PG \& RESEARCH DEPARTMENT OF MATHEMATICS

CLASS
SUBJECT CODE : 23PCA11
SUBJECT NAME : DISCRETE MATHEMATICS

SYLLABUS

UNIT 3

RECURRENCE RELATIONS

Formulation -solving recurrence Relation by Iteration- solving Recurrence Relations- Solving Linear Homogeneous Recurrence Relations of Order Two- Solving Linear Non homogeneous Recurrence Relations. Permutations-Cyclic permutation- Permutations with repetitionspermutations of sets with indistinguishable objects Combinations- Combinations with repetition.

UNIT-III
Recurrence Relation:
A Reavorence is a "way of giving information ar instruction of Prior knowledge.

Eg: your house, your can Say the instruction to reach at home is based on Some Prior knowledge or information. This Process is called orearision.

Eg:-

1. The fibonacci numbers can be defined as follows.

$$
\begin{aligned}
& F_{0}=1, \quad F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2}
\end{aligned}
$$

2. Cor can be defined as follows.

$$
\begin{aligned}
n C_{0} & =1 \\
n C_{n} & =1 \\
n C_{\pi}= & (n-1) C_{0 \pi}+(n-1) C_{0 \pi-1}, n>\pi>0
\end{aligned}
$$

3. Example:

Ac Merman's function C an be defined

$$
\begin{gathered}
A(0, y)=y+1 \\
A(x+1,0)=A(x, 1) \\
A(x+1, y+1)=A(x, A(x+1, y))
\end{gathered}
$$

While we Calculate function Values truth recursion, we sort with the required expression interns of earlier values.

We move backward until we reach the basis. but in iteration we Start with basic and wort forward using relation and stop when the required value is known.

Example:-
Calculate FH of the fibonacci S number
using (i) Recursion
(ii) Iteration.
(i) Recursion:

$$
\begin{aligned}
F_{n} & =F_{n-1}+F_{n-2} \\
F_{4} & =F_{4-1}+F_{4-2} \\
& =F_{3}+F_{2} \\
& =\left(F_{3-1}+F_{3-2}\right)+\left(F_{2-1}+F_{2-2}\right) \\
& =\left(F_{2}+F_{1}\right)+\left(F_{1}+F_{0}\right) \\
& =F_{2}+F_{1}+F_{1}+F_{0} \\
& =\left(F_{2-1}+F_{2-2}\right)+F_{1}+F_{1}+F_{0} \\
& =F_{1}+F_{0}+F_{1}+F_{1}+F_{0} \\
& =1+1+1+1+1 \\
\therefore F_{4} & =5
\end{aligned}
$$

$$
\because F D=1
$$

(iii) Feration:

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1
\end{aligned}
$$

$F_{2}=F_{2-1}+F_{2-2}=F_{1}+F_{0}=1+1=2$
$F_{3}=F_{3-1}+F_{3-2}=F_{2}+F_{1}=2+1=3$
$F_{4}=F_{4-1}+F_{4-2}=F_{3}+F_{2}=3+2=5$

Recursion - Heration (Difference)

\rightarrow Usually Iterated Computation are faster than stecursive Computation.

L> But stecursive definition give more insight into the interpretation of the given function.
$1 \rightarrow$ A Recursive Program is more diffiaut to a Corresponding iterationve Purgegram.
\rightarrow In general, there are many Problems involving Recursion for which iterative Solution Easily found.

Recursion \& Induction:

Induction is used for Proving
Properties express as function of natural numbers.

Porperty of induction:
An inductive definition of a Property ar Set is given as follows:

1. Given a finite Set A where Elements have the Property P.
2. The elements of a Set B, all of which are Constructed form A have the Property P.
3. The elements Constoruted as in (1) and (2) are the only elements Satisfying Property P.

So, in inductive definition, we use recursive definition in the forward direction.

Also note that Proof by induction Can be used whenever recursion is used.
Polynomial and their Calculation.
Recursive Definition of Polynomial:
The set $s[x]$ of all Byynomials whoso coefficients are elements of s is defined as follows:

1. any element of S is a Polynomial of degree Zero.
a. $P(x) x$ ta is a Polynomial of degree n when $P(x)$ is a
degree $n-1$ and $a \in S$.
2. only those | Using (1) and |
| :--- |
| core Polyno |
| $\underline{\text { Example:- }}$ |

Consider $F(x)=5 x^{3}+4 x^{2}+3 x+2$. This can be defined using stecorsive definition as follows.

Solution:-
Given :

$$
\begin{aligned}
& F(x)=5 x^{3}+4 x^{2}+3 x+2 \\
& \quad(((5) x+4) x+3) x+2
\end{aligned}
$$

A Polynomial define rrearsively
is said to be a in telescopic form is the method of uniting a Polynomial
in Treaursive farm (telescoping form)
Called Hornet's Method.
Consider $P(x)=x^{5}+3 x^{4}+5 x^{3}+x-10$ in telescopic form.

Solution :-

$$
\begin{array}{r}
P(x)=(((((1) x+3) x+5) x+0) x+1) x \\
-10
\end{array}
$$

Lase the Homert's method to unite $P(x)=x^{4}+2 x^{3}+3 x^{2}+4 x$ in telescoping form also mention the number of multiplication and additions / Subtraction involved in telesorpic form Compare it With usual definition.

$$
P(x)=((c(1) x+2) x+3) x+4) x+0
$$

We require four multiplications \&
4 additions
In the usual form we require 147 multiplication and 4 additions.

E for example

$$
\begin{aligned}
& P(2)= 2^{4}+2(2)^{3}+3\left(2^{3}+4(2)+0\right. \\
& 4\left(2^{1}\right)=1 \\
& 2^{2}=1 \\
& 3\left(2^{2}\right)=1 \\
& 2^{3}=2\left(2^{2}\right)=1 \\
& 2\left(2^{3}\right)=1 \\
& 2^{4}=2\left(2^{3}\right)=1 \\
& 1\left(2^{4}\right)=1
\end{aligned}
$$

Thus, we stequired T multiplications
Thus by writing a Polynomial in telescopic form the number of multiplication is reduced from 7 to 4.

Sequence:
A Sequence of integer (discrete function) is a function from $N \times I$. Where N is a set of all natural numbers \& z is a set of all integers.

Eg:-
usually a Sequence is written as a list if S is a sequence then it is usually written as $S_{1} ; S_{2} \ldots S_{n} \ldots$ When $S_{n}=S(n)$.

Eg:-
The fibonacci number $F f_{0}=1, F_{1}=1, F_{2}=2 \ldots$
Reccurence Relation:
Let S be a Sequence of integer. A Reccivince Relation on S is a formula that relates all but a finite number of terms of S to Previous terms of S.
(i.e) Therme exists k_{0} in the domain of s Such that $S\left(k_{0}\right)$ for $k>k_{0}$ is expressed in terms of Sum of the terms of the Sequence Preceding S_{k}. The terms not defined by the formula are said to form the initial Condition Cbasic or boundary Condition) of the Sequence.

Eg:-
The fefbonaci Sequence divided by the Gelation $F_{0}=1, F_{1}=1, F_{n}=F_{n-1}+F_{n-2} \cdots$. ore the initial Conditions are the basis.

Find the sreccuitence stelation and basis for the Sequence．$\left(1,3,3^{2}, \ldots\right)$

Take $\{0,1,2, \ldots\}$ as the domain of the Sequence．

Then

$$
\begin{aligned}
& a_{0}=1, a_{1}=3, \\
& a_{2}=3^{2}
\end{aligned}
$$

Hence the retcairence relation

$$
a_{n}=3 a^{n-1}
$$

$$
\begin{aligned}
a_{1} & =3(a)^{\mid-1} \\
& =3(1)=3
\end{aligned}
$$

$a_{0}=1$ is the basis．

$$
a_{2} \cdot \xi(a)^{2-1}
$$

$$
=3(a)^{\prime}
$$

$$
3(3)=9=3^{2}
$$

Consider D defined by $\Phi(k)=5.2^{k}, k \geq 0$ find the recurrence orelation on Φ ．
Sol：－
FOr．$k \geq 0$

$$
\oiint(k)=5 \cdot 2^{k} \text { and } \oiint(k-1)=5 \cdot 2^{k-1}
$$

So， $\mathscr{(k)}$

$$
\begin{aligned}
& \frac{\mathscr{H}(k)}{\Phi(k-1)}=\frac{\mathscr{5} \cdot 2^{k}}{\not D \cdot 2^{k-1}} \\
& \mathscr{D}(k) / \Phi(k-1)=2
\end{aligned}
$$

$$
D(k)=2 D(k-1)
$$

$$
D(k)-2 D(k-1)=0 \quad k \geq 1
$$

The initial Condition is $\Phi(0)=5$

$$
\begin{aligned}
& \text { し) } 5.2^{\mathrm{k}} \text { 。 }
\end{aligned}
$$

Definition:-
The recurrence stelation on a Sequence 9 is of Order k if expressed as a function of $T(n-1) \ldots T(n-k)$ and $T(n-k)$ appears function.

Eg:
The relation $T(n)=2\left(T(n-1)^{2}-n T(n-3)\right)$ is a Tecworence Stelation of Order 3— End
Definition:
A recworence relation on a Sequence S is a linear recurrence relation with Constant Coefficients if it is of the form

$$
S(k)+c_{1} S(k-1)+\ldots+c_{n} S(k-n)=f(k), k \geq 0
$$

Where $C_{1}, C_{2}, C_{3} \ldots C_{n}$ are numbers and f is a function defined for $k \geq n, C_{n} \neq 0$ then the relation is Said to be of order n. Definition:

For a stecurrence relation $S(k)+C_{1} S(k-1)+\ldots .+C_{n} S(k-n)=f(k)$ then associated homogeneous relation is $S(k)+c_{1} s(k-1)+\ldots+S(k-n)=0$

Eg:-
Consider the recavorince relation
i) $\Phi(k)-3 D(k-1)=0$
ii) $C(k)-5 C(k-1)+6 C(k-2)=2 k-7$
iii) $S(k)-4 S(k-1)-17 S(k-2)+30 S(k-3)=4^{k}$
iv) $T(k)=T(k / 2)+5, k \geq 0$ Where $k / 2$ is the integral Part of $k / 2$.

Sol:-

i) Is a homogeneous of corder 1 .
ii) is a linear relation of order 2 but not homogeneous.
iii) is a linear nom homegenealls relation on of order 3
iv) is a stearverce relation of infinite corder.

$$
T(k)=T(k-n)+5
$$

Take $k=2 n$ in $T(k)=T\left(\frac{k}{2}\right)+5$

$$
\begin{aligned}
K(2 n) & =T\left(\frac{2 n}{2}\right)+5 \\
& =T(n+5) \\
& =T(2 n-n)+5
\end{aligned}
$$

So it is not Possible to find a fixed $+v e$ integer n Such that a relation of the type.

$$
\begin{aligned}
T(k)+C_{1} T(k-1)+\ldots+ & +C_{n} T(k-n)=f(k) \\
& k \geq n .
\end{aligned}
$$

Find the

$$
y_{n}=A(3)^{n}+B(-4)^{n}
$$

Sol:-
Satisfying
Note

$$
y_{n}=A(3)^{n}+B(-4)^{n} \rightarrow(1)
$$

$$
\begin{aligned}
& \text { Note } \\
& \because \text { It is enough to } \\
& \text { find } n^{-1}, n-2
\end{aligned}
$$

Take $n=n-1$

$$
\begin{aligned}
y_{n-1} & =A(3)^{n-1}+B(-4)^{n-1} \\
x^{\prime} y 3 \quad 3 y_{n-1} & =A 3^{n-x} \cdot z^{\prime}+B(-4)^{n-1} \cdot 3 \\
3 y_{n-1} & =A(3)^{n}+B(-4)^{n-1} \cdot 3 \rightarrow(2)
\end{aligned}
$$

(1)-(2)

From (3) Take $n=n-1$

$$
\begin{equation*}
y_{n-1}-3 y_{n-2}=B(-4)^{n-2}(T) \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
& y_{n}=A(3)^{n}+B(-4)^{n} \\
& {\underset{c \rightarrow}{B} y_{n-1}=A(3)^{n}+B(-4)^{n-1}, 3}_{(\rightarrow-1)} \\
& y_{n}-3 y_{n-1}=B(-4)^{n}+B(-4)^{n-1} 3 \\
& =B(-4)^{n}\left(\frac{4}{4}\right)^{+-3}+B^{-1}(-4)^{n-1} .3 \\
& =-B(-4)^{n} 4-4^{-1} / \frac{1}{4} B(-4)^{n-1}, 3 \\
& =B(-4)^{n-1} \cdot 4-B(-4)^{n-1} \cdot 3 \\
& =B(-4)^{n-1}[4+3] \\
& =B(-4)^{n-1}(7) \text {. } \\
& y_{n}-3 y_{n-1}=B(-4)^{n-1}(7) \rightarrow(3)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \Rightarrow y_{n-1}-3 y_{n-2}=B(-4)^{n-2} \cdot(7) \text {. } \\
& =B(-4)^{n-1}(-4)^{-1}(7) \\
& y_{n-1}-3 y_{n-8}=B(-4)^{n-1}\left(\frac{7}{-4}\right) \\
& (-4)\left(y_{n-1}-3 y_{n-2}\right)=B(-4)^{n-1}(7) \\
& \left.(-4)\left(y_{n-1}-3 y_{n-2}\right)=y_{n}-3 y_{n-1}\right) \text { Fromin }(3) \\
& -4 y_{n-1}+12 y_{n-2}=y_{n}-3 y_{n-1} \\
& -4 y_{n-1}+12 y_{n-2}-y_{n}+3 y_{n-1}=0 \\
& -y_{n}-y_{n-1}+12 y_{n-2}=0 \\
& x^{\prime} y(- \\
& y_{n}+y_{n-1}-12 y_{n-2}=0 \text { which is the }
\end{aligned}
$$

required Sreauronce relation.
Find the reacorence relation Satisfying

$$
y_{n}=(A+B n) 4^{n}
$$

Sol:-

$$
y_{n}=A 4^{n}+B n \cdot 4^{n} \rightarrow(1)
$$

Rit $n=n-1$

$$
\begin{aligned}
y_{n-1} & =A 4^{n-1}+B(n-1) 4^{n-1} \\
& =A 4^{n} 4^{-1}+B(n-1) 4^{n} 4^{-1} \quad A 4^{n-1} \cdot 4+B\left(n-14^{n-1} \cdot 4^{n}+B(n-1) 4^{n}\right. \\
& =\frac{1}{4}\left[A 4^{n}+B(n-1) 4^{n}\right] \\
4 y_{n-1} & =A 4^{n}+B(n-1) 4^{n} \rightarrow(2)
\end{aligned}
$$

(1)-(2)

$$
\begin{align*}
y_{n} & =A 4^{n}+B n \cdot 4^{n} \\
4 y_{n-1} & =A_{4}^{n}+B(n-1) 4^{n} \\
\Leftrightarrow & =B n \cdot 4^{n}-B(n-1) 4^{n} \\
y_{n}-4 y_{n-1} & =B L_{1} \cdot 4^{n}-B \not 1 \cdot 4^{n}+B 4^{n} \\
& =B 4^{n} \rightarrow(3)
\end{align*}
$$

Put : $n=n-1$ in (3)

$$
\begin{aligned}
& y_{n-1}-4 y_{n-2}=B \cdot 4^{n-1} \\
& y_{n-1}-4 y_{n-2}=B 4^{n} \cdot 4^{-1} \\
& y_{n-1}-4 y_{n-2}=\left(B 4^{n}\right) \frac{1}{4} \\
& 4\left(y_{n-1}-4 y_{n-2}\right)=y_{n-4} y_{n-1} \\
& 4 y_{n-1}-16 y_{n-2}-y_{n}+4 y_{n-1}=0 \\
& -y_{n}+8 y_{n-1}-16 y_{n-2}=0 \\
& \times y_{\Leftrightarrow-1} \\
& y_{n}-8 y_{n-1}+16 y_{n-2}=0
\end{aligned}
$$

This is the stequired steavorence Gelation.

Find the recurrence relation for the fibonacci Sequence.
Sol:-
W.K.T $\quad F_{n}=F_{n-1}+F_{n-2}$

Hence the recurrence gelation for the fibonacci sequence is

$$
F_{n}-F_{n-1}-F_{n-2}=0
$$

For the Sequence defined by $A(k)=k^{2}-k$, $k \geq 0$ obtain stecurorence relation if A is a Sequence of integers.
$S_{01:-}$

$$
A(k)=k^{2}-k \rightarrow \text { (1) }
$$

put $k=k-1$

$$
\begin{equation*}
A(k-1)=(k-1)^{2}-(k-1) \tag{2}
\end{equation*}
$$

(1)-(2)

$$
\begin{aligned}
A(k) & =k^{2}-k \\
A(k-1) & =(k-1)^{2}-(k-1) \\
\Leftrightarrow & \Leftrightarrow
\end{aligned}
$$

$$
\begin{aligned}
A(k)-A(k-1) & =\left(k^{2}-(k-1)^{2}\right)(-k++(k-1)) \\
& =k^{2}-\left(k^{2}+1-2 k\right)-1 \\
& =k^{2}-k^{2}-1+2 k-1 \\
A(k)-A(k-1) & =2 k-2 \rightarrow \text { - }
\end{aligned}
$$

put $k=k-1$ in (3)

$$
A(k-1)-A(k-0)=2(k-1)-2
$$

$$
\begin{aligned}
& A(k-1)-A(k-2)=2 k-2-2 \\
& A(k-1)-A(k-2)=A(k)-A(k-1)-2 \\
& A(k-1)-A(k-2)-A(k)+A(k-1)+2=0 \\
& -A(k)+2 A(k-1)-A(k-2)+2=0 \\
& \times \text { by }(-) \\
& A(k)-2 A(k-1)+A(k-2)-2=0 \text {. which is } \\
& \text { The STequired Orecurrence Gelation. }
\end{aligned}
$$

Find the recurrence relation for the Sequence $S(k)=2 k+9$.

$$
S(k)=2 k+9 \rightarrow(1)
$$

Put $k=k-1$

$$
\begin{align*}
S(k-1) & =2(k-1)+9 \\
& =2 k-2+9 \\
S(k-1) & =2 k+7 \rightarrow(2) \tag{1}
\end{align*}
$$

Sk)

 $S(k-1)$$\delta(k)-8(k-1)=9-7$

$$
\begin{equation*}
S(k)-S(k-1)=2 \tag{3}
\end{equation*}
$$

Fret put

$$
S(k-1)-S(k-2)=2
$$

$$
S(k-1)-S(k-2)=S(k)-S(k-1)
$$

$$
S(k-1)-S(k-2)-S(k)+S(k-1)=0
$$

$$
-S(k)+2 S(k-1) \quad S(k-2)=0
$$

2. Find the recurrence relation for the Sequence

$$
B(k)=2 k^{2}+1
$$

Sol:-

$$
B(k)=2 k^{2}+1 \rightarrow \text { (1) }
$$

$$
\text { Put } k=k-1
$$

$$
\text { (1) - (2) } B(k-1)=2(k-1)^{2}+1-4(2)
$$

$$
\begin{aligned}
& B(k)=2 k^{2}+1 \\
& B(k-1)=2(k-1)^{2} \\
& (-1)
\end{aligned}
$$

$$
\begin{align*}
B(k)-B(k-1) & =2 k^{2}-2(k-1)^{2} \\
& =2 k^{2}-2\left(k^{2}+1-2 k\right) \\
& =2 k^{2}-7 k^{2}-2+4 k \\
B(k)-B(k-1) & =4 k-2-4(3) \tag{3}
\end{align*}
$$

Put $k=k-1$

$$
\begin{aligned}
& B(k-1)-B(k-2)=4(k-1)-2 \\
& B(k-1)-B(k-2)=4 k-4-2 \\
&=4 k-2-4 \\
&=B(k)-B(k-1)-4 \\
& B(k-1)-B(k-2)-B(k)+B(k-1)+4=0 \\
&-B(k)+2 B(k-1)-B(k-2)+4=0 \\
& x b y- \\
& B(k)-2 B(k-1)+B(k-2)-4=0 \\
& B(k)-2 B(k-1)+B(k-2)=4 .
\end{aligned}
$$

Solution of finite Order Homogeneous
linear Relations:
Suppose we want to find $S(k)$

$$
\begin{aligned}
\therefore & S(k)-7 S(k-1)+12 S(k-2)=0 \\
& S(0)=S(1)=4
\end{aligned}
$$

To find $S(2) \Rightarrow S(2)-7 S(2-1)+12 S(2-2)=0$

$$
\begin{aligned}
& S(2)-7 S(1)+12 S(0)=0 \\
& S(2)-7(4)+12(4)=0 \\
& S(2)-28+48=0 \\
& S(2)=-48+28 \\
& S(2)=-20
\end{aligned}
$$

This Process can be repeated for finding $S(k), k>2$. But this Process is tedious and time Consuming for large values.

If $S(k)$ is got as a fun of k, then $S(k)$ Can be directly evaluated Such a fun is called a closed form expression for a Sequence S.

Find closed form expression for the Srecworence relation $D(k)-2 D(k-1)=0, D(0)=5$

$$
\begin{align*}
& D(k)-2 D(k-1)=0 \\
& D(k)=2 D(k-1) \tag{1}
\end{align*}
$$

AS $D(0)=5$

$$
\begin{aligned}
(1) \Rightarrow \Phi(1) & =21(1-1) \\
& =2 D(0) \\
& =2(5)
\end{aligned}
$$

$$
\begin{aligned}
\partial(2) & =2 D(2-1) \\
& =2 D(1) \\
& =2(2(5)) \\
& =2^{2}(5) \\
& =5.2^{2}
\end{aligned}
$$

We can Parove by induction that

$$
D(k)=5 \cdot 2^{k} \quad \forall k \geq 0
$$

Hence $D(k)=52^{k}$ is closed form Expression for D.
A)efinition:

The Process of finding a closed form expression for the terms of a Sequarce from its steaworence relation is Called Solving the stelation.

Eg:-
We Solved the relation $\mathscr{D}(k)=21(k-1)$

$$
D(D)=5
$$

It is not Possible to Solve all ereaurrence relation. Also there is no single algorithm to Solve the orelations that are Solvable.

Definition:
The characteristic equation of the homogeneous J elation of ordering. $S(k)+C_{1} S(k-1)+\ldots+$ $C_{n} S(k-n)=0$ is the $n^{\text {th }}$ degree equation $a^{n}+c_{n} a^{n-1}+\ldots+c_{n-1}+c_{n}=0$
the L.H.S of this equation is Called Chartaractic Polynomial.

Eg.
Find the characteristic equation of

$$
J(k)-4 J(k-1)+4 J(k-2)=0
$$

Sol: -
Given

$$
\begin{equation*}
J(k)-4 J(k-1)+4 J(k-2)=0 \tag{1}
\end{equation*}
$$

The given equation is of the form

$$
S(k)+C_{1} S(k-1)+C_{2} S(k-2)=0
$$

\therefore The $n^{\text {th }}$ degree equation

$$
a^{n}+c_{1} a^{n-1}+c_{2} a^{n-2}=0
$$

The $2^{\text {nd }}$ degree equation

$$
a^{2}+c_{1} a+c_{2}=0
$$

\therefore The characteristic equation is

$$
a^{2}-4 a+4=0
$$

Algorithm for Solving $n^{\text {th }}$ Orders homogeneous Recurrence Relation:

Step 1: Write the characteristic equation of the given homogeneous relation.
Step 2 : Find all the slots of the Characteristic equation. (They are Called Characteristic grots)

Step 3: (i) If the grots $a_{1}, a_{2}, \ldots a_{n}$ are distinct then the general Solution of the reaurrence relation is

$$
S(k)=b_{1} a_{1}^{k}+b_{2} a_{2}^{k}+\ldots b_{n} a_{n}^{k} \rightarrow \text { (1) }
$$

(ii) If the soot a_{j} is repeated P times, $b_{j} a_{j} k$ is steplaced by

$$
\left(C_{0}+c_{1} k+\ldots C_{p_{-1}} k^{p-1}\right) a_{j} k_{0}
$$

(In Patioular, if a_{j} is a clouble root then $b_{i} a_{i}^{k}$ is steplaced by $\left.\left(c_{0}+c_{1} k\right) a_{j}^{k}\right)$.
Step 4 : If n initial Conditions are given, Obtain n linear equations in a unknowns $b_{1}, b_{2}, \ldots b_{n}$ (got in (1)) by oreplacing L.H.S of (1) by the given values if Possible, Solve these equations.
Note: We have a/generral

1. Solve the following recurrence: relation

$$
S(k)-10 S(k-1)+9 S(k-2)=0, \quad S(0)=3, S(1)=11
$$

Sol:-

$$
S(k)-10 S(k-1)+9 S(k-2)=0
$$

The characteristic equation is

$$
\begin{aligned}
& a^{2}-10 a+9=0 \\
& a=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=1 \quad b=-10 \quad c=9
\end{aligned}
$$

$$
\begin{aligned}
a & =\frac{-(-10) \pm \sqrt{(-10)^{2}-4(1)(9)}}{2(1)} \\
& =\frac{10 \pm \sqrt{100-36}}{2} \\
& =\frac{10 \pm \sqrt{64}}{2} \\
& =\frac{10 \pm 8}{2} \\
& =\frac{10+8}{2}, \frac{10-8}{2} \\
& =\frac{18}{2}, \frac{2}{2} \\
& =9,1
\end{aligned}
$$

The grots are distinct 9,1

$$
\begin{aligned}
S(k) & =b_{1} \cdot 1^{k}+b_{2} q^{k} \\
& =b_{1}+b_{2} q^{k} \\
S(k) & =b_{1}+b_{2} q^{k}
\end{aligned}
$$

put $k=0 \quad S(0)=b_{1}+b_{2} q^{0}=3$

$$
\begin{align*}
=b_{1}+b_{2} & =3 \rightarrow(1) \\
k=1 \quad S(1)= & b_{1}+b_{2} q^{\prime}=11 \\
b_{1}+a b_{2}=11 & \rightarrow(2) \tag{2}
\end{align*}
$$

Solve (1) ξ (2)

$$
\begin{aligned}
& b_{1}+b_{2}=3 \\
& b_{1}+9 b_{2}=11 \\
& x \quad(-1 \quad \Leftrightarrow \\
& \hline-8 b_{2}=-8
\end{aligned}
$$

$b_{2}=1 \quad$ Sub in (1)

$$
\begin{array}{r}
b_{1}+1=3 \\
b_{1}=3-1 \\
b_{1}=2
\end{array}
$$

$$
\therefore b_{1}=2, b_{2}=1
$$

Hence $S(k)=2+9^{k}$

$$
b_{2}-1 \text { Sub in (1) }
$$

$b_{1}+1=3$
$b_{1}=3-1$

$$
b_{1}=2
$$

$$
\therefore b_{1}=2, b_{2}-1
$$

Hence $S(k)=2+q^{k}$
Solve $D(k)-8 D(k-1)+16 D(k-2)=0$ Where $D(2)=16, D(3)=80$.
Sol:-

$$
D(k)-8 D(k-1)+16 D(k-2)=0
$$

The characteristic equation is

$$
\begin{aligned}
& a^{2}-8 a+1 b=0 \\
& (a-4)(a-4)=0 \\
& a=4.4
\end{aligned}
$$

The roots are Same - 4.4

$$
\begin{align*}
D(k)= & \left(C_{0}+C_{1} k\right) a_{j k} \\
\text { Pu st } k=2= & \left(C_{0}+C_{1}\right) 4^{k} \rightarrow \cdot \tag{A}\\
\mathscr{D}(2)= & \left(C_{0}+C_{1}^{2}\right) 4^{2}=16 \\
& \left(C_{0}+C_{1}^{2}\right) 1 b=16 \\
& C_{0}^{2}+C_{1}^{2}=16 / 16 \\
& C_{0}^{2}+C_{1}=1 \rightarrow \text { (1) }
\end{align*}
$$

Put $k=3$

$$
\begin{gathered}
D(3)=\left(C_{0}+c_{1}(3)\right) 4^{3} \cdot 80 \\
\left(C_{0}+C_{1}(3)\right) 64=80 \\
C_{0}+3 C_{1}=80 / 844 \\
C_{0}+3 C_{1}=\frac{5}{4} \rightarrow(2)
\end{gathered}
$$

Solve the equ (1) \&(2)

$$
\begin{aligned}
& C_{0}+2 C_{1}=1 \\
& C_{0}+3 C_{1}=5 / 4 \\
& G \quad G \rightarrow \\
& \hline 2 C_{1}-3 C_{1}=1-\frac{5}{4} \\
&-C_{1}=\frac{4-5}{4} \\
&-C_{1}=\frac{-1}{4} \\
& C_{1}=1 / 4 \\
& C_{0} C_{u b} \text { in } 1 \\
& C_{0}+\frac{1}{2}=1 \\
& C_{0}=1-\frac{1}{2} \\
&=\frac{2-1}{2} \\
& C_{0}=\frac{1}{2}
\end{aligned}
$$

Hence (4)

$$
D(k)=\left(\frac{1}{2}+\frac{1}{4} \cdot k\right) 4^{k}
$$

WW
Find $f(n)$ if $f(n)-7 f(n-1)-10 f(n-2)$
given that $f(0)-4, f(1)=17$
Sol:-

$$
f(n)-7 f(n-1)+10 f(n-2)=0
$$

$$
\begin{aligned}
& f(n)-1\left(2^{n}\right)+3\left(5^{n}\right) \\
& 0^{n} \\
& 2^{n}+3\left(5^{n}\right)
\end{aligned}
$$

The characteristic equation is

$$
\begin{aligned}
& a^{2}-7 a+10=0 \\
& (a-5)(a-2)=0 \\
& a=5,2
\end{aligned}
$$

The roots are distinct 5,2

$$
f(n)=b_{1} \cdot 5^{n}+b_{2} 2^{n}
$$

put $n=0$

$$
\begin{aligned}
f(0)= & b_{1} \cdot 5^{0}+b_{2} 2^{0}=4 \\
& b_{1}+b_{2}=4 \rightarrow(1)
\end{aligned}
$$

Put $n=1$

$$
\begin{aligned}
f(1)= & b_{1} \cdot 5^{\prime}+b_{2} a^{\prime}=17 \\
& 5 \cdot b_{1}+2 b_{2}=17 \rightarrow(2)
\end{aligned}
$$

Solve (1) \& (2)

$$
\begin{aligned}
& \text { (1) } \times \text { by } 5 \Rightarrow 5 b_{1}+502=20 \\
& \begin{array}{l}
5 b_{1}+2 b_{2}=17 \\
H \quad H \quad H
\end{array} \\
& 3 b_{2}=3 \\
& b_{2}=3 / 3 \\
& b_{2}=1
\end{aligned}
$$

$b_{2}=1$ Sub in equal 1

$$
\begin{gathered}
b_{1}+b_{2}=4 \\
b_{1}+1=4 \\
b_{1}=4-1 \\
b_{1}=3
\end{gathered}
$$

Hence, A

$$
\begin{aligned}
f(n) & =3 \cdot 5^{n}+1 \cdot 2^{n} \\
& =3(5)^{n}+2^{n}
\end{aligned}
$$

Solve the गrecworence relation

$$
\begin{aligned}
& S(k)-4 S(k-1)-11 S(k-2)+30 S(k-3)=0 \\
& S(0)=0, \quad S(1)=-35, \quad S(2)=-85
\end{aligned}
$$

Sol:-
The characteristic equation is

$$
\begin{align*}
& a^{3}-4 a^{2}-11 a+30=0 \\
& 2 \left\lvert\, \begin{array}{cccc}
1 & -4 & -11 & 30 \\
0 & 2 & -4 & -30 \\
1 & -2 & -15 & 0
\end{array}\right. \\
& (a-2)\left(a^{2}-2 a-15\right)=0 \\
& a=2 \\
& (a+3)(a-5)=0 \\
& a=8,-\$, 2 \\
& \therefore S(k)=b_{1}(2)^{k}+b_{2}(-3)^{k}+b_{3}(5)^{k}
\end{align*}
$$

put $k=0$

$$
\begin{gathered}
S(0)=b_{1}(2)^{0}+b_{2}(-3)^{0}+b_{3}(5)^{0}=0 \\
b_{1}+b_{2}+b_{3}=0 \rightarrow \text { (1) }
\end{gathered}
$$

put $k=1$

$$
\begin{aligned}
S(k 1)= & b_{1}(2)^{\prime}+b_{2}(-3)^{\prime}+b_{3}(5)^{\prime}=-35 \\
& 2 b_{1}-3 b_{2}+5 b_{3}=-35 \rightarrow \text { (2) }
\end{aligned}
$$

put $k=2$

$$
\begin{aligned}
S(2)= & b_{1}(2)^{2}+b_{2}(-3)^{2}+b_{3}(5)^{2}=-85 \\
& 4 b_{1}+9 b_{2}+25 b_{3}=-85 \rightarrow \text { (3) }
\end{aligned}
$$

Solve (1) छ(5)
(1) $\times 2 \Rightarrow 2 b_{1}+2 b_{2}+2 b_{3}=0$

$$
\begin{aligned}
& 2 b_{1}-3 b_{2}+5 b_{3}=-35 \\
& t \rightarrow \Leftrightarrow \quad \leftrightarrow-1
\end{aligned}
$$

$$
\begin{equation*}
5 b_{2}-3 b_{3}=35 \rightarrow \tag{4}
\end{equation*}
$$

Solve (1) \& (3)

$$
\text { (1) } \begin{aligned}
\times b y ~
\end{aligned} \begin{aligned}
\Rightarrow 4 b_{1}+4 b_{2}+4 b b_{3} & =0 \\
& \frac{16 b_{1}+9 b_{2}+25 b_{3}}{}=-85 \\
-5 b_{2}-21 b_{3} & =85 \rightarrow
\end{aligned}
$$

Solve (4) $\xi_{4}(5)$

$$
\begin{array}{r}
5 b_{2}-3 b_{3}=35 \\
-5 b_{2}-2 b_{3}=85
\end{array}
$$

$$
-24 b_{3}=120
$$

$$
b_{3}=\frac{120^{5}}{-74}
$$

$$
\frac{24 \times 5}{120}
$$

$$
b_{3}=-5 \text { Sub in equ (4) }
$$

$$
5 b_{2}-3(-5)=35
$$

$$
5 b_{2}+15=35
$$

$$
5 b_{2}=35-15
$$

$$
b_{2}=\frac{20}{5}
$$

$$
b_{2}=4
$$

$$
\begin{gathered}
b_{3}=-5, b_{2}=4 \text { Sub in equ (1) } \\
b_{1}+b_{2}+b_{3}=0 \\
b_{1}+4-5=0 \\
b_{1}=5-4 \\
b_{1}=1
\end{gathered}
$$

Hence ; A

$$
\begin{aligned}
S(k) & =12^{k_{0}}+4(-3)^{k}+(-5)(5)^{k} \\
& =2^{k_{0}}+4(-3)^{k}-5(5)^{k_{0}}
\end{aligned}
$$

Waite the recurrence relation for
Fibonacci Sequester \& Solve it.

Sol:-

The greawrence relation is

$$
F(n)-F(n-1)-F(n-2)=0
$$

The characteristic equation is

$$
\begin{aligned}
& a^{2}-a-1=0 \\
& a=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
a=1, b=-1, c=-1
$$

$$
=-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}
$$

$$
2(1)
$$

$$
=\frac{1 \pm \sqrt{1+4}}{2}
$$

$$
=\frac{1 \pm \sqrt{5}}{2}
$$

$$
a=\frac{1+\sqrt{5}}{2} \cdot \frac{1-\sqrt{5}}{2}
$$

$$
\begin{align*}
& \text { Hence } \\
& F(n)=b_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1(A) \\
& \text { Put } n=0 \\
& F(0)=b_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{0}+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{0}=1 \\
& \qquad b_{1}+b_{2}=1 \rightarrow(1) \\
& F(1)=b_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{1}+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{1}=1 \tag{2}\\
& \\
& b_{1}\left(\frac{1+\sqrt{5}}{2}\right)+b_{2}\left(\frac{1-\sqrt{5}}{2}\right)=1
\end{align*}
$$

Fum equ (1) $\quad b_{2}=1-b_{1}$

$$
\begin{aligned}
& b_{2}=1-b_{1} \text { sub in equ(2) } \\
& b_{1}\left(\frac{1+\sqrt{5}}{2}\right)+\left(1-b_{1}\right)\left(\frac{1-\frac{\sqrt{5}}{2}}{2}\right)=1 \\
& \frac{1}{2} b_{1}+\frac{\sqrt{5}}{2} b_{1}+\frac{1}{2}-\frac{\sqrt{5}}{2}-\frac{1}{2} b_{1}+\frac{\sqrt{5}}{2} b_{1}=1 \\
& \frac{20 \sqrt{5}}{26} b_{1}=1-\frac{1}{2}+\frac{\sqrt{5}}{2} \\
& \sqrt{5} b_{1}=\frac{2-1}{2}+\frac{\sqrt{5}}{2} \\
&=\frac{1}{2}+\frac{\sqrt{5}}{2} \\
& \sqrt{5} b_{1}=\frac{1+\sqrt{5}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& b_{1}=\frac{1+\sqrt{5}}{2 \sqrt{5}} \\
& b_{1}=\frac{1+\sqrt{5}}{2 \sqrt{5}} \text { S Sub in equ } \\
& \frac{1+\sqrt{5}}{2 \sqrt{5}}+b_{2}=1 \\
& b_{2}=1-\frac{1+\sqrt{5}}{2 \sqrt{5}} \\
&=\frac{2 \sqrt{5}-1+\sqrt{5}}{2 \sqrt{5}} \\
& b_{2}=\frac{\sqrt{5}-1}{2 \sqrt{5}}
\end{aligned}
$$

Hence, A

$$
\begin{aligned}
F(n) & =\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{\sqrt{5}-1}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& =\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}
\end{aligned}
$$

Sonuim of Non-Homageneaus Relations:
In the case of nom-homogeneans recurrence relations the general Solution is the Sum of
i) Saurion for the Corresponding homogeneous Creation.
ii) Particular Solution depending on the R.H.S of the given recurrence relation.
(i) Can be found in the Previous Section.

For finding the Particular Solution (ii) We adopt the following Procedure.

Procedure for finding the, particular Solution:
Step 1: a) If the R.H.S of the steaurence stelation is $a_{0}+a_{1} k+\ldots . a_{m} k^{m}$, Subsitule $d_{0}+d_{1} k+\ldots . d_{m} k^{m}$ in place of $T(k), d_{0}+d(k-1)+\ldots . a_{m}(k-1)^{m}$ in place of $T(k-1) e t c$, in the given recurrence relation.
b) If the R.H.S is Ca^{k}, Substitute $d_{0} a^{k}$ in place of $T(k), d_{0} a^{k-1}$ in place of $T(k-1)$ etc in the given relation.
Step: At the end of Step 1 we get a Polynomial in k with Coefficients d_{0}, d_{1}, \ldots un L.H.S which is equal to the R.H.S of the given stecurrence relation. Equate the Coefficient of powers of k on both Sides to get Values for $d_{0}, d_{1} \ldots$
Step 3: The. general Solution is the Sum of the Solution "for the: homogeneoris relation and the Particular Solution got in Step a. Use initial Conditions for, getting, the values, of unknowns (b_{1}, b_{5}, etc). Note. (we discuss Some particular Cases now).

1. If the R.H.S of the given orecurrence relation is a Constant a_{0}, then replace $T(k), T(k-1), \ldots$ by d_{0}.
2. If the R.H.S is $a_{0}+a_{1}$ to, replace TC) by $d_{0}+d_{1} k_{0}, T(k-1)$ by $d_{0}+d_{1}(k-1)$ etc.
3. When the R.H.S is $\mathrm{Ca}^{\text {to }}$ and a Coincides with a characteristic slot, the above method fails. When a is a simple soot of the Characteristic equation, take $d_{0} k a^{k}$. When a is a double root of the characteristic equation take $d_{0} k^{2} a^{k}$.
4. Solve $T(k)-7 T(k-1)+10 T(k-2)=6+8 k$ with $T(0)=1, T(1)=2$

Sol:-

a) Homugeneaus Solution

The characteristic equation is

$$
\begin{array}{cc}
a^{2}-7 a+10=0 & 10 \\
(a-2)(a-5)=0 & -5-2 \\
a=2,5 & -7
\end{array}
$$

\therefore The roots are 2,5
Hence the homogeneous Solution is

$$
b_{1} 2^{k}+b_{2} 5^{k}
$$

b) Particular Solution:

The R.H.S of the given sielation is

$$
b+8 k=d_{0}+d_{1} k
$$

The Particular Solution $=d_{0}+d_{1} k$

$$
\begin{array}{ll}
\text { Replace } & \\
& T(k)=d_{0}+d_{1} k \\
& T(k-1)=d_{0}+d_{1}(k-1) \\
& T(k-2)=d_{0}+d_{1}(k-2)
\end{array}
$$

$$
\therefore d_{0}+d_{1} k-7\left(d_{0}+d_{1}(k-1)\right)+10\left(d_{0}+d_{1}(k-2)\right)=
$$

$$
b+8 k
$$

$$
d_{0}+d_{1} k-7 d_{0}-7 d_{1} k+7 d_{1}+10 d_{0}+10 d_{1} k-20 d_{1}=6+8 k
$$

$$
4 d_{0}-13 d_{1}+4 d_{1} k=6+8 k
$$

Equating the Coefficient

$$
\begin{gathered}
4 d_{0}-13 d_{1}=6 \\
4 d_{1}=8 \\
d_{1}=8 / 4 \\
d_{1}=2 \\
4 d_{0}-13(2)=6 \\
4 d_{0}-2 b=6 \\
d_{0}=\frac{b+2 b}{4} \\
=32 / 4 \\
d_{0}=8
\end{gathered}
$$

Hence the Particular Solution is $8+2 k$

The general Solution is

$$
T(k)=b_{1} 2^{k}+b_{2} 5^{k}+8+2 k
$$

Now,
Take $k=0$

$$
\begin{aligned}
T(0)= & b_{1} 2^{0}+b_{2} 5^{0}+8+2(0)=1 \\
& b_{1}+b_{2}+8=1 \\
& b_{1}+b_{2}=1-8 \\
& b_{1}+b_{2}=-7 \rightarrow \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& k=1 \\
& T(1)=b_{1} 2^{\prime}+b_{2} 5^{\prime}+8+2(1)=2
\end{aligned}
$$

$$
\begin{aligned}
& 2 b_{1}+5 b_{2}+8+2=2 \\
& 2 b_{1}+5 b_{2}=2-10 \\
& 2 b_{1}+5 b_{2}=-8 \rightarrow(2)
\end{aligned}
$$

Solve equ (1) ε (2)
(1) x by 2

$$
\begin{aligned}
2 b_{1}+2 b_{2} & =-14 \\
2 b_{1}+5 b_{2} & =-8 \\
(-1) \quad & (-) \\
-3 b_{2} & =-6 \\
b_{2} & =\frac{-b}{-3} \\
b_{2} & =2
\end{aligned}
$$

$b_{2}=2$ Sub in equ (1)

$$
\begin{aligned}
& b_{1}+2=-7 \\
& b_{1}=-7-2 \\
& b_{1}=-9 \\
\therefore & T(k)=-9 \cdot 2^{k}+25^{k}+8+2 k
\end{aligned}
$$

2. Solve $S(k)-S(k-1)-6 S(k-2)=-30$

Where $S(0)=20, S(1)=-5$.
Sole :-
a) Homogeneous Solution:

The characteristic equation is

$$
\begin{aligned}
& a^{2}-a-b=0 \\
& (a+2)(a-3)=0 \\
& a=-2,3
\end{aligned}
$$

$$
\underbrace{-6}_{-1}
$$

The roots are $-2,3$
Hence the homogeneous Solution is

$$
b_{1} \cdot(-2)^{k}+b_{2} \cdot 3^{k}
$$

b) Particular Solution.

The R.H.S of the stecurrence relation is Constant
\therefore Particular Solution $=d$
Replace $S(k)=d$

$$
\begin{aligned}
S(k-1) & =d \\
S(k-2) & =d \\
\therefore d-d-b d & =-30 \\
-b d & =-30 \\
d & =5
\end{aligned}
$$

Hence the Particular Solution $=d=5$
The general Sourtion is

$$
S(k)=b_{1} \cdot(-2)^{k_{0}}+b_{2} \cdot 3^{k}+5
$$

Take

$$
\begin{array}{cl}
k=0 \\
S(0)= & b_{1}(-2)^{0}+b_{2} \cdot 3^{0}+5=20 \\
& b_{1}+b_{2}+5=20 \\
& b_{1}+b_{2}=20-5 \\
& b_{1}+b_{2}=15 \rightarrow(1) \\
k=1 \\
S(1)= & b_{1}(-2)^{1}+b_{2}(3)^{1}+5=-5 \\
& -2 b_{1}+3 b_{2}=-5-5 \\
& -2 b_{1}+3 b_{2}=-10 \rightarrow(2)
\end{array}
$$

Solve equi (1) \& (2)
(1) x by 2

$$
\begin{aligned}
2 b_{1}+2 b_{2} & =30 \\
-2 b_{1}+3 b_{2} & =-10 \\
5 b_{2} & =20 \\
b_{2} & =\frac{20}{5} \\
b_{2} & =4
\end{aligned}
$$

$b_{2}=4$ Sub in equ (1)

$$
\begin{aligned}
& b_{1}+4=15 \\
& b_{1}=15-4 \\
& b_{1}=11
\end{aligned}
$$

Hence the Solution is

$$
S(k)=11 \cdot(-2)^{k_{k}}+4(3)^{k_{k}}+5
$$

3. Solve $S(k)-35(k-1)-4 S(k-2)=4^{k}$.

Sourtion:-
a) Homogeneous Soultion

The characteristic equation is

$$
\begin{aligned}
& a^{2}-3 a-4=0 \\
& (a+1)(a-4)=0 \\
& a=-1,4
\end{aligned}
$$

The grots are $-1,4$
Hence the homogeneous Solution is

$$
b_{1}(-1)^{k}+b_{2}(4)^{k}
$$

b) Particular Solution

The R.H.S of recurrence relation is 4^{K}.
4 is a root of characteristic equation.
Take Particular Solution $=d k u^{k}$
(Suppose 4 is not a root of equation it is enough to take $\mathrm{d}_{4}{ }^{\mathrm{k}}$)

$$
\begin{gathered}
\text { Replace } \quad S(k)=d k 4^{k} \\
S(k-1)=d(k-1) 4^{k-1} \\
S(k-2)=d(k-2) 4^{k-2} \\
\therefore d k 4^{k}-3 d(k-1) 4^{k-1}-4 d(k-2) 4^{k-2}=4^{k} \\
d k 4^{k-2+2}-3 d(k-1) 4^{k-1-1+1}-4 d(k-2) 4^{k-2}= \\
d k 4^{k-2+2}-3 d(k-1) 4^{k-2+1}-4 d(k-2) 4^{k-2}=4^{k-2+2} \\
44^{k-2}\left[d k(4)^{2}-3 d(k-1) 4-4 d(k-2)\right]=4^{k-2} \cdot 4^{2} \\
16 d k-12 d(k-1)-4 d(k-2)=16 \\
16 d k-12 d(k+12 d-4 d k+8 d=16 \\
20 d=16-8 \\
d=\frac{18}{20} \\
d=0.8
\end{gathered}
$$

Hence the Particular Solution $=d k_{4}{ }^{k}$

$$
=(0.8) \mathrm{k} 4^{\mathrm{k}}
$$

\therefore The general Solution is

$$
S(k)=b_{1}(-1)^{k}+b_{2}(4)^{k}+0.8 k 4^{k}
$$

4. $S(k)-4 S(k-1)+4 S(k-2)=3 k+2^{k}$

$$
S(0)=1, \quad S^{\prime}(1)=1
$$

Sol:-
a) Homogenews Solution

The characteristic equation is

$$
\begin{aligned}
& a^{2}-4 \dot{a}+4=0 \\
& (a-2 \cdot(a-2)=0 \\
& a=2,2 \\
& \text { The roots are } 2,2
\end{aligned}
$$

$$
\overbrace{-2}^{4}
$$

Hence the homogeneous equation is.

$$
\left(C_{0}+c_{1} k\right) 2^{k}
$$

b) Particular Solution for $3 k$

$$
\text { Particular Soultion }=d_{0}+d_{1} \text { to }
$$

$$
3 k+2^{k}=d_{0}+d_{1} k
$$

Replace $S(k)=d_{0}+d_{1} k$

$$
\begin{gathered}
S(k-1)=d_{0}+d_{1}(k-1) \\
S(k-2)=d_{0}+d_{1}(k-2) \\
\therefore d_{0}+d_{1} k-4\left[d_{0}+d_{1}(k-1)\right]+4\left[d_{0}+d_{1}(k-2)\right]= \\
3 k
\end{gathered}
$$

$$
\begin{aligned}
& d_{0}+d_{1} k-4 d_{0}-4 d_{1} k+4 d_{1}+4 d_{0}+4 d_{1} k-9 d_{1}= \\
& d_{0}-4 d_{1}+d_{1} k=3 k
\end{aligned}
$$

Equating the Coefficient

$$
\begin{array}{r}
d_{1} k=3 k \\
d_{1}=\frac{3 k}{k} \\
d_{1}=3 \\
d_{0}-4 d_{1}=0 \\
d_{0}-4(3)=0 \\
d_{0}-12=0 \\
d_{0}=12
\end{array}
$$

\therefore The Particular Solution for dotdike is

$$
12+3 k
$$

c) Particular Solution for 2^{k}.

Particular Solution $=d k^{2} 2^{k}$.
(Since the base of the R.H.S equation 2 is a double sot of the characteristic equation)

Replace $S(k)=d k^{2} 2^{k}$

$$
\begin{gathered}
S(k-1)=d(k-1)^{2} 2^{k-1} \\
S(k-2)=d(k-2)^{2} 2^{k-2} \\
\therefore d k^{2} 2^{k}-4\left[d(k-1)^{2} 2^{k-1}\right]+4\left[d(k-2)^{2} 2^{k-2}\right]= \\
22^{k}\left[d k^{2}-4\left[d(k-1)^{2} 2^{-1}\right]+4\left[d(k-2)^{2} 2^{-2}\right]-2^{k}\right. \\
d k^{2}-\frac{k^{k}}{22} d(k-1)^{2}+\frac{14}{2} d(k-2)^{2}=1 \\
d k^{2}-2 d(k-1)^{2}+d(k-2)^{2}=1 \\
d k^{2}-2 d\left(k^{2}+1-2 k\right)+d\left(k^{2}+4-4 k\right)=1 \\
d / k^{2}-2 d k^{2}-2 d+4 d k+d k^{2}+4 d-4 \nmid k=1 \\
-2 d+4 d=1 \\
2 d=1 \\
2 d=1 / 2
\end{gathered}
$$

\therefore The Pantroular Solution is $(1 / 2)^{k^{2}} 2^{k}$
\therefore The general Solution is

$$
S(k)=\left(C_{0}+c_{1} k\right) 2^{i}+12+3 k+\left(\frac{1}{2}\right) k^{2} 2^{k}
$$

$$
\begin{aligned}
& \text { Put }_{k=0} S(0)=\left(C_{0}+C_{1}(D)\right) 2^{0}+12+3(0)+\left(\frac{1}{2}\right) 0^{2} 2^{0}=1 \\
&\left(C_{0}+0\right)+12+0=1 \\
& C_{0}=1-12 \\
& \quad C_{0}=-11
\end{aligned} \quad C_{0}=-11 \quad \$
$$

put $k=1$

$$
\begin{gathered}
S(1)=\left(C_{0}+C_{1}(1)\right) 2^{1}+12+3(1)+\frac{1}{2}(1)^{2} 2^{1}=1 \\
\left(C_{0}+C_{1}\right) 2+15+\frac{1}{2}((2)=1 \\
\left(C_{0}+C_{1}\right) 2+16=1 \\
\left(-11+C_{1}\right) 2+16=1 \\
-22+2 C_{1}+16=1 \\
2 C_{1}-6=1 \\
2 C_{1}=1+6 \\
C_{1}=7 / 2
\end{gathered}
$$

$$
\begin{aligned}
\therefore S(k) & =\left((-11)+\frac{7}{2} k\right) 2^{k}+12+3 k+\left(\frac{1}{2}\right) k^{2} 2^{k} \\
& =12+3 k+\left[-11+\frac{7 k}{2}+\frac{1}{2} k^{2}\right] 2^{k} \\
& =12+3 k+\left(\frac{-22+7 k+k^{2}}{2}\right) 2^{k} \\
& =12+3 k\left(-22+7 k+k^{2}\right) 2^{k-1}
\end{aligned}
$$

Permutation:
Combinatorial Analysis
involves
determining the number of Posibithes of Some event without enumerating all the Possibilities.

In order to develop the general Procedure for obtaining Possibilities 'We have to introduce the Concepts called permutations \& Combinations.

$$
\begin{aligned}
n p_{\pi}= & \frac{n!}{(n-\pi)!} \\
& \frac{(n \pi)}{n-\pi}
\end{aligned}
$$

Permutation when some of the things are alike taken all time.

All letters: are replaced by distinct letters the number of arrangements of n things is $n n$ (orr) n !.

$$
\begin{aligned}
\therefore \quad!n & =x\lfloor P\lfloor q\lfloor\pi \\
n! & =x p!q!\pi! \\
i!e>\quad x & =\frac{n!}{p!q!\pi!}
\end{aligned}
$$

Permutation When each thing. - may be repeated

$$
\therefore n \times n \times n=n^{\pi} \text { ways }
$$

Circular permutation (ar) Cyclic permutation

We have Seen permutation of n things in aptrow. Now we Consider the permutations of n things along a circle

Eg:-

In general n distinct. Hings Can be arranged along a Circle.

$$
\frac{L n}{n}=\frac{L n-1}{}
$$

A

D

Combination :

In permutation of n things taken or at a time we have Considered
the number of different arrangements.
Here we pay due regard of the Order in which the different things ocam.
on : the other hand if we do
not give importance to the order. but
only Consider the Selections. of the or
Hings Out of n things we call it
Combination.

$$
\begin{aligned}
n^{n} C_{\pi} & =\frac{n!}{\pi!(n-\pi)!} \\
& =\frac{\text { (or) }}{\frac{n \pi}{n-\pi}}
\end{aligned}
$$

Nate:

$$
\begin{aligned}
& \text { i) } n C_{0}=1 \\
& \text { ii) } n C_{1}=1
\end{aligned}
$$

Permutation:

Any coomangement of a Set of
π objects is Called Permutation. If is denoted by npr.

$$
\Pi p_{\pi}=\frac{n!}{(n-\pi)!}
$$

$$
n_{C_{n}}=1
$$

Ex
Find the value of $7 P_{2} \& 10 p_{3}$
Sol:-

$$
\begin{aligned}
7 P_{2} & =\frac{7!}{(7-2)!} \\
& =\frac{7!}{(5)!} \\
& =\frac{7 \times 6 \times 5!}{5!} \\
& =42 \\
10 P_{3} & =\frac{10!}{(10-3)!} \\
& =\frac{10 \times 9 \times 8 \times 7!}{7!} \\
& =720
\end{aligned}
$$

Prove that $n p_{\pi}=(n-1) P_{r}+\pi(n-1) P_{\pi-1}$

$$
\begin{aligned}
n P_{\pi} & =\frac{n!}{(n-\pi)!} \rightarrow L . H S \\
(n-1) P_{\pi} & =\frac{(n-1)!}{(n-1-\pi)!} \\
n-1 P_{\pi-1} & =\frac{(n-1)!}{(n-1-(\pi-1))!} \\
& =\frac{(n-1)!}{(n-\gamma-\pi+1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{(n-1)!}{(n-\pi)!} \\
& (n-1) P_{\sigma}+\pi(n-1) P_{\sigma-1}=\frac{(n-1)!}{(n-1-\pi)!}+\frac{(n-1)!}{(n-\pi)!} \\
& \text { Multiply } \varepsilon \div \text { by (n-or) on R.H.S } \\
& =\frac{(n-1)!(n-\pi)}{(n-1-\pi)!(n-\pi)}+\sigma \frac{(n-1)!(n / \pi)}{(n-\pi)!(n-\pi)} \\
& =\frac{(n-1)!(n-\pi)}{(n-\pi)((n-\pi)-1)!}+\pi \frac{(n-1)!}{(n-\pi)!} \\
& =\frac{(n-1)!(n-\pi)}{(n-\pi)!}+\frac{\pi(n-1)!}{(n-\pi)!} \\
& =\frac{(n-1)![n-\bar{\pi}+t+\pi]}{(n-\pi)!} \\
& =\frac{n(n-1)!}{(n-\pi)!} \\
& =\frac{n!}{n-\pi!} \rightarrow \text { RH.S } \\
& =n_{P_{\pi}}
\end{aligned}
$$

A Committee of 3 to be chooser our of 5 english man, 4 french man $\& 3$ indians The Committee to Gortain one of the each Rationality.
(i) In how many ways can done by this

One english man can be choosen from 5 ways. one french man Can be choosen from 4 ways one indian $C a n$ be chosen from 3 ways.
\therefore Total no of ways $=5 \times 4 \times 3$
= bo ways
(ii) In how many arrangement will a Particular indian be included.

Sol:-

If a Specific indian in the Committee there is only one way of choosing indian \therefore Total no of ways $=5 \times 4 \times 1$

$$
=20 \text { ways. }
$$

There are 5 trains to M to A \& back to M. In how many way can be person go from M to $\$ \&$ return into a different train. Sol:-

There are 5 ways to choosing a train

$$
\text { from } M \text { to } ₫
$$

There are 4 ways to choosing a train from क to M.
\because He Cannot choose the Same train for return.
\therefore Total no of ways $=5 \times 4$

$$
=20 \text { ways. }
$$

How many no of 4 digits $c a n$ be framed
Out of the digits $1,2 \ldots$ व if repetition of digits is is not allowed ins allowed.

Sol:-

(i) Not allowed

The unit Place can be filled in 9 ways. The $10^{\text {th }}$ place can be filled in 8 ways. The $100^{\text {th }}$ place can be filled in 7 ways The $1000^{\text {th }}$ place car be frilled in 6 ways.
\therefore Total no of ways $=9 \times 8 \times 7 \times 6$

$$
=3024 \text { ways. }
$$

(ii) Allowed

If repetition is allowed all the
4 places can be filled in 9 ways.
\therefore Total no of ways $=9 \times 9 \times 9 \times 9-6591$ ways.

How many no of 4 digit can be formed out of the 4 digits $0,1,2 \ldots 9$ if repetition of the digits
i) not allowed ii) allowed

Solution:-
i) 0 . Cannot be filled in $1000^{\text {th }}$ place
$\therefore \quad$ loot ${ }^{\text {th }}$ place can be filled in 9 ways $100^{\text {th }}$. place can be filled in 9 ways
$10^{\text {th }}$ place can be filled in 8 ways
$1^{\text {th }}$ place can be filled in 7 ways.
\therefore Total no of ways $=9 \times 9 \times 8 \times 7$

$$
=4536 \text { ways. }
$$

ii) If stepeltion is allowed
$1000^{\text {th }}$ place can be filled in 9 ways $100^{\text {th }}$ place can be filled in 10 ways $10^{\text {th }}$ place can be filled in 10 ways Unit place can be filled in 10 ways
\therefore Total no of ways $=9 \times 10 \times 10 \times 10$

$$
=9000 \text { ways. }
$$

How mary odd no of 4 digit can be formed out of the digits $1,2, \ldots 9$ if ITepettion of digits is not allowed ii) allowed.

Sol:-

There are 5 odd places ($1,3,5,7,9$)
(i) \therefore The unit place can be filled in 5 ways The $10^{\text {th }}$ place can be filled in 8 ways. The $100^{\text {th }}$ place Can be filled in 7 ways. The $1000^{\text {th }}$ place Can be filled in 6 ways.
\therefore Total no of ways $=5 \times 8 \times 7 \times 6$

$$
=1680 \text { mays. }
$$

(ii) If repetitions is allowed.

The unit Place can be filled in 5 ways The $10^{\text {th }}$ place can be filled in 9 ways The $100^{\text {th }}$ place can be filled in 9 ways The booth place can be filled in a ways

$$
\begin{aligned}
\therefore \text { Total no of ways } & =5 \times 9 \times 9 \times 9 \\
& =3645 \text { ways. }
\end{aligned}
$$

How mary odd no of 4 digits can be formed out of the digits $0,1,2, \ldots .9$
if repetition is i) not allowed
ii) allowed.

Sol:-
There are 5 odd Places $(1,3,5,7,9)$
(i)

- Canst be placed in the unit place.
unit Place can be filled in 5 ways $1000^{\text {th }}$ place can be filled in 8 ways $100^{\text {th }}$ place can be filled in 8 ways $10^{\text {th }}$ place can be fined in 7 ways
\therefore Total no of ways $=5 \times 8 \times 8 \times 7$

$$
=2240 \text { ways }
$$

(ii) If repetition is allowed
unit Placed can be filled in 5 ways loo th place can be fired in 9 ways $100^{\text {th }}$ place can be filled in 10 ways $10^{\text {th }}$ place can be filled in 10 ways.
\therefore Total no of ways $=5 \times 9 \times 10 \times 10$

$$
=4500 \text { ways. }
$$

How mary even no of 4 digits can be formed out of the $1,2, \ldots .9$ if the sepeltion of the digits
i) not allowed ii) allowed

$$
\begin{array}{llll}
1000^{\text {th }} & 100^{\text {th }} & 10^{\text {th }} & \text { unit } \\
& - & - & -
\end{array}
$$

(i)

$$
\begin{aligned}
\text { even No } & (2,4,6,8) \\
\text { Unit Place } & =4 \text { ways } \\
& =8 \text { ways } \\
10^{\text {th }} & =7 \text { ways } \\
100^{\text {th }} & =6 \text { ways } \\
1000^{\text {th }} & \\
\text { Total } & =4 \times 8 \times 7 \times 6 \\
& =1344 \text { ways }
\end{aligned}
$$

(ii) Repetition allowed

$$
\begin{aligned}
& \text { unit Place }=\text { म ways } \\
& \begin{aligned}
10^{\text {th }} & =8 \text { ways } \\
100^{\text {th }} & =9 \text { ways } \\
1000^{\text {th }} & =9 \text { ways? } \\
& =4 \times 9 \times 9 \times 9 \\
& =2916 \text { ways }
\end{aligned}
\end{aligned}
$$

How mary even no of 4 digits can be formed out of $0,1, \ldots .9$ if the repetition of the digits
(i) not allowed (ii) allowed
(i) even no ($2,4,6,8$)
o canst be placed in unit Place
unit Place $=94$ ways.
$1000^{\text {th }}=8$ ways
$100^{\text {th }}=8$ ways
$10^{\text {th }}=7$ ways
Total $=4 \times 8 \times 8 \times 7$
$=1792$ ways
(ii)

$$
\begin{aligned}
\text { unit }^{2} & =11 \text { ways } \\
\text { cover }^{\text {th }} & =9 \text { ways } \\
\text { west } & =10 \text { ways } \\
10^{\text {th }} & =10 \text { ways } \\
& =4 \times 9 \times 10 \times 10 \text { ways } \\
& =3600 \text { way. }
\end{aligned}
$$

Find our the no of arrangement of
5 bays \& 5 girl in a som. So that no two bays $\&$ no two girls sit
together.

Sol:-

If the aroungement Start with boys

$B G B G B G B G B G$

5 hays can be arranged in odd places $=5 p_{5}$ ways
5 gives can be arranged in even places=

$$
5 P_{5} \text { ways }
$$

\therefore Total $=5 P_{5} \times 5 P_{5}$
$=288400$ ways.
If the aroungenent start with girls $G B G B G B G B G B$
5 girls can be arranged in odd places=
5 bays can be arranged in even place $=$ 55_{5} ways

$$
\begin{aligned}
\therefore \text { Total } & =5 P_{5} \times 5 P_{5} \\
& =28800 \mathrm{Has}
\end{aligned}
$$

A family of 4 brother \& 3 sis are to be arorarged for a Photograph
in one stow. In how mary ways can they seated if all the sister sit together.
$S_{01:-}$
3 sis together $=1$ unit
4 bro together $=4$ unit
Totally $=5 \mathrm{unit}$
\therefore The 5 unit can be arrange in 5 ways The 3 sis Can be arrange in 3 ways
\therefore The total no of arrangements $=5!\times 3!$. $=720$ ways.
There are 6 books on eco, 3 on maths and 2 on accounts. In how mary ways can they be arranged on a shelf if the books of the same Subject are always together.

Sol:-
b eco book Consider as unit.
3 Maths book Consider as 1 mitt
2. account book Consider as I unit.
$\therefore 3$ units can be arranged in 3 ! ways 6 eco can be arranged in 6 ways 3 maths book can be arranged in 3 ways
2 account book can be arranged in 2 ways
\therefore Total no of ways $=3!\times 6!\times 31 \times 2!$

$$
=51840 \text { ways }
$$

In how mary ways can the letter of
the ward MOBILE be croranged So So occupy the
that the Consments alms on s odd places.

Sol:-

There are b letters in the ward MOBile 3 are Vowels \& 3 are Corsoments 3 vowels can be comanged in 3 odd places =

$$
3 P_{3}
$$

3 Consments can be arotarged in 3 even

$$
\text { places }=3 P_{3}
$$

\therefore Total no of ways $=3 P_{3} \times 3 P_{3}$

$$
=36 \text { ways }
$$

Combination:

A Combination of n object taken ($\pi \leqslant n$) at a time is any selection of or of there objects when order does not Count.

$$
n_{c_{r}}=\frac{n!}{\theta!(n-r)!}
$$

Find

$$
\begin{aligned}
3 C_{2} & =\frac{3!}{2!(3-2)!} \\
& =\frac{3!}{2!!!}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{(\pi-n)!(n-\pi+1)(n-\pi)!}{\pi(\pi r n)!(n-2 n)!} \\
=\frac{n-\pi+1}{\pi}
\end{array} \\
& \text { P.T } n c_{\pi}+n c_{\pi-1} \leq(n+1) c_{\pi} \\
& { }^{n} C_{\pi}=\frac{n!}{\pi!(n-r)!} \\
& n C_{\pi-1}=n! \\
& \text { (} \pi-1)!(n-\pi+1)! \\
& { }^{n} C_{\pi}+n C_{\sigma-1}=\frac{n!}{\pi!(n-\sigma)!}+\frac{n!}{(\pi-1)!(n-\sigma+1)!} \\
& =n!(\pi-1)!(n-\pi(1)!+n!\sigma!(n-r)! \\
& \text { ज!! (n-r)! (r-1)! (n-rt1)! } \\
& =n!(\pi-1)!(n-\pi t)(n-\pi)!+n!+\pi!(n-\pi)! \\
& \pi!(n-\pi)!(\pi-1)!(n-\pi+1)! \\
& =n!(n-f \pi)![(\pi-1)!(n-\pi+1)+\pi!] \\
& \text { जा! (n-gh)! (ar-1)! (n-ati)! } \\
& =n![(\pi-1)!(n-\pi+1)+\pi(\pi-1)!] \\
& \text { जr! (r-1)! }(n-\pi+1)! \\
& =\frac{n!(\pi /-1)![(n-\phi+1)+\phi 1]}{\pi!(\alpha / 1)!(n-\sigma t+1)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n!(n+1)}{0!((n+1)-0 \pi)} \\
& =\frac{(n+1)!?}{\operatorname{rr}((n+1)-\pi 1)!} \\
& =(n+1) C_{0}
\end{aligned}
$$

II $1 b c_{\pi}=16 c_{r+2}$ find $r c_{3}$

$$
16 c_{\theta r}=1 b c_{O H 2}
$$

$$
r=\pi+2 \mathcal{r}_{(0 r)}^{n} n_{0}=\frac{n!}{0!(n-r)!} \quad n_{0}=\frac{n!}{\theta!(n-0 r)!}
$$

$$
\text { not Possible } 16!
$$

$$
\pi=n-\pi \Rightarrow \quad \pi!(16-0)!
$$

$$
=1 b-(\sigma+2)
$$

$$
=14-\pi
$$

$$
2 \pi=14
$$

$$
\sigma=14 / 2
$$

$$
\pi=7
$$

$$
\pi c_{3}=7 c_{3}=\frac{7 \times b+!}{3!4!}
$$

$$
=\frac{7 \times 6 \times 5 \times 14!}{3!\times 1!}
$$

$$
=\frac{7 \times 6 \times 5}{3 \times 2 \times 1}
$$

$$
=35
$$

If $4 \cdot n c_{2}=(n+2) c_{3}$ find n.

$$
\begin{aligned}
& 4 \cdot n C_{2}=(n+2) c_{3} \\
& 4 \cdot \frac{n!}{(n-2)!}=\frac{(n+2)!}{3!(n+2-3)!}
\end{aligned}
$$

$$
\text { 4. } \frac{n(n-1)(n-2)!}{x!(n-2)!}=\frac{(n+2)(n+1) n(n-1)!}{3!(n-1)!}
$$

$$
2 \pi /(n-1)=\frac{(n+2)(n+1) \not x}{6}
$$

$$
12(n-1)=(n+2)(n+1)
$$

$$
12 n-12=n^{2}+n+2 n+2
$$

$$
12 n-12=n^{2}+3 n+2
$$

$$
n^{2}+3 n+2-12 n+12=0
$$

$$
n^{2}-9 n+14=0
$$

$$
(n-2)(n-7)=0
$$

$$
n=2,7
$$

$$
\text { If } n C_{10}=n C_{6} \text { find } n c_{11}
$$

$$
n_{C_{10}}=n C_{6}
$$

$10=h \quad$ (n ant Possible)

$$
\begin{aligned}
& =\frac{16 \times 15 \times 14 \times 13 \times 12 \times 11!}{114!} \\
& =\frac{24}{\boxed{14} \times 16 \times \not 10 \times 14 \times 13 \times 12} \\
& =2 \times 14 \times 13 \times 12 \\
& =4368
\end{aligned}
$$

A Company has 7 Chartered accountants, 6 Engineers, 3 Scientists in their managerial Cadre. In how many ways can they form a 2 members from differat discipline.

Sol:-

There are ICA

6 Engineers
3 Scientist
We have to Select as from each group 2CA Can be Selected from 7 CA

$$
\begin{aligned}
& =7 C_{2} \text { ways } \\
& 2 \text { Engineers can be Selected from } 6 \text { engineers }= \\
&
\end{aligned}
$$

$$
b c_{2} \text { ways }
$$

2 Scientist can be Selected from 3 Scientist-

$$
3 c_{2} \text { ways }
$$

\therefore Total no of ways of $\}=7 c_{2} \times b c_{2} \times 3 c_{2}$
Selection

$$
\begin{aligned}
& =21 \times 15 \times 3 \\
& =945 \text { ways }
\end{aligned}
$$

$2=3$ (Not Possible)
$28 C_{2 \pi}: 24 C_{2 \pi-1}=225: 11$ find the value
of π
Sol:-
$\frac{28 C_{2 \pi}}{24 C_{2 \pi-1}}=\frac{225}{11}$
$\frac{\frac{28}{2 \pi} \frac{27}{2 \pi-1} \cdots \cdot{ }^{24 c} \frac{2 \pi-1}{24 C_{2 \pi-1}}}{2 \pi}=\frac{225}{11}$
$2 \pi(2 \pi-1)(2 \pi-2)(2 \pi-3)=\frac{28 \cdot 27 \cdot 2 b \cdot 25}{225}$

There are b vacancies in an office, if 8 men \& 5 women offer themselves, be In how mary ways can the posts be
filled. If the Gondrion are Such that filled. vacancies Should go half to men \& half to women.
Sol:-
3 men C an be Selected from 8 men $=8 c_{3}$
3 women can be Selected from 8 women= $5 \mathrm{C}_{3}$
\therefore Total no of ways $=8 c_{3} \times 5 c_{3}$
$=560$ ways.
Permutation: (Sum)

1. How mary ways can letter of wood NAGERKOIL.

$$
9!
$$

2. How of many of then begin with N. 7 !
3 In how mary of then 4 vowels Come together. $6!\times 4!$
3. How mary of them begin with 4 vowels.

$$
4!\times 5!
$$

In how mary ways Can the letter STRANGE be arranged So that the vowels may appear the odd place? $4 P_{2} \times 5 P_{5}$

