3}{10}$

Correlation corefficient.

:14

$$\sigma \times \frac{1}{h} \leq x_1^2 - \frac{1}{h^2}$$

$$= \frac{1}{10} (26132) - (47.4)^2$$

$$= 366.44$$

$$\sigma_{x^2} = 366.44$$

$$\sigma_{x} = 19.142$$

$$\sigma_{y^2} = \frac{1}{n} (34815) - 3169.69$$

338.004

REGRESSION :

Regression in the measure of the amerage of relationship between two or more variable in terms of the original units of the data:

Uses of Regression Analysis:

Regression analysis is used in statistics in all those field where two or more relative variables are having the tendency to go back to the average.

The regression analysis is highly weful and the regression line equation helps to extimate the value of dependent variable, when the values of Independent variable are used in the equation.

Regression analysis predicts the value of dependent variable from the values of Independent Variables.

we can calculate co-efficient of correlation [x] and the co-efficient of determination

[r2] with the help of regression Co-efficient.

Regression analysis in statistical extination of demand curve, supply curves, production function cost function, consumption function etc.

Difference blu correlation and Regression.

Correlation	Regression
1. Both variables x and y	n is a random variation
are random voulables.	and y is a freed void
et in sureman and sureman	Sometimes both the voulable
as at product of 12	ind one islandore
2. There Day be nonsense	In regression the re
Correlation between two	in no such nonsers
Vaiable.	regression.
3 It has limited	It has wider applecation
application, because it is	as it studies linear and
onlined only to linear relationship.	hon linear. relationship
schuce the Voulable	cetween the variable
It is not very useful	Il is widely used for
or further mathematical	further mathematical
Irealment.	treatment

E II the co-efficient of correlation is positive, then the two variables are positively correlated and vice versa.

The regression co-efficient explains that the decrease in one variable is associated with the Increase in the Other variable.

6. It is Immaterial whether a depends upon y or y depends upon n.

There is a functional relational here is a functional was the two variables so that we may identify blue the Independent and dependent variables

Method Of Studying Regression:

There are two methods of studying regression.

i) Graphic Method:

*The points are plotted on a graph paper representating pairs of value of the concerned Variables.

+In this diagram the Independent Variables taken on horizontal arms and dependent variable un the Verkeal arms

11) Algebraic Method:

Regression line:

AA regression line is a straight line filled to the data by the method of least squares.

value of the Other variable.

regression of a upon y and the Other shows the regression of y upon u.

Regression Equation:

*Regression, Equation of n and y

Regression equation of none y

x(e) = a + by

By the least square method we can find out the value of small a and bo and determine the regression line.

Where N is the number of Observed poirs

Regression Equation of youx:

Yc = a + bu

Zy = Natb zn

Exy = a Ex + b E n2

PROBLEM:

Determine the equation of a straight line which best fits the data:

Ν	, 10	12	13	16	17	20	25
y	10	22	24	27	29	33	37

Sol, +61

Straight line y = a + bn

The two normal equations are

N	N ²	y	ny
10	100	10	100
12	144	1 22	264
13	169	24	312
16	256	27	432
17	289	29	493
20	400	33	660
25	625	37	925
2x= 113	źn²=1983	Zy=182	Z my = 3186

Sub the Values:

Zy=bzn+Na

Zy = 182 , Zu = 118 , N=7

113b+7a=182 -> 0

Eny=ben²+aen

\[\sum x = 113 , \frac{1}{2} \times y = 3186 , \frac{1}{2} \times \frac{1}{2} = 1983
 \]

19836 + 113a = 3186 >0

from 0 8 0

0×113 = 12769 b + 7919 = 20566

① x7 = 13881 b + 791a = 22302

-1112 b

-1736

The equation of straight line is
$$y = a + bu$$

here, $a = \frac{0.817}{0.82}$, $b = 1.56$
 $y = 0.82 + 1.56 \pi$ $\Rightarrow y = 0.817 + 1.56 \pi$

... The equation of the required straight line is $y = 0.82 \pm 1.56 \, \text{M}$

This is called regression equation of you u.

Deviation taken from Arithmetic Hear of n on y:

Regression equation of n arry

$$x - \bar{x} = x + \frac{\sigma x}{\sigma y} (y - \bar{y})$$

X = Hear of in series

r on : The regression co-efficient of n on y library.

(or)

It gives values by which one variable change that is for a unit change in the other Variable

$$= \frac{\sum_{y} \sum_{y} \sum_{y}$$

$$\frac{\text{Eny}}{\text{Ey}^2}$$

by
$$n = \frac{\sum ny}{2n^2}$$

by $n = \frac{\sum ny}{\sqrt{2}}$

$$= \frac{\sum ny}{\sqrt{\sum n^2 \sum y^2}} \times \frac{\sqrt{\sum y^2}}{\sqrt{\sum n^2}}$$

by $n = \frac{2ny}{\sum n^2}$

$$\therefore \exists 1 = \sqrt{b n y} \times b y n$$

$$\exists 1^2 = b n y \times b y n$$

PROBLEM:

Jon n from the dada given below, taking deviations from actual means of n and y.

Price(w)	10	7:15	13	12	16	15
Armount demanded	40	38	43	५५	37	43

Estimate the likely demand when the price is Rs. 20.

ν	N=N-V N=13	ν ²	* y	y = 41 y=y-9	λ,	
10	-3	0 1.0		- I I	,	
12	-1	1 1 5	33	- 3	9	
13	Ö	O	43	2	4	
12			45	4	16	
16	3	9	37	-4	16	
5	2	ŷ==	43	2	4	
18 18	5 n = 0	arm.	zy =	zy=0	2y ² = .	

Regression equation of n on y
$$\vec{x} = \frac{2u}{N} \qquad \qquad \vec{y} = \frac{2u}{n}$$

$$\vec{x} = \frac{18}{6}$$

$$\vec{x} = 13$$

$$\frac{91}{6y} = \frac{5ny}{50} = \frac{-6}{50}$$

$$x - \overline{y} = 9t \frac{\sigma n}{\sigma y} \cdot (y - \overline{y})$$

$$\chi = -0.124 + 4.92 + 13$$

$$\chi = -0.124 + 4.92 + 13$$

$$\chi = -0.124 + 14.92$$

Regression equation of you war.

$$y-\bar{y} = \pi \frac{\partial y}{\partial x} (x-\bar{x})$$

$$\frac{31}{5\pi} \frac{69}{5\pi} = \frac{5\pi}{5\pi^2} = \frac{6}{24}$$

$$y - 41 = \frac{-6}{24} (x - 13)$$

:. When x 25 20, y will be

When the price is Rr. 20 the likely demand

å 39.25%. €

			x = 12			N	
Aver	age	- 11 	j	1-1-		1.6.	
Stane	b book	eviation	V D	r. T	3 0	5.6 (m)	-
	0.99		- A 41				
<u>561:</u> 6			4.1 (1)	PC	JC .		
1	Nean 1	of x	Señes	ν̄ = '	7-6		
•	lean c	4 4	denies	J = 0	4.8		
	6	of ~	8enes	= 5	3-6		
	σ ο	f y	Señes	= 2	5		
(150		A			
	20 efficien		4736				
Regn	exton	equatio	u of	y on	w ;		
		1 10 4- 1					
		0 1	oy (1	(N - N		1 6.	
	9- 11	.8 =	0.99 x	ارون	/	- 1)	
		A House to					
	y- 14	. 8 =	0.99 x	0.694	(-u =-	1-6)	
		•					
	9-14.	8 = 0	. 6871	4 X-5.0	2		

$$y = 0.687(12) + 9.58$$

$$= 8.244 + 9.58$$

$$y = 17.824$$

7. From the following data obtain the two regression equation.

				7	1	T				1
takes	91	97	108	121	67	124	51	73	111	57
Parchase	71	75	69	97	70	91	39	61	80	47

<u>Sol:</u>

u	X= X - X X= 90	N ²	'n	Y= Y- 9 9=70	y2	чу
91	1	1 -	71	. 25	1	1
97	7 5 00	49	75	5 2	25	35
801	18	324	69	-1 -1	ı	-18
121	31	961	97	21	729	837
67	-23	529	70	۵	٥	0
124	34	1156	91	21 *	441	714
ы	-39	1521	39	-31	961	1209
٦3	-17	289	61	-9	81	15 3
111	آ الا ع	441	80	10	100	210
51	-33	1089	47	-23	5 29	759
2n =	5u=0	Zu' = 6360	245	2y2 =	2y2= 2868	Zmy = 3900

$$\overline{N} = \frac{2n}{n}$$

$$= 900 = 90$$

$$\bar{y} = \frac{2\pi}{0}$$

$$= \frac{700}{10} = 70$$

$$\frac{3}{3} = \frac{3900}{59^2} = \frac{3900}{2868}$$

$$x - \overline{x} = x \frac{\sigma x}{\sigma y} (y - \overline{y})$$

Regression equation of your

$$\frac{2 \frac{\sigma y}{\sigma n} = \frac{\sum_{n \neq 1} \sum_{n \neq 2} (n - \overline{n})}{\sum_{n \neq 2} (n - \overline{n})}$$

Find	the	most	likely	production	corresponding	ю	۵
rainfo	all y	oIron	the	following	data:		

s fam.	Rasnfall	Production
Average	30	5 ookgs
Standard deriation	5.	too kgs
N =0.8	31 000 310	12 1 1 th

Sol:

4.

Mean of
$$y$$
 Series $\bar{y} = 30$

Hean of y Series $\bar{y} = 500 \, kg$ s.

 σ of v Series $= 5$

Regression equation of y on n;

$$y-500 = 0.8 \times \frac{100}{5} (x-30)$$

$$y = .16(40) + 20kg$$

= 640 + 20kg
 $y = 660 kgs$

You are given the following data:

Arithmetic mean	n
Thinkene thean	3,6
Standard deriation	11
orrelation coefficient = 0.66	

801

ip Find the 2 Regression equation

iib Estimate the values of n , when y= 75.

Mean of a series = 36

Mean of y senes 5 = 85

of n series = 11

0 0 g sexe = 8

Coefficient of correlation = 0.66

Regression equation of u on y

· ' N- m = 91 <u>On</u> (y- \(\overline{y}\))

M-36 = 0.66 x 1 (4-85)

$$M-36 = 0.66 \times 1.375 (y-85)$$

$$M-36 = 0.90y-76.5$$

$$M = 0.90y-76.5,436$$

$$M = 0.90y-40.5$$

Regression equation of y on n

y-y=91 5y (n-n)

y - 85 = 0.66 (0.72) (n-36)

y-85 = 0.47 M - 16.92 / 30

y = 0.47 h + 68.08

... When won y = 75

w = 0.90y - 40.5

= 0.90 (45) - 40.5

= 67.5 - 40.5

6. The following results where worked out from the scores in statistics and mathematica in a certain examination.

A PTO LET T	Score in	Sw
	Statistics (n)	Halhe
Mean	39.5	1
Standard deciation	10.8	1

karl peasur correlation coefficient between x and y=-0.42.

Find both regrassion lines.

Use there regression equation and almost the value of y for n=50 and also extimate the value of n for y=30.

801:

Mean of series $\bar{y} = 89.5$ Hean of series $\bar{y} = 47.5$ of of a series = 10.9

of of y series = 17.3

Coefficient of correlation = -0.42

Regression equation of won y;

 $v-v = s_1 \frac{\sigma v}{\sigma y} (y-y)$

$$N-39.5 = -0.42 \times \frac{10.8}{17.8} (y-47.5)$$

Regression equation of y on w

$$y - \overline{y} = 91 \frac{\sigma y}{\sigma v} (v - \overline{v})$$

When
$$3 = 50$$

$$y = -0.68(50) + 74.36$$

$$= -34.474.31$$

$$y = 40.36$$

regression equations:

n	10	12	13	17	
y	5	6	C 7	9	

ib Calculate regression of the two equation.

ii) Estimate the value of x when y=20

Sul:

-											
V	N = N - N	\u2	y	y=y-y y=8	y 2	749					
10	-4	16	5	- 3	9	12					
. 12	-2	4	6	- 2	4	<i>L</i> ₁					
13	-1	1	7	-1	1	1					
17	3	9	9	1 11 8	1	3					
18	4	16	13	5	25	20					
2x :	Zu:0	Zu = 46	2y=	2y = 0	2y2 =	Zuy.					

$$\overline{x} = \frac{x_{1}}{n}$$

$$= \frac{70}{5}$$

$$\overline{x} = 14$$

$$\overline{y} = \frac{x_{1}}{n}$$

$$= \frac{40}{5}$$

Regression equation of a only

$$\frac{5x}{3} = \frac{5xy}{5y^2} = \frac{40}{40}$$

$$N - \overline{v} = \Re \frac{\partial v}{\partial y} (y - \overline{y})$$

$$N-14 = \frac{40}{40}(9-8)$$

when y= 20

Regression equation of y on u

$$\frac{91}{5} \frac{5y}{5x^2} = \frac{5y}{2x^2} = \frac{40}{46}$$

$$y-\overline{y}=\frac{y}{\sigma y}(\sqrt{n})$$

$$y-8 = 0.86 (N-14)$$

$$y = 0.86N-12.04+8$$

$$y = 0.86N-4.04$$

8. From the following data of the rainfall production of rice, find the most likely production corresponding to the rainfall of 40.

	Rainfall (Inches)	Production (Quantity)				
Mean	35	50				
Standard deviation	5	8				
Coefficient of Correlation = 0.8		137 12				

801:

Mean of series
$$\bar{x} = 35$$

Mean of series $\bar{y} = 50$
 $\bar{y} = 60$

Coefficient of correlation = 0.8

Regression equation of \bar{y} on \bar{y} :

 $y-\bar{y} = x \frac{\sigma y}{\sigma n} (n-\bar{n})$

$$y = 50 = 0.8 \times 1.6 (x - 35)$$
 $y = 50 = 1.28 \times -44.8 + 50$
 $y = 1.28 \times +6.2$
 $x = 40$

When
$$N = 40$$

$$y = 1.28(40) + 5.2$$

$$y = 51.2 + 5.2$$

$$y = 56.4$$

9. From the following data calculate:

it Correlation coefficient.

ijh Standard deriation Of y; bny=0.85y
byn = 0.89 N

801:

it Correlation coefficient.

21 = Jbny x by n = J0.85 x 0.89 = J0.7565

9 - 0.86

obtain the lines of regression for the following.

u	1	2	3	4 g	5	6	7	8	9
y	9	8	10	12	u u	13	(4	16	15

801:

Obtain an estimate of y which should.

correspond to the average x=2.6

				17	サイルが大学	The second section of the sect
N.	X = X - x X = 5	X 2	y	y=y-9 g=12	y2	ny
1	- 4	16	9	-3	9	12
. 2	-3	-9 10	8	- tj	7 16	12
3	- 2	L,	lo	-2	4	4
4	-1 -1	5 1 N W.	12	0	0	0
5	0	0	11	-1	1	0
6	17.	1 (2.3)	13	1	1	1
7	2	4	14	2	4	4
8	3	9	16	4	16	12
9	4	16	15	3	9	12
5 x = 45	5x=0	54° =	2y =	2y = 0	2y² =	2ny=

Regression equation of y on y

$$\frac{91}{5y} = \frac{2ny}{2y^2} = \frac{57}{60}$$

$$x - \overline{x} = 9 \frac{\sigma x}{\sigma y} (y - \overline{y})$$

$$M-5 = \frac{57}{60} (y-12)$$

Regression equation y on n

$$3\frac{\sigma y}{\sigma v} = \frac{\Sigma vy}{\Sigma v^2} = \frac{57}{60}$$

$$y-\bar{y}=\frac{\pi}{\sigma y}(y-\bar{y})$$

$$y-12 = \frac{57}{60} (y-5)$$

When N = 6.2

$$Y(c) = \pm \sqrt{\pm \left(\frac{2C-N}{N}\right)}$$

where .

v(c) - Co-efficient of correlation by the concurrent deviation method.

C - No. of concurrent deviation

N - No. 0 : paris of deviation compared

1. Calculate the co-efficient Of concurrent deviations from

the gn data:

Month	Jan	Feb	Han	Apil	Hay	Tune	July	Aug	Sep
Supply	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	A STATE OF THE PARTY OF THE PAR		1	1	1	1	1
Price	292	280	260	234	266	25 U	230	190	200

291:

$$\gamma(c) = \pm \sqrt{\pm \left(\frac{2C-N}{N}\right)}$$

here Co

	The same of the sa			1	7
Month	Supply (m)	9"	Price (y)	72	dod
Jan	160	- 3	292		
Feh	-164	+	2 80	-	-
Norch	172	+	266	-	
April	182	+ .	2 34	1507	-
May	166	1 11 10	266	+	-
June	170	+	254	-	_
July	(18	+ 7000	230	_	_
Aug	192	jet es	1960	-1/	-
See	186	والعالمة والمنافرة	200	+ 	× -
al +j's	it. It	7 : d)	ns and s	totalis.	dudy

$$V(C) = \pm \int_{\frac{1}{N}} \left(\frac{2C - N}{N} \right)$$

$$= t \int \frac{1}{2} \left(\frac{2(0)\pi ?}{8} \right)$$

to ten competitore in a murcal test were ranked by the 3 judges. A.B and C in following order:

Rank	by	A	c 📢	+ 6	5	10,	3	2	4	9	٦	-8
Rank	by	В	3	5	8	4	7	10	2		6	9
Rank	by	C	6	61 Li	9	8	1	2	3	(0)	5	7

Using rank correlation discuss which people of guides has the nearest approach to common.

Tikings in music.

801:

E Local SA		+	15,813. 4					
*	y	2	d,= n-y	d2=42,	d3= Z-N	d,2	122	43
1	3	6	-2	- 3	5	4	9	25
6	5	4	7.541 12	7. 13	-2	1	1	4
5	8	9	-3	- I.	ч	9	1	16
to	4	8	6	-4	- 2	36	16	4
3	7	1	-40	6	- 2	16	36	L
2	lo	ב	- 8	8	0	64	64	٥
4	2	3	2	-1-	(= 1 m)	ч		T
9	L.	10	8	-9	14	64	81	1
7	6	5			- 2	1	,	4
8	9	7		2	-1		4	1
	d.		\$. () 	1 150			231:	≥ Ø3 =

$$l_1 = 1 - \frac{6501^{21}}{n(h^2 - 1) \rightarrow 60} (3 - n)$$

here, 201°=200, n= 10. n3=1000

$$li = 1 - \frac{6(200)}{1000 - 10}$$

-1-1.212

$$23 = 1 - \frac{6 \times D_3^2}{(n^2 - h)^2}$$

= 1 - 0.36

approach of common liking in music.

Yanked by the 3 judges A, B, B, B C in following.

Order:

	Judge 1:	1	5	4	8	9	6	10	ч	3	2
	Judge 2	4	8	٦	۲,	5	97	lo	3	2_	1
-	Judge 3	6	7	8	1	5	lo	9	2	3	4

Judger har the nearest approach to common

801 .-

			4.3011		-			
N	9	Z	d1= n-y	d,=y-z	d3= z - n	di2	1,2	43
1	4	6	- 3	-2	5	9	4	25
5	8	7	- 3		2	9	1	4
4	1	8	-3	-1	4	9	1	16
8	6	ı	2	5	-7	4	25	119
9	5	5	4	0	-4	16	0	16
6	9	10	- 3 4 4	- (- 1)	4	9	1	16
(0	(0	9	0	1	-1	0	1	1
7	3	2	4	- 1	-5	16	1	25
3	2	3	. 1 1	-1 1/3	0	,	1	0
2	1	Li'	ı	-3	2	,	9	L
de Cale	ala cara	2700			y net	74	44	156
1								

$$l_{1} = 1 - \frac{6 \le \Omega_{1}^{2}}{6^{3} - n}$$

here , n = 10 , n3 = 1000

=1-0.44

l1= 0,56

Repeated Rank:

$$Q = 1 - 6 \sqrt[9]{2D^2} + \frac{1}{12} (m_1^3 - m_1) + \frac{1}{12} (m_2^3 - m_2) + \frac{1}{12}$$

1. Obtain the rank correlation to-efficient for

pllowing Lata.

N	68	64	75	50	64	80	75	40	55
J	62	58	68	45	81	60	68	48	2

801:

Ri-Rank,

P2-Rank,

	100	-1-b		~2 - 10 @r	15
ν	y	R.	R ₂	D=11-42	D,
68	62	4	5	1	
64	58	6.	7	-1	
75	68	2.5	3.5	-1	1
50	45	9	10	-1	
64	81	6	1	5	25
80	60	* 1 - 1	6	-5	
75	6-8	2.5	3.5	-1225	25
40	48	.10	9	40 A 1 A 1	
55	50	8	8	0	0
64	70	6	2	L,	16
		:	1,7	shora 5	5D2:

* N Series:

+ 75 is repealed a limes $\frac{d+3}{2} = \frac{5}{2} = 2.5 \quad (M_1=2)$

> 64 is repeated & times

$$\frac{6+6+7}{3} = \frac{18}{3} = 6 \quad (m_2 = 3)$$

$$y = \frac{5e^{-1}e^{-1}}{2}$$
 $\frac{3+4}{2} = \frac{7}{2} = 3.5 \quad (m_3 = 2)$

Here: mi = 2, m2 = 3, m3 = 2; h=10

$$Q = 1 - 6 \begin{cases} 2D^2 + \frac{1}{12} (m_1^3 - m_1) + \frac{1}{12} (m_2^3 - m_2) + \frac{1}{2} \\ (m_3^3 - m_3) \end{cases}$$

m3-n

= 1 - 6
$$\begin{cases} 72 + \frac{1}{12}(6) + \frac{1}{12}(24) + \frac{1}{122}(6) \end{cases}$$

990

990

= 1-0.4545

the given data:

u	43	44	46	لره	44	42	45	42	38	Lio	42
B	29	31	ta	18	h	27	27	29	4 1	30	26

Sol:

N	y	P.	P2	D=R-R2	Ds
43	29	6	5.5	0.5	0.25
44	31	4:5	3	1.5	2.25
46	19	2	10.5	-8.5	72.25
40	18	10.5	12	-1.5	2.25
44	19	4.5	10.5	-6	36
42	27	8.	7.5	0.5	0.25
45	27	3	7.5	-4.5	20.25
42	29	8	5.5	2.5	6.25
3.8	41	12	2	10	100
40	30	10.5	4	6.5	42.25
42	26	8	9	-1	1
57	10-20	1	1	à	0
					502 = 415 = 283

A n Series:

- 64 repealed 2 times

 $\frac{4+5}{2} = \frac{9}{1} = 4.5$ $(m_1 = 2)$

- 42 reproded a limer.

 $\frac{7-\frac{6}{3}-\frac{9}{3}}{\frac{1}{3}}=\frac{2u}{3}+\frac{4}{3}-\frac{4}{3}$

$$\frac{10+11}{2} = \frac{21}{2} = 10.5 \quad (m_3 = 2)$$

$$\frac{10+11}{2} = \frac{21}{2} = 10.5 \quad (m_4 = 2)$$

$$\frac{5+6}{2} = \frac{11}{2} = 5.5 \quad (m_4 = 2)$$

$$\frac{7+8}{2} = \frac{15}{2} = 7.5 \quad (m_5 = 2)$$

$$\Rightarrow 19 \quad \text{repeated 2 kmes}$$

$$\frac{10+11}{2} = \frac{21}{2} = 10.5 \quad (m_5 = 2)$$

$$\Rightarrow 6 \quad \begin{cases} 520^2 + \frac{1}{12} (m_3^3 - m_1) + \frac{1}{12} (m_2^3 - m_3) + \frac{1}{12} \\ (m_3^3 - m_3) + \frac{1}{12} (m_4^3 - m_4) + \frac{1}{12} (m_5^3 - m_5) \end{cases}$$

$$\Rightarrow \begin{cases} \frac{115}{29.83} + \frac{1}{12} (6) + \frac{1}{12} (24) + \frac{1}{12} (6) + \frac{1}{12} (6) \\ = 1 - \frac{1}{12} (6) + \frac{1}{12} (24) + \frac{1}{12} (6) + \frac{1}{12} (6) \end{cases}$$

$$6 \begin{cases} \frac{415}{983} + \frac{1}{12}(6) + \frac{1}{12}(24) + \frac{1}{12}(6) + \frac{1}{12}($$

1728-12

$$6 \left\{ \frac{283}{283} + \frac{1}{2} + 2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right\}$$

$$=1-\frac{1725}{1716} = 1-69419.53$$

a) Obtain the Rank correlation co-efficient of the gn data:

N	48	33	40	9	16	16	65	24	16	51
9	13	13	24	6	15	Le	20	9	6	19

201:

*	· .	1 - 1			D2
	y	R,	R2	D= R1-R2	
Ц8	13	3	5.5	-2.5	6.25
33	13	5	5.5	-0.5	0.25
40	24	4	1	3	9
9	6	. 10	8.5	1.5	2.25
16	15	8	4	4	16
16	1,	8	10	-2	4
65	20	1	2	-1	1
24	q	6	7	-1	1
16	6	8	8.5	-0.5	0.25
57	19	2	3	-1	1
		1.5.5			202=
					41

N Señes:

→ 16 Repeated 3 times:

$$\frac{7+8+9}{2} = \frac{24}{3} = 8 \quad (m_1 = 3)$$

y series: → 13 Repealed 2 lines:

$$\frac{5+6}{2} = \frac{11}{2} = 5.5 \quad (m_2 = 2)$$

-> 6 Repealed 2 lines:

$$\frac{8+9}{2} = \frac{17}{2} = 8.5 \quad (M_3 = 2)$$

$$= 1 - \frac{6 + 1 + \frac{1}{12} (24) + \frac{1}{12} (6) + \frac{1}{12} (6)}{10^{3} - 10}$$

$$= 1 - \frac{6 \sqrt{41 + 2 + \frac{1}{2} + \frac{1}{2} \sqrt{6}}}{990}$$