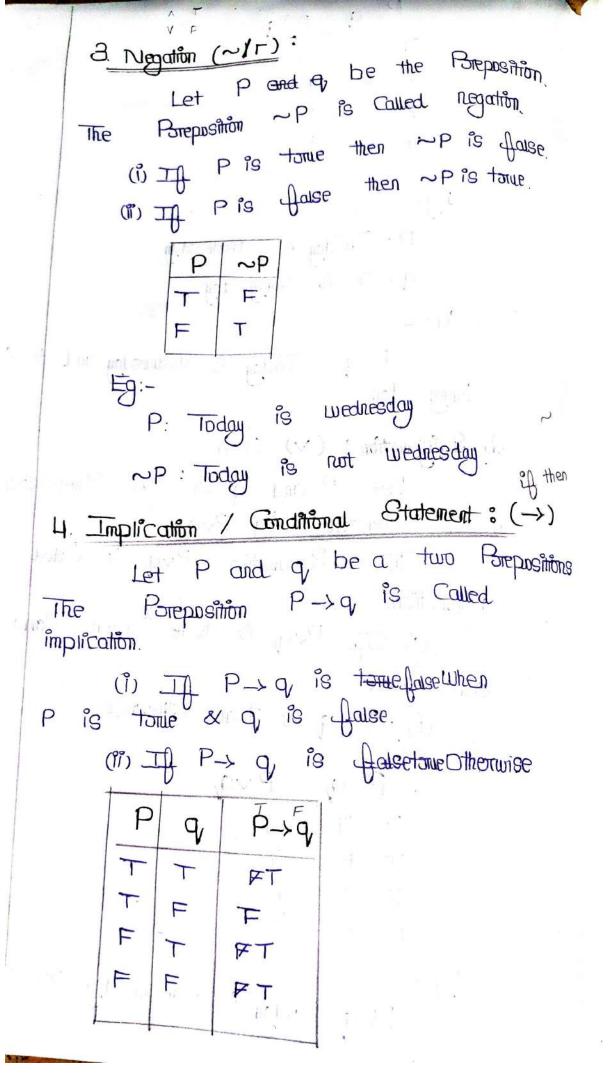
MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I M. C. A

SUBJECT CODE : 23PCA11

SUBJECT NAME : **DISCRETE MATHEMATICS**

SYLLABUS


UNIT 2

MATHEMATICAL LOGIC

Logical connectives-Well formed formulas Truth table of well formed formula Algebra of proposition - Normal forms of well formed formulas- Disjunctive normal form Principal Disjunctive normal form-Conjunctive normal form-Principal conjunctive normal form-Rules of Inference for propositional calculus Quantifiers- Universal Quantifiers- Existential Quantifiers.

UNIT-2 Mathematical logic: A Pareposition is a Statement Can be classified as tour Pereposition: Classified as tome Haise. OT is Chennai is the Capital of TN. Tome is Lukat core you doing? (It is Pareposition) not in A+B=c (Not Poreposition) in Chemai is Capital of kenala (DFalse). Section (A): Obenajons:-Tooligat 1. Conjunction (1): Let p and q, be two Porepositions it is denoted by PAq. (Pandq). The Psieposition Pag is Called Grunction. (i) If Pag is tome when P and q one tome. (ii) If Prq is false when Otherwise P& q come torue.

P q P^q
P Q P^Q T T F F F F
T F F
FT F
FFF
Eg:-
P: Today is wednesday
9: It is Sung day
Sal:-
Prq : Today is wednesday and it is
Sunny day
2. Disjunction: (V) (Dai)
Let P and a one two Parepositions
Let P and q one two Parepositions of is denoted by Pryon
This Pareposition Prq is Called
10-0 19
disjunction. (i) If Pra is take when Partala
(i) I Pro 18 1 miles with 1 with 19
Core false
(ii) Pvq is tome Otherwise
Pq Pvq
1 9 7 7
FFF
Eg:-
Prq: Today is wednesday on it is
Sunny day.
O O.
المؤنين المحاصرة

Note :-(i) P - hyphothesis (1) 9- Conclusion (in) If P then que (iv) P implies (vi) P is Gufficient flor q (vi) 9 if P (ix) The theor P is recessing for P. P->9: If a man Study then he got Pass. 5. Biconditional (4): Let P and q be a two Psieposition. PL->9 is Called bi Conditional (1) If P > q is tome when P&

2 Same Same If PL>9 is false otherwise. A man Study if and only if he Pass.

6. Convense: Let Pand 9, be a two. Pareposition
Let Pand 9, onverse.
a -> P is Called then a is then
Q → P is Called The (i) Q → P is tome fasether. Q is tome
& P is false.
(ii) 9-> Pis false tome otherwise.
(11) 4-3
- F (1) (N)
$ P \cap Q \rightarrow P$
1 9 7
TT FT
- FT
1 1 + - 1
F + - = - = - = - =
FFFF

12 Inverse:

Let P and q be the two Psieposition and $\sim P$, $\sim q$, are regations, $P \rightarrow q$ is Conditional Psieposition then $\sim P \rightarrow \sim q$ is Called inverse of $P \rightarrow q$.

: (2-x) loadiff_ratiff

P	9	~P	~9	~P->	~q,
T	_	F	F	T	
T	F	F	7	T	7.
F	T	T	F	F	•
F	F	T	T	T	
- 1					
		P.C. P.	- H (1	1 /	5 1

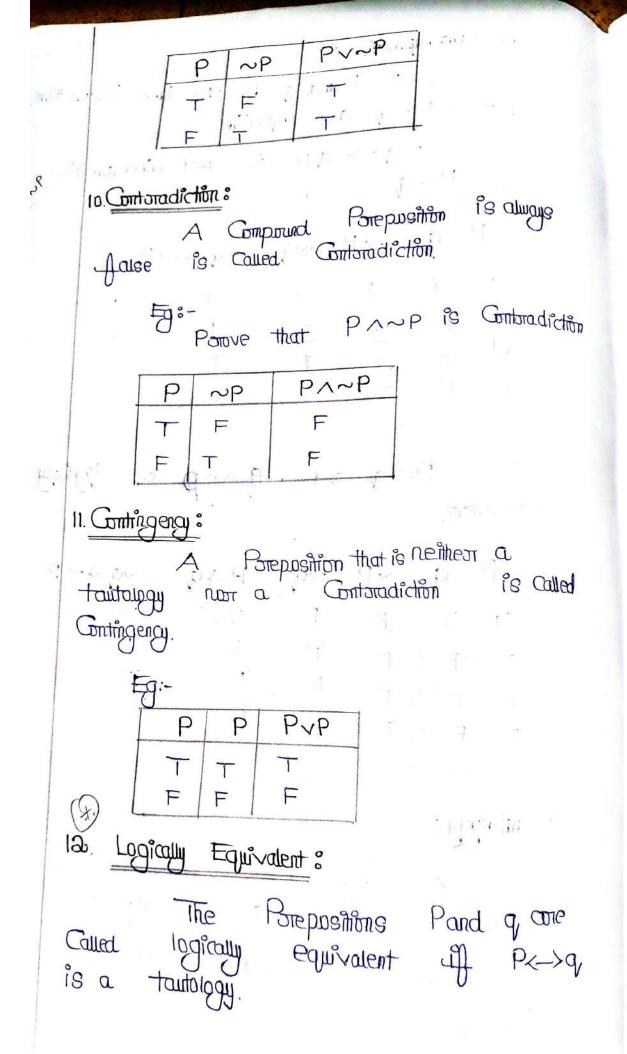
8. Contarapositive:

Let P and q, be the two Poreposition. Let $\sim P, \sim q$, ourse regation

~9 →~9 is Called Contorapositive

Of P→9.

Р	9	~ P	~q	~q->~P
_	T	F	F	Τ
T	F	F.	In to	E
F	T	T	F	T
F	F	T 9 -	Ť	্ৰ ্
			-	× , 1 ,


 $P \rightarrow q$ and $\sim q \rightarrow \sim p$ are logically equivalent.

 $P q \sim P \sim q P \rightarrow q \sim q \rightarrow \sim P$ T T F T T T T F F T T T T

9. Toutology:

A Compound Pareposition is always tarre is called a tarritology.

Eg:- Porove that PV~P is a tautology.

Eg:Porove that $\sim (P \wedge q)$ and $\sim P \vee \sim q$ correlations equivalent (an)
Porove that $\sim (P \wedge q) \equiv \sim P \vee \sim q$

P	9,	~P	~q	Pag	~ (Pnq)	~PV~9
1	-	F	F	Triple	Familia	F
T 1	F	F	T	F	T	T
F	T	T	F	F	T	_ T
F	F	T	T	KPUV.	31 -01	, ,
				9 1	0 0339	

Both L.S. G. R.S. are Equal. $\sim (P \land q) \equiv \sim P \lor \sim q$. Hence Proved.

13. Agguments:

An Congument is an assertion that

the given Set of Pareposition P1, P2. Pn

Hields 9.

P1, P2. Pn - Paremices

9 - Conclusion

The augument is denoted by P1, P2...

Pn + 9 (The Symbol H is Called

two two stile)

(i) IA PI, Po... Pn is tome & q is tome Contingenty P. Pr 1-9, is tome (valid arguments). (ii) P, P2, Pn + q, is not tomer flatso (i.e) neither tome non false (not valid argument / Fallacy) False

Note: 2

Test the Validity of the argument Perg. q FP.

Paremises - PL->9, 9 Condusion - P Perg, q +P => (Perg)^q ->P

P	9	P <-> q	(P<>q)^q	(PK->q)^q->P
1	T	1-1	T 1884	
\top	F	F	F	T
F	T	F	F	1
F	Fg :	T	F	T

3 Verilly whether, (PAq) 1 ~ (PVq) is a Contradiction

P	9	Pag	Pvq	~(Pvq)	(P/q)~(P/q)
_	T	T	Т	F _	F
+	F	F	Т	7 F =	F
F	T	F	T	TF	F.
F	F	F	F	T	F
1	4.1	W			

(Prq.) ~~ (Prq.) is a Combradiction.

. Hence Veriflied

Algebra of Psieposition:

Paroposition under the arelation logically Equivalent.

(i) Idempotent law:

$$P \wedge P \equiv P$$

(ii) Associative law:

$$b \vee (d \vee a) = (b \vee d) \vee a$$

 $b \wedge (d \wedge a) = (b \wedge d) \wedge a$

(m) Communative law:

(iv) Distantive law:

$$b \vee (d \wedge 2l) \equiv (b \vee d) \wedge (b \vee 2l)$$

 $b \wedge (d \vee 2l) \equiv (b \wedge d) \vee (b \wedge 2l)$

(v) Demogran's law?

$$\sim (Pvq) = \sim P \wedge \sim q$$

(vi) Identify law:

$$P \vee \sim P \equiv t$$
 $P \wedge \sim P \equiv f$
 $\sim (\sim P) \equiv P$
 $\sim (t) \equiv f$
 $\sim f \equiv t$

Nate:-

t and If are variables which are all the structures of Torce & Jaise arespectively.

Parove that associative law form

(i) Pv(qvar) = (Pvq) var

1						
P	q	वा	dra	Pv(qva)	Pvq	(Pvq)Vot
T	+	1	T	T	T	Τ
T	FT	F	T	T	-	T
T	F	T	T	T	T	T
T	F	F	F	T	+ 13	Ť
F	-	T	T	T	T	T
F	T	F	T	T	T	T
F	F	T	T	T	F	T
F	F	F	F	F	F	F

$(\tilde{n}) P \wedge (q \wedge \pi) = (P \wedge q) \wedge \pi$									
P	9	<u>a</u>	d\1	bv(dva1)	Pag	(PAQ) / OT			
	T	T	T		Τ,	T			
+	F	+	F	F	T	F			
T	F	F	H H	F	F	F			
F	T	F	F	F	F	F			
F	F	T _e +	F.,	F	F	F			
F	F	F	+ F =	E.F aug.	F	F			
			$= \gamma_h f_{i,j}$	1	110 - P	1			

Hence, $P \wedge (q \wedge \pi) = (P \wedge q) \wedge \pi$

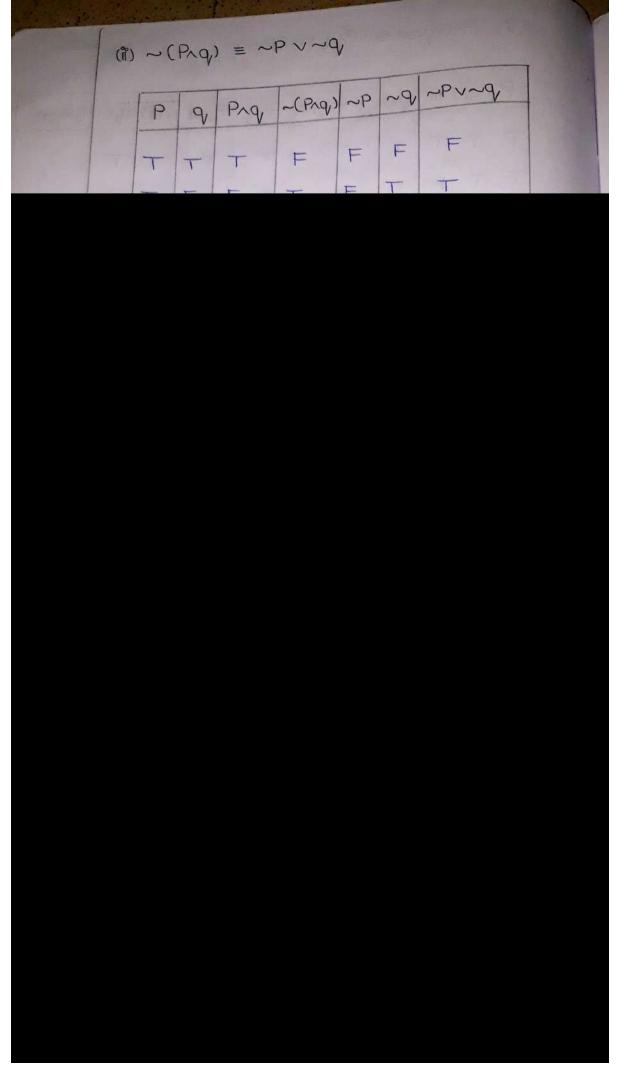
Parove that the Commutative law,

1						
ρ	q,	Pvq	See American September 1		9vp	
-	T	-1	11			1100-1
T	F	1			T	
F	T	T			T	
F	F	F			F	
Ţ	7			1	^	

Hence,
$$P \vee q \equiv q \vee p$$

P Q PAQ QAP T T T T T F F F F F F F F F Hence, $PAQ = QAP$ Ponove that the Distributive law, (i) $PV(QAT) = (PVQ) \wedge (PVT)$ P Q T QAT $PV(QAT) PVQ PVT (PVQ) \wedge (PVT)$ T T T T T T T F F T T T T T T T	a	(ii) $P \wedge q \equiv q \wedge P$										
Hence, $P \wedge q \equiv q \wedge P$ Parove that the Distributive law, (i) $P \vee (q \wedge \pi) \equiv (P \vee q) \wedge (P \vee \pi)$ $P \neq \pi \neq q \wedge \pi \neq q $		T	T F T	T F F	T F F							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \uparrow \qquad \uparrow \\ LH.S = R.H.S $ Hence, $P \land q = q \land P$										
	(i)	Powe that the Distributive law, (i) $PV(9/\pi) = (PV9) \wedge (PV\pi)$										
			_ d\v2	Pv(q/va)	Pvq —	- P/QI	(Pvq) ~ (Pva)	+				
			F									
			-	_			1					

(11) P	v(d)	√σr) ≡	(PAq,)~	(P/Jr)	la i	
P	9	a	d\12	D√ (d\n)	PAQ	PAGI	(P/q) V (P/m)
T	T	T	7	_	_	T	T
T	Т	F	T	_	T	F	τ
T	F	T	T	_	F	T	T
T	F	F	F	F	F.	F	F
F	T	T	T	F	F	, E	F
F	T	F	T	Fin	F.	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F
		1177		1	1	I was a second	1


Hence, $P_{\Lambda}(q, V_{\sigma T}) = (P_{\Lambda}q_{\nu}) \vee (P_{\Lambda}\sigma_{\tau})$

Porove that the Demangan's law, (i) $\sim (P \vee q) = \sim P \wedge \sim q$

P	a,	Prq	~(Pvq)	~P	~9	~P ~ ~q
T	71	T	F	F	F	F
Т	F	T	F	F	T	F
F	T	T	F	T	F	. Fi -
F	F	F	T	T	T	T

L.H.S = R.H.S

Hence, $\sim (Pvq) = \sim P \wedge \sim q$

(11)	(ii) ~ (Pv~m) ^ (q,^~m)									
P	9	a	~51	Pv~a	~(Pv~m)	9.1~or	~(Pv~a) ^			
1	T	T	F	T	F	F	F			
T	T	F	T	T	F	_	F			
T	F	(T)	F.	T.	F	F	F			
T	F	F	T	J.	F	F	F			
F	T	T	F	Fyr	T	F	F			
F	T	F	T	T	F	T	F			
F	F	T	F.	F		F	F			
F	=	F	Τ.	Τ	E	F	F			
Use the algebra of Process to Simple !!										

Use the algebra of Psreposition to Simplify the following.

(i) $\sim (\sim P \wedge \sim q)$ (ii) $\sim (\sim P \vee \sim q)$ (iii) $\sim (\sim P \vee q)$

١.

```
Use the algebra of Pareposition
8
  Simplify the fallowing.
     PA (Pvq) = P
   Broof:-
       PA(Pvq) = (PAP) v (PAq) Distributive
               = Pv(Png) : Idempotent
               = (Pnt) v (Pnq) . Identity
         = P/ (t/Ap/q : distributive
          = Pntnq
           = Pr (tra)
eggs = PAT marks
 (Pag) V~P = ~Pvg,
  (PAQ) V~P = ~P * (PAQ) Commu
            = (~PVP)(~PVq) distant
            = TA(~PVQ,)
                          Complement
           = ~P vq,
                                I dentity
P \vee (P \wedge q) \equiv P
  Pv(P \land q_i) \equiv (P \lor P) \land (P \lor q_i)
           = P^(Pvq)
           ≡ (Pvf) ∧ (Pvq)
           = Pv(fAP)vq
           = Pvfvq
            = PV(fvq) = PVf = P
```

H.W

Well formed formula: A Statement Variable, is Standing is Called Well Jammed Jammula (WFF) alone A Statement Jamula is an expression Consisting of variable, Parenthesis and Connectors Symbols is Called Well formed Hamula. Rules: Eg:-A Stabement Variable Standing alone If Pi is WFF then regation Pi is also WHE (Prq), (Prq), (Prag) is also WFF. Not WFF: WFF $P \rightarrow q \rightarrow \wedge q$ $(P \rightarrow q) \rightarrow (P \wedge q)$ $\sim P \rightarrow q$ $(\sim P) \rightarrow q$ $/\sim (P \rightarrow q)$ (P→q), (P->qx Normal Forms: Elementary Broduct: A Poroduct of Variables and their negations is Called an Elementary Broduct Elementary Sum: A Sum of Variables and their Repations is Called an Elementary Sum.

Eg of elementary Broduct: P, ~P, ~PQ, ~PQ~9, Eg of elementary Sum: P, ~P, ~PQ, ~PQ~9, Disjunctive normal Jamn: (DNF) A farmula Which is Equivalent to a given formula and which Gonsist of a Sum of Clementary Broducts is called a disjunctive normal form. (RSq.) (PAT) Note:-Replace DP->q by ~Pvq 2) P(->q, by (PAq) V(~PA~q) Steps: i) Use fammula (1) & (2) ii) Simpliffy regation iii) Apply Demongan's / distributive from

```
Find Druf of the following:
   1.
       PA (P->9)
   (i)
           PA(P->q) = PA(~PVq)
                       = (PA-P) V (PAQ) - 6 Final ans is in
       (P->q) ~ (~P~q)
  (ji)
        (P→q) ∧ (~P∧q) = (~P∨q) A (~P∧q)
     - ~PA (~PAQ) VQ, 1 (~PAQ)
       = (~PAQ) V (~PAQ) (: Similar -> write

= (~PAQ).
     ~ [P→ (q/m)]
(M)
        ~ [P-> (d/21)] = ~ [~b ~ (d/21)]
                       = P ~ ~ (q/oi)
                         = b \vee (\neg d \times \neg a) \qquad \neg (\vee) = \wedge \\ (\wedge) = \vee
                         = (Pn-q) * (Pn-on)
   \sim (P \vee q_1) \leftarrow (P \wedge q_1)
    \sim (Pvq_i) \longleftrightarrow (P\Lambda q_i) = [\sim (Pvq_i) \land (P\Lambda q_i)] \lor
                                 [~~(Pvq)~~(PAQ)]
     = [ (~Px-q) \ (Pxq)] \ [ (Pvq) \ (~Pv~q)]
     = [(~PAP)A (~q, Aq)] V [PA(~P~~q) V
                                   ( q, 1 (~Pv~q, ))]
```

= (FAF) V [[(PA~P) V (PA~q)] V [(q/~P) v(q/~q)]] = FV[FV, (PA~q) V(qA~P)VF] = FV[(PA~q) V(qA~P)] = (P1~q) V (q1~P) Conjunctive Normal Form: A famula which is equivalent to given formula which Gonsist of a of Elementary Sum is Called Ponduct CNF (PAq) AT, (brd) v (bra) Note: Replace: 1) P->q by ~P vq 2) PL>q by (~Pvq) \ (~q x p) Find CNF of the following PA(Ping) PA (P->q) = PA (~PVq)

 $(\sim P \rightarrow \sigma \tau) \wedge (P \equiv q)$ (ii) $(\sim P \rightarrow \sigma \sigma) \wedge (P = Q) = (\sim P \rightarrow \sigma \sigma) \wedge (P \leftrightarrow Q)$ $= \left[\sim (\sim P) \vee \sigma \right] \wedge \left[(\sim P \vee q) \wedge (\sim q \vee P) \right]$ \geq (Pvon) \wedge (~Pvq) \wedge (~qvp) (\hat{I}) ~ $(P \vee q_i) \equiv (P \wedge q_i)$ $= \sim (Pvq_1) \longleftrightarrow (Pxq_1)$ = [~~(Pvq)~(Pvq)] ~[~(Pvq)) ~~(Pvq)] $= \left[(P \vee q) \vee (P \wedge q) \right] \wedge \left[(-P \vee \neg q) \vee (-P \wedge \neg q) \right]$ = [Pv(Pvq) \q v(Pvq)] ^ [~Pv(~Pv~q) ~~qv(~Pv~q)] = (Pvq) \ (P\q) \ (~P\~q) \ (~P\~q) = (Pvq) x (~Pv~q) Minterm: A minten Consists of Conjunction. If P, P2, ... Pn are n Variable then PYNBA...AR is Said to be minterm Pra, Pra, ~Pra, ~Pra

Scanned with ACE Scanner

A maxim Consist of disjunctive on Maxterm: P₁, P₂, ... P_n care n variables then P1 VP2 V... VPn is Said to be maxtern. Eg:-Pva, Pv~a, ~Pva, ~Pv~a, Principal Disjunctive Normal Form: A formula Consisting of disjunctions of minterns only is known as PDNF. Can)

Sum of minternis Porticipal Conjunctive Normal Form: A framula Consisting of Conjunctions maxterms only is known as PCINF (m) ~ Poroduct of maxterms Obtain the Poincipal disjunctive roomal form of Pr-> or.

		T-> P/a	F-17/10
P	Ø	Mintenn (^)	P<→ &
T	1	PAB	T
T	F	PATO	F
F	T	rp ve	F
F	F	rp / ra	Τ .

$$P \leftrightarrow Q \Rightarrow \sim [(P \land \sim Q) \lor (\sim P \land Q)]$$

$$= \sim (P \land \sim Q) \land (\sim P \land Q)$$

$$= (\sim P \lor Q) \land (P \land \vee \sim Q)$$

PDNF OF Obtain the 2. (1) PV~9 Intoroduce Some in 184 steps

Processions Pv~q = [PAF] V[~qAF] = [Px (qv~q)] v[~q x(Pv~P)] = (PAQ) V (PA~Q) V (~Q~AP) V (~Q~P) = (PAQ) V (PA~Q) V (~Q A P) (ii) P->q = ~Pvq = [~P~(q~~q)] V [q~ (Pv~P)] $= (\sim P \land q) \lor (\sim P \land \sim q) \lor (q \land p) \lor (q \land \sim P)$ $= (\sim P \land q) \lor (\sim P \land \sim q) \lor (q \land p)$ Obtain the Conjunctive runnal form of (i) PA~9, PA~Q = [PVF] A [~QVF] = [PV (q, ~q)] ~ [~qv (P~~P)] = [(Pvq) x (Pv~q)] x [(~qvp) v (~dv~b)] = (Pvq) x (Pv~q) x (~qx~p)

3

```
Quantifliens: - Repriesent
           Centain Statements involve wounds that
     Definition:
    indicate quantity Such as 'all', 'Some',

They answer the question
    How many?
           Such words indicate quantify
   they are caused quartifiers.
        与:-
             1) Some men come tall.
            2) All bonds have wings
   3) Mirasar Chamilians:
   The quantifiers all is the but but is denoted by
   \forall x.
     Same Meaning:
           For all x
           For Every or
           For each oc
          Everything or Such that
          Each thing or Such that
3) Existential quantifiers:
        The quantifiers Some is existential
quantifliens. It is denoted by II.
```

Nate:

1 1 1 1

FatSome of Such that

Some of Such that

There exists on x Such that

There is an or Such that

There is attleast one of Such that

Note:

There are a quantifiers.

It is a present the sixe exist of the si

Quantifiens	With	Single	Bred	icate.	1697		
(47)	Pari	eg:	All	Gws	OTTE		ick.
(∃∞)		00	Theme	exis	t	Some	Grus
		. 0	which	Оте	blac	ck.	

Quantifiers With binomy Paredicates: $(\forall x) P(x,y) = \int \forall x \forall y [P(x,y)]$ $(\exists x) P(x,y) \Rightarrow \exists x \exists y [P(x,y)]$

Statement	Negation
(Va) Pla)	$(\exists x) \sim P(x)$
$(\forall x) \sim P(x)$	$(\exists x) P(x)$
(π)q (πΕ)	$(\forall \alpha) \sim P(\alpha)$
(B) ~P(a)	(\(\frac{1}{a}\)) P(a)

I $A = \{1,2,3,4\}$. Find the toruth Values 15° (i) $\exists x (x+5=15)$ Where $x \in A$ False (ii) $\forall \alpha (\alpha+3 < 10)$ Where $\alpha \in A$. Tome . a period of the little Symbolise the following (i) For each oneal number of theme exist Treal number y Such that 29=1. auther $\forall x \exists y \Rightarrow (xy=1)$ (ii) For all steel number a &y x.y=y.x. √ x &μ A a Ah ah ah a (iii) There are areal number oc & y Such that x ty = 1 I=HX E VE & xE

```
I Nate:
    Ax An = An Ax
      xEVE = VEXE
   Worther in English P(x): x is even
3.
    R(x,y): xty is even
    \Theta(\alpha): \alpha is R_{min}
  (i) (\exists x)(\forall y) R(x,y)
      There exist a, for all y aty is even
 For each or, there exist y octy is even
 (\pi)^2 \sim (\pi E)
       There exist \alpha is not even
(ii) (\forall \alpha) \sim Q(\alpha)
        For Every a is not Brime.
Negate the Howing
For all other number or iff ox > 1
      P(x) = x > 2
      Q(x) = x^2 > 4
     \forall x, [P(x) \rightarrow Q(x)]
     VI [~P(x) V Q(x)] (P->q) = (~Pvq)
  Negating this now
       1 (x) ~ [~P(x) V B(x)] .
```

```
Ja [P(a) / ~Q(a)]
             There exist or a > 2 and or $1.
         There is a oneal number or Such that
             a^3+y^2=3 then a>2 & y<5
    (ii)
               P(x) = x^3 + y^2 = 3
               Q(x) = x > 2
               R(x) = 4<5
\exists \alpha \ni [P(\alpha) \rightarrow (B(\alpha) \land R(\alpha)]
            Ja → [~ P(a) V (B(a) ^ R(a))
       Megating it now
           Vx 9 ~[~P(x) V (B(x) ∧ R(x))
          \forall \alpha \ni [P(\alpha) \land (\sim Q(\alpha) \lor \sim R(\alpha)]
          For each or Such that or $ +42-3 and
          x >2 or 4 £5
     For all \alpha, if \alpha > 3 then \alpha^2 > 9
(ii)
            P(x) = x > x + 3
            Q(x) = x^2 > 9
         \forall \alpha . \Box P(\alpha) \rightarrow Q(\alpha) \Box
         \forall x, [\sim P(x) \vee Q(x)]
      Negating it now
          ∃x, ~[~P(x) ∨ Q(x)]
         \exists x, \Box P(x) \land \neg Q(x) \exists x
       There exist x, x>3 and x^2>9.
```

(the ig tan gi x x nam

 $\exists x [P(x) \land \sim B(x)]$

Scanned with ACE Scanner

Worthe the Jahraning Sentences in the Closed form. (Assume that the universe consist 6 of lyburgh example) a) Some People who torust other are Trewarded. b) If any one is good then John is good. C) He is ambilions our no one is ambilions d) Some one is desting. e) It is not tome that all smads lead to onme (a) Let P(x); x is a Peurson T(x): x tomets Others R(x): x is tremanded (b) G(x): x is good combitions (d) Q(x): x is testing (e) S(x) : x is a RoadL(x): x lead to some

Bound occurence:

7.

An occurrence of a variable in a farmula is Said to be bound occurrence if this occurrence is within the Scope of a quantilier using the variable.

Force Occurrence: An occurrence of a variable is called free occurrence if this occurrence of the variable is not a bound occurrence Faree. Variable: 9 A. Vaniable is Called free Vaniable in a formula if atteast one fines O CCUITENCE. 10. Bound Variable: A vaniable i's Called bound vaniable in a formula if attenst one occurrence of the variable is a bound Occurrence. and what is not a si sout that and hiteland Colorations (영) : 하는데 변화

Theory of Inference: A > B is a statement on implication B one Statement toutonogy, where A and B logically formulae, we say that B is a valid follows from A our B is a valid follows from A our B is a valid of the premise A we say that from a Set of Premise that from a Set of Premise Examples: 8 H, H2 Hn3 = C warked Examples:										
W.E : 1										
Shaw	that .	70, P→0 =>	7P							
C	(1)	PNB								
	(-1	(6)	and E18							
[27.	(2)	TR. THAT	• 1							
[1,3]	(4)	P T2,(2),(3) and -11.							
W. E.2:		n is q	Valid Conclusion							
Shaw	-that	remises CVD,	CVD -> TH,							
TH poremises (A	52		TB) -> (RVS)							
	CU	CVD	ρ							
	(2)	HT (CVD)								
[1,2]	(3)		T, (1), (2) and modules							
		ПН	panens (III)							
[4]	(4)	$\neg H \rightarrow (A \land \neg B)$	P							
[1,2,4]	(5)	AVJB	T, (3), (4) and mudis Poners							
[6]	(6)	(A∧¬B)→(Rvs)	P P P							
1,2,4,6]	(17)									
		Rvg	T, (5), (6) and modules							
			Pinens.							

Indirect method of Parroll: Introduce the negation of the desired Conclusion as a new poremise Forom the new poremise, together with the given premises, derive a Combradiction. Assent the desired condusion as a logical inflemence from the paremesis INDHO W.E.I Using indirect method off Parrolf, derive P->75 from P-> QVR, Q-> TP, S->7R, P. The desired dresult is P->79. Its negation is PAS (PAS<-> 7 (TPV7S) <-> 7 (P-> TS) is a tautalogy This fallows from law of regation for implication we the include Pis as an additional Ponemise. [1] (1) P QVR P [3] (3) b b [1,2] (3) QVR T(1), (2), modus ponens (4) $S \rightarrow TR$ P**C4**3 [5] PAS PITEMISE) (6) S T (5) and Simplification [15] (7) . TR T; (4), (6), modus pamens

a Implications

In
$$P \wedge Q \Rightarrow P$$
 (Simplification)

In $P \wedge Q \Rightarrow Q$ (Simplification)

In $Q \Rightarrow P \vee Q$ (addition)

In $Q \Rightarrow P \vee Q$

If $P \Rightarrow P \Rightarrow Q$

If $Q \Rightarrow P \Rightarrow Q$

$$I_{8} \rightarrow (P \rightarrow Q) \rightarrow \neg Q$$

In P, P
$$\rightarrow a \Rightarrow a$$
 (disjunctive Syllogism)

In P, P $\rightarrow a \Rightarrow a$ (modus pomens)

(modus tollers)

In P, P
$$\rightarrow Q$$
 (modus pomens)

To $\neg Q$, P $\rightarrow Q$ $\rightarrow \neg P$ (modus tollers)

The property of the

$$T_{13}$$
 $P \rightarrow a$, $a \rightarrow R \Rightarrow P \rightarrow R$ (hypothetical Syllogism)

b. Equivalences

77P (dauble negation)

```
T (PAR) <=> TPV TR
                                  Eurol 2' norman sB
    DEN 95 (BVB) C
     PVP(=>P
      PAP <=> P
 EI
      RV(PATP) <=> R
EIS
      R ~ (PV7P) (A)
EB
       RV(PV7P) (>) T
 EIL
      R / (P/Jp) (=> F 1
EIS
      P-> Q (=> TP V Q
EIb
        7 (P-> Q) (=> PATQ!
En
      P->Q (=> 7Q ->7P
E18
      P \rightarrow (Q \rightarrow R) \iff (P \land Q) \rightarrow R
EIG
        7 (PZO) (=> PZ) TR
EDO
        (P \Rightarrow \theta) \Leftrightarrow (P \rightarrow \theta) \land (\theta \rightarrow P)
E21
        (P \Rightarrow Q) \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)
Ess
          Demonstrate that S is a valid inflemence
Example 1.
              P \rightarrow 78, QVR, 78 \rightarrow P and 7R.
       the
Month
                             paremise Con hypothesis)
                  QVR
            (1)
 [i]
                           Priemise Con hypothesis)
                  TR
           (2)
 [2]
                  e (1), (2) and Tautology
           (3)
 [1,2]
                           Puremise Com hypothesis)
                  D>70
           (4)
 [4]
                           (3), (4) and tourouppy
                  TP:
           (5)
[1,5/1]
                 78 -> P. Priemise (Out hypothesis)
           (6)
 [b]
                   S (2019) and tantoman
            (1)
[1,2,4,6]
           is a valid inferience.
 Hence S
```

```
Quine's Method:
          4.2
       8
          0 0
      0
  0
          0 0
      0
           0
      0
  2
           0
       0
 3
              0
       0
 4
       0
            1
       0
 6
       0
 7
8
            0 0 1
             minimal Sum of Ponducts for
      the
Find
      prolém 6×bresign
the
   Y (A,B,C,D) = ≤m (0,1,3,7,8,9,11,15)
             method.
      Quine's
      8
        11
        15
```

Sh	epa :				ort .		2000
G	Стапел	Mulenm	Binag		ហោ		NAME OF TAXABLE PARTY.
Ē	0	mo (the st			0	Jeno	Special Control of the Control of th
	ı	m8	000	0		Single one	A STATE OF THE PARTY OF THE PAR
9	a	mg ("m-	001	n- m) 1 n - m)	I	Double (1)	
	3	/	8: (m ₃ ¹ , 4, 9 1 (n			Touple(1)	
	4	m ₁₅	1 1 1				
Ste	-pa:	e r 8 1	Compa	CALL TRANSPORT		es -> put (- e changes onl take)) 4 en
Gara	uito :	Minterm	< ×	BI		5.8	
	0	$m_D - m_1$	×	000	0,0	0.8	
*	l	m ₁ - m ₉ m ₁ - m ₉		1 0 (- 0	0 1		
	2		7 - F.	0 - 0	1 1		
3 m ₁ -m ₁₅				-	1		

No. of the last of		. Lo-	- put Complimen
Step 4	:	B.R ABCD	
Ganaup	Millerm		-
	(mo-m1) - (m8-m4)	-00-	B.c
0	(mo-ma) - (m1-md)	_00- ,m ,on	
1	$(m_1-m_3) - (m_3-m_{11})$	-D-1 -D-1 -D-1	B.D. Timp
8.	(m3-m1) - (m1-m12)		C.D
	1111	priff[+1

Panime Implicant	Mintenm Interval	0	1	3	7	8	9	11	15
B.c	D, I, 8, 9.	\otimes	×	gre-3		\otimes	×		
B.D	1,3,9,11		×	(M)			×	×	
C.D	3,1,1,15			×	\times			×	X

Y= B.c + C.D

[Note: - First Check in Column Wise, Cincle present the Single (x) Coross is, and then check the . Where (v) Choss are Conde!] JOW