MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI

PG \& RESEARCH DEPARTMENT OF MATHEMATICS

CLASS
: I M. C. A
SUBJECT CODE : 23PCA11
SUBJECT NAME : DISCRETE MATHEMATICS

SYLLABUS

UNIT 4

MATRICES

Special types of matrices-Determinants-Inverse of a square matrix- -Elementary operations Rank of a matrix-Cramer's rule for solving linear equation -solving a system of linear equationscharacteristic roots and characteristic vectors-Cayley-Hamilton Theorem-problems.

DISCRETE MATHEMATICS

UNIT- 4

MATRICES

DEFINITION:: 2 m

A Matrix is a rectangular array
Of numbers written in the form

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} \ldots & a_{1 n} \\
a_{21} & a_{22} \ldots & a_{2 n} \\
a_{m 1} & a_{m 2} \ldots & a_{m n}
\end{array}\right]_{m \times n}
$$

Where aij are areal or complex number. They are Called as the elements of the matrix. A matrix Containing m trows and \cap Columns is said to be the Oтdert $\quad m \times n$.

$$
\begin{aligned}
E g:- & {\left[\begin{array}{ll}
2 & 45 \\
6 & 78
\end{array}\right]_{2 \times 3} } \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
7 & 8
\end{array}\right]_{3 \times 2} }
\end{aligned}
$$

Types of Matrices:

i) Row Matrix:

A matrix

Containing only one

snow is called, a sow matrix.
Eg:-

$$
A=\left[\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n}
\end{array}\right]_{1 \times n}
$$

ii) Column Matrix:

A matrix Containing. only one
Column is Called a Column matrix.
Eg:-

$$
A=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
a_{m 1}
\end{array}\right]_{m \times 1}
$$

iii) Equal Matrix:

Two matrices ' A and B was Said to be equal if they are of the Same. Orders and the Corresponding elements are equal

Eg:-

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]_{2 \times 2} \\
B & =\left[\begin{array}{ll}
3 & 5 \\
1 & 7
\end{array}\right]_{2 \times 2} \\
a=3, \quad b & =5, c=1, d=7
\end{aligned}
$$

iv) ${ }^{2 m}$ Square Matrix:

If $m=n$ (Number of, sows $=$ Numbers of Columns) then the given matrix is Called Square matrix.

Eg:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
3 & 2 & 1 \\
2 & 3 & 4 \\
2 & 1 & -3
\end{array}\right]_{3 \times 3} \\
& A=\left[\begin{array}{ll}
2 & -1 \\
3 & 4
\end{array}\right]_{2 \times 2}
\end{aligned}
$$

V> Diagonal Matrix:
A Square Matrix in which all the elements others then the leading diagonal are zest is Called, the diagonal Matrix.

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right] \\
& A=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

A diagonal Matrix in which all the diagonal elements are Called the Scalar Matrix.

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
& A=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]
\end{aligned}
$$

Vii) Unit Matrix:

A Scalar Matrix in which all the leading diagonal elements are unity is a unit matrix (Or) unique matrix.

Eg:-

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Viii Null Matrix:

elements
matrix or pesto matrix.

* Null matrix may be a Square matrix or stectangular matrix. Eg:-

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{2 \times 3}
$$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{3 \times 3}
$$

Matrix Operation:
Scalar Matrix:
When a matrix is multiplied by a Scalar every Elements in the matrix also multiplied by the Same Scalar

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& K A=\left[\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right] \\
& A=\left[\begin{array}{ll}
24 \\
6 & 1
\end{array}\right], 3 A=\left[\begin{array}{cc}
6 & 12 \\
18 & 3
\end{array}\right]
\end{aligned}
$$

Addition and Subtraction of Matrix:
Matrix: Can be added only
if they are of the same Order
Eg:-

$$
\begin{aligned}
& A+B=\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]+\left[\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right] \\
& A+B=\left[\begin{array}{ll}
4 & 7 \\
2 & 5
\end{array}\right] \\
& A-B=\left[\begin{array}{cc}
0 & -1 \\
0 & 3
\end{array}\right]
\end{aligned}
$$

Multiplication of Matrix:
i) Two matrices A and $B C a n$ be multiplied if only the number of Column in A B.) (line Product matrix of now in
Eg:
Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 3 & 4 \\
1 & 2 & 1
\end{array}\right]_{2 \times 3} B=\left[\begin{array}{ll}
2 & 4 \\
1 & 1 \\
2 & 1
\end{array}\right]_{3 \times 2} \\
& A B=\left[\begin{array}{ll}
4+3+8 & 8+3+4 \\
2+2+2 & 4+2+1
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
15 & 15 \\
6 & 7
\end{array}\right]
\end{aligned}
$$

Transpose of Matrix:
i) (For any given matrix a whose
sows are Columns of A and whose
Columns are rows of $A_{\text {in }}$ is called the transpose of A). (IIT is denoted by AT (0T) A!)

Eg:-

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
4 & 6 & 8 \\
3 & 2 & 1
\end{array}\right]_{2 \times 3} \\
A^{\top} & =\left[\begin{array}{ll}
4 & 3 \\
6 & 2 \\
8 & 1
\end{array}\right]_{3 \times 2}
\end{aligned}
$$

Determinant of a matrix:
Consider the matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ the determinant of the matrix is

$$
\begin{aligned}
& |A|=\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& |A|=a_{11} a_{22}-a_{21} a_{12}
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

$$
|A|=\left|\begin{array}{ccc}
+ & - & + \\
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

$$
=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-\right.
$$

$$
\left.a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)
$$

$2 m$
Singular and Nom-Sigular Matrix:
A Square matrix A is said
to be singular if and only if
is determinant is equal to zero.

$$
\text { ie> }|A|=0
$$

A Square, matrix A is said to be rom -Singular if and only if is determinant is not equal to zero

$$
\text { ie }>|A| \neq 0
$$

Adjoint of a matrix:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The adjoint of A is defined as to be the tomanspose of the Coffactor Matrix

$$
\begin{aligned}
& \operatorname{adj}^{\circ}=\left(A_{10}\right)^{\top} \\
& A_{i j}^{\circ j}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
& \left(A_{i j}\right)^{\top}=\left[\begin{array}{ccc}
A_{11} & A_{21} & A_{31} \\
a_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]
\end{aligned}
$$

Reciprocal and inverse of a Matrix:
If A is nom singular matrix $X A^{-1}=\frac{1}{|A|}$ adj A is defined be the inverse of the matrix. It is denoted by A^{-1}. It C an be show that $A A^{-1}=$ $A^{-1} A=1$ (OT) I
(0)

A Square Matrix A of Order n is said to be invistrole if there exists a square matrix B of Order n Such that $A B=B A=$ In and B is called the inverse of A.

It is: dented by A^{-1} :
Properties of determinant:

1. Let $A=\left[a_{i j}\right]$ be $n \times n$ matrix then i) if all, the entries in a row (ar Column) are zest. When $|A|=0$ ii if there are two distinct values of i Say S and π and a number α Such that $a_{q j}=\alpha a_{r j} \quad \forall j=1,2 \ldots n$.
2. If A and B are Square matrices then $\quad|A B|=|A||B|$
3. If A is a triangular matrix then $\mid \mathrm{Al}$ is Product of the diagonal elements of. A.

Potoblem:-

1. Let $A=\left(\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right) \quad B=\left(\begin{array}{cc}0 & 1 \\ 3 & -5\end{array}\right)$ find $A B$.

$$
\begin{aligned}
A B & =\left(\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
3 & -5
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 1+3 \\
0+9 & 2-15
\end{array}\right) \\
A B & =\left(\begin{array}{cc}
-3 & 6 \\
9 & -13
\end{array}\right)
\end{aligned}
$$

2. Find the adjoint of A. $A=\left(\begin{array}{ccc}1 & -x \\ 2 & 4 & -1 \\ 0 & 3 & 7 \\ 8 & 1 & 5\end{array}\right)$

$$
\text { Coffactor of } 2=A_{11}=+\left|\begin{array}{cc}
3 & 7 \\
1 & 5
\end{array}\right|=15-7=8
$$

Cofactor of $4=A_{12}=-\left|\begin{array}{ll}0 & 7 \\ 8 & 5\end{array}\right|=-(0-5 b)=55_{6 / 1}$

$$
\begin{aligned}
& -1=A_{13}=+\left|\begin{array}{ll}
0 & 3 \\
8 & 1
\end{array}\right|=(0-24)=-24 \\
& 0=A_{21}=-\left|\begin{array}{ll}
4 & -1 \\
1 & 5
\end{array}\right|=-(20+1)=-21 \\
& 3=A_{22}=+\left|\begin{array}{ll}
2 & -1 \\
8 & 5
\end{array}\right|=(10+8)=18 \\
& 7=A_{23}=-\left|\begin{array}{ll}
2 & 4 \\
8 & 1
\end{array}\right|=-(2-32)=30 \\
& 8=A_{31}=+\left|\begin{array}{cc}
4 & -1 \\
3 & 7
\end{array}\right|=(28+3)=31 \\
& 1=A_{32}=-\left|\begin{array}{cc}
2 & -1 \\
0 & 7
\end{array}\right|=-(14-0)=-14 \\
& 5=A_{33}=+\left|\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right|=(6-0)=6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cofactor of } A=\cdot\left[\begin{array}{ccc}
8 & 56 & -24 \\
-21 & 18 & 30 \\
31 & -14 & 6
\end{array}\right] \\
& \operatorname{agj}^{\circ} A=A^{\top}=\left[\begin{array}{ccc}
8 & -21 & 31 \\
56 & 18 & -14 \\
-24 & 30 & 6
\end{array}\right]
\end{aligned}
$$

Or if $A=\left(\begin{array}{ccc}2 & 4 & -1 \\ 0 & 3 & 7 \\ 9 & 1 & 5\end{array}\right)$ find A^{-1} !

$$
\begin{aligned}
& \left.A^{-1}=\frac{1}{|A|} \operatorname{adj} A \right\rvert\, \\
& |A|=\left|\begin{array}{ccc}
2 & 4 & -1 \\
0 & 3 & 7 \\
8 & 1 & 5
\end{array}\right| \\
& =2(15-7)-4(0-56)-1(0-24) \\
& =2(8)-4(-5 b)-1(-24) \\
& =16+224+24 \\
& |A|=264 \\
& A^{-1}=\frac{1}{264}\left[\begin{array}{ccc}
8 & -21 & 31 \\
56 & 18 & -14 \\
-24 & 30 & 6
\end{array}\right]{ }^{\frac{24}{264}}
\end{aligned}
$$

4. Find the inverse of $\left[\begin{array}{ccc}2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 1 & -2\end{array}\right]$

ฤ.

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|} \operatorname{adj} A \\
&|A|=\left|\begin{array}{ccc}
2 & 3 & 4 \\
3 & 2 & -1 \\
1 & 1 & -2
\end{array}\right| \quad(-) \\
&=2(-4-1)-3(-6-1)+4(3-2) \\
&=2(-5)-3(-7)+4(1) \\
&=-10+21+4 \\
&=25-10 \\
&|A|^{\top}=15
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adj} A & =\left(\begin{array}{ccc}
2 & 3 & 4 \\
3 & 2 & 1 \\
1 & 1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
+(-4-1) & -(-6-1) & +(3-2) \\
-(-6-11) & +(-4-4) & -(2-3) \\
+(3-8) & -(2-12) & +(4-9)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5 & 7 & 1 \\
10 & -8 & 1 \\
-5 & 10 & -5
\end{array}\right] \\
\operatorname{adj} A & =A^{\top}=\left[\begin{array}{ccc}
-5 & 10 & -5 \\
7 & -8 & 10 \\
1 & 10 & -5
\end{array}\right] \\
A^{-1} & =\frac{1}{15}\left[\begin{array}{ccc}
-5 & 10 & -5 \\
7 & -8 & 10 \\
1 & 1 & -5
\end{array}\right]
\end{aligned}
$$

5. Find the adjoint of $\left[\begin{array}{lll}3 & 1 & 2 \\ 2 & 2 & 5 \\ 4 & 1 & 0\end{array}\right]$.

$$
\begin{aligned}
\operatorname{adj} A & =\left[\begin{array}{lll}
+(0-5) & -x(0-20)+x(2-8) \\
-(0-2) & +(0-8) & -(3-4) \\
+(5-4) & -(15-4) & +(6-2)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5 & 20 & -6 \\
2 & -8 & 1 \\
1 & -11 & 4
\end{array}\right]
\end{aligned}
$$

$$
\operatorname{adj} A \cdot A^{\top}=\left[\begin{array}{ccc}
-5 & 2 & 1 \\
20 & -8 & -11 \\
-6 & 1 & 4
\end{array}\right]
$$

b. If $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 5 & 2 & 1 \\ 4 & 6 & -5\end{array}\right] \quad B=\left[\begin{array}{ccc}1 & 4 & 7 \\ -2 & 3 & 8 \\ 6 & -3 & 4\end{array}\right]$

Show that $(A+B)^{T}=A^{T}+B^{T}$

$$
\begin{aligned}
& A+B=\left[\begin{array}{lll}
2 & 3 & 4 \\
5 & 2 & 1 \\
4 & 6 & -5
\end{array}\right]+\left[\begin{array}{ccc}
1 & 4 & 7 \\
-2 & 3 & 8 \\
6 & -3 & 4
\end{array}\right] \\
&=\left[\begin{array}{lll}
3 & 7 & 11 \\
3 & 5 & 9 \\
10 & 3 & -1
\end{array}\right] \\
&(A+B)^{\top}=\left[\begin{array}{ccc}
3 & 3 & 10 \\
7 & 5 & 3 \\
11 & 9 & -1
\end{array}\right] \\
& A^{\top}=\left[\begin{array}{ccc}
2 & 5 & 4 \\
3 & 2 & 6 \\
4 & 1 & -5
\end{array}\right] \\
& B^{\top}=\left[\begin{array}{ccc}
1 & -2 & 6 \\
4 & 3 & -3 \\
7 & 8 & 4
\end{array}\right] \\
& A^{\top}+B^{\top}=\left[\begin{array}{ccc}
2 & 5 & 4 \\
3 & 2 & 6 \\
4 & 1 & -5
\end{array}\right]+\left[\begin{array}{ccc}
1 & -2 & 6 \\
4 & 3 & -3 \\
7 & 8 & 4
\end{array}\right] \\
& A^{\top}+B^{\top}==\left[\begin{array}{ccc}
3 & 3 & 10 \\
7 & 5 & 3 \\
11 & 9 & -1
\end{array}\right] \\
&(A+B)^{\top}=A^{\top}+B^{\top}
\end{aligned}
$$

\therefore Hence Proved.

$$
\begin{aligned}
(A-10 I)(A-I)= & {\left[\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right)-10\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right] } \\
& {\left[\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right] }
\end{aligned}
$$

$$
=\left(\begin{array}{ccc}
5-10 & 4-0 & -2-0 \\
4-0 & 5-10 & -2-0 \\
-2-0 & -2-0 & 2-10
\end{array}\right)\left(\begin{array}{ccc}
4 & 4 & -2 \\
4 & 4 & -2 \\
-2 & -2 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
-5 & 4 & -2 \\
4 & -5 & -2 \\
-2 & -2 & -8
\end{array}\right)\left(\begin{array}{ccc}
4 & 4 & -2 \\
4 & 4 & -2 \\
-2 & -2 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
-20+16+4 & -20+16+4 & 10-8-2 \\
16-20+4 & 16-20+4 & -8+10-2 \\
-8-8+16 & -8-8+16 & 4+4-8
\end{array}\right)
$$

$$
=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
(A-10 I)(A-I)=0
$$

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right)\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right) \quad, 4 \\
& =\left(\begin{array}{ccc}
25+16+4 & 20+20+4 & -10-8-4 \\
20+20+4 & 16+25+4 & -8-10-4 \\
-10-8-4 & -8-10-4 & 4+4+4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
45 & 44 & -22 \\
44 & 45 & -22 \\
-22 & -22 & 12
\end{array}\right) \\
& A^{2} A^{2}=\left(\begin{array}{ccc}
5 & 4 & -2 \\
4 & 5 & -2 \\
-2 & -2 & 2
\end{array}\right)\left(\begin{array}{c|cc}
45 & 44 & -22 \\
44 & 45 & -22 \\
-22 & -22 & 12
\end{array}\right) \frac{44 \times 5^{2}}{\frac{45 \times 4^{2}}{220}} \\
& =\left(\begin{array}{ccc}
225+176+44 & 220+180+44 & 180 \\
180+225+44 & -110-H 0- \\
-90-88-44 & -88-90-44 & 44+44+24
\end{array}\right) \\
& A^{3}=\left(\begin{array}{ccc}
445 & 444 & -222 \\
4445 & -244 \\
444 & 445 & -222
\end{array}\right) . \\
& \text { 8) If } A=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
3 & 1 & 0
\end{array}\right) \text { find } A^{2}, A^{3} \\
& A^{2}=\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
3 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
3 & 1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1+0+6 & 0+a+2 & 2+0+0 \\
0+0+6 & 0+1+2 & 0+2+0 \\
3+0+0 & 0+1+0 & b+2+0
\end{array}\right) \\
& =\left(\begin{array}{lll}
7 & 2 & 2 \\
6 & 3 & 2 \\
3 & 1 & 8
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
A^{3} & =A \cdot A^{2} \\
& =\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 2 \\
3 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
7 & 2 & 2 \\
6 & 3 & 2 \\
3 & 1 & 8
\end{array}\right) \\
& =\left(\begin{array}{lll}
7+0+6 & 2+0+2 & 2+0+16 \\
0+6+6 & 0+3+2 & 0+2+16 \\
21+6+0 & 6+3+0 & 6+2+0
\end{array}\right) \\
A^{3} & =\left(\begin{array}{lll}
13 & 4 & 18 \\
12 & 5 & 18 \\
2 T & 9 & 8
\end{array}\right)
\end{aligned}
$$

9. If $A=\left(\begin{array}{cc}3 & -4 \\ 1 & -1\end{array}\right)$ find A^{2}, A^{3}

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
9-4 & -12+4 \\
3-1 & -4+1
\end{array}\right) \\
A^{2} & =\left(\begin{array}{ll}
5 & -8 \\
2 & -3
\end{array}\right) \\
A^{2} \cdot A^{2} & =\left(\begin{array}{ll}
5 & -8 \\
1 & -3
\end{array}\right) \cdot\left(\begin{array}{ll}
3 & -4 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
15-8 & -20+8 \\
6-3 & -8+3
\end{array}\right) \\
A^{3} & =\left(\begin{array}{ll}
7 & -12 \\
3 & -5
\end{array}\right)
\end{aligned}
$$

Find determinant of $A=\left(\begin{array}{ccc}2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 1 & -2\end{array}\right)$

$$
\begin{aligned}
|A| & =\left|\begin{array}{ccc}
2 & 3 & 4 \\
3 & 2 & 1 \\
1 & 1 & -2
\end{array}\right| \\
& =2(-4-1)-3(-6-1)+4(3-2) \\
& =2(-5)-3(-7)+4(1) \\
& =-10+21+4 \\
& =-10+25 \\
|A| & =15
\end{aligned}
$$

11. Find determinant of $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
|A| & =\left|\begin{array}{cc}
2 & 4 \\
1 & 1
\end{array}\right| \\
& =2-4 \\
|A| & =-2
\end{aligned}
$$

$10 \mathrm{MARKS}:-$

1. Show that the matrix $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$

Satisfies the equation. $A^{3}-6 A^{2}+9 A-4 I=0$ and then stteduce A^{-1}.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
&=\left[\begin{array}{ccc}
4+1+1 & -2-2-1 & 2+1+2 \\
-2-2-1 & 1+4+1 & -1-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& A \cdot A^{2}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
&=\left[\begin{array}{ccc}
12+5+5 & -10-6-5 & 10+5+6 \\
-6-10-5 & 5+12+5 & -5-10-6 \\
6+5+10 & -5-6-10 & 5+5+12
\end{array}\right] \\
&=\left[\begin{array}{rrr}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right] \\
& A^{3}-6 A^{2}+9 A-4 I \neq\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{cc}
21 & -1 \\
-1 & 2 \\
1 & -1
\end{array}\right] \\
&=\left[\begin{array}{ccc}
22 \\
-21 & 22 & 21 \\
21-21 & 22
\end{array}\right] \\
&-4\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]+\left[\begin{array}{ccc}
-36 & 30 & -30 \\
30 & -36 & 30 \\
-30 & 30 & -36
\end{array}\right]+\left[\begin{array}{ccc}
18 & -9 & 9 \\
-9 & 18 & -9 \\
9 & -9 & 18
\end{array}\right] \\
& \\
& +\left[\begin{array}{ccc}
-4 & 00 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22-36+18-4 & -21+30-9+0 & 21130+9+0 \\
-21+30-9+0 & 22-36+18-4 & -21+30-9+0 \\
21-30+9+0 & -21+30-9+0 & 22-36+18-4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& A^{3}-6 A^{2}+9 A-4 I=0
\end{aligned}
$$

Deduce A^{-1}..

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I=0 \\
& x \text { lb } A^{-1} \\
& A^{-1} A^{3}-6 A^{-1} A^{2}+9 A A^{-1}-4 A^{-1} I=0 . \\
& A^{2}-6 A+9 I-4 A^{-1}(1)=0 \\
& B_{0} \text { th }^{8} \times-4 A^{-1}=-A^{2}+6 A-9 I \\
& 4 A^{-1}=A^{2}-6 A+9 I \\
& =\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+ \\
& 9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
6-12+9 & -5+6+0 & 5-6+0 \\
-5+6+0 & 6-12+9 & -5+6+0 \\
5-6+0 & -5+6+0 & 6-12+9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 4 A^{-1}=\left[\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right] \\
& A^{-1}=\frac{1}{4}\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
\end{aligned}
$$

20 Show that the matrix $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$
Statisfies the equation $A^{2}-4 A+3 I=0$ \& then clectuce A^{-1}.

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] \\
&=\left[\begin{array}{cc}
4+1 & -2-2 \\
-2-2 & 1+4
\end{array}\right] \\
&=\left[\begin{array}{cc}
5 & -4 \\
-4 & 5
\end{array}\right] \\
& A^{2}-4 A+3 I=\left[\begin{array}{cc}
5 & -4 \\
-4 & 5
\end{array}\right]-4\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]+3\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
&=\left[\begin{array}{cc}
5-8+3 & -4+4+0 \\
-4+4+0 & 5-8+3
\end{array}\right] \\
&=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] \\
& A^{2}-4 A+3 I=0
\end{aligned}
$$

$$
\begin{aligned}
& A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A \\
&=\Lambda \\
&|A|=\left|\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right| \\
&=4-1 \\
&=3 \\
& A^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
1 & 2
\end{array}\right] \\
& \text { Or }
\end{aligned}
$$

Deduce A^{-1}

$$
\begin{aligned}
& x \text { by } A^{-1} \\
& A^{2} A^{-1}-4 A A^{-1}+3 I A^{-1}=0 \\
& A-4 I+3 \cdot A^{-1}(1)=0 \\
& \begin{aligned}
&+3 A^{-1}=-A+4 I \\
& x \operatorname{by}(-) \\
&-3 A^{-1}=A-4 I
\end{aligned} \\
& =\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]-4\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
2-4 & -1+0 \\
-1-0 & 2-4
\end{array}\right] \\
& =3 A^{-1}=\left[\begin{array}{lc}
-2 & -1 \\
-1 & -2
\end{array}\right] \\
& +A^{-1}=\frac{1}{-3}\left[\begin{array}{cc}
-2 & -1 \\
-1 & -2
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

Symmentaic and Skew Symmetric:
A Square matrix $A=\left[a_{i j j}\right.$ is Called Symmetric matrix if the (i, i, th element of A is equal to the $(j, i)^{\text {th }}$ element of A.

$$
\begin{aligned}
& \text { (ie) }\left[a_{j j}\right]=\left[a_{j i}\right] \quad \forall i, j \\
& \left.A=A^{1}\right] \\
& A \text { Square matrix } A=\left[a_{j j}\right]
\end{aligned}
$$

is Said to be Skew Symmetric

$$
\begin{aligned}
& \text { is thad } c i, j, \text { th element is equal } \\
& \text { if the } \\
& \text { to } \text { negative toft th }(j, i) \text { th element }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to the negative toft th }(B, i)^{\text {th }} \text { element } \\
& \text { of } A \text {. }
\end{aligned}
$$ of A.

(ie) $\left[a_{i j}\right]=-\not x\left[a_{j i}\right] \quad \forall i, j$

Theorem:

$$
A=-A^{\prime}
$$

Show that every Square matrix Can be uniquely Expressed as the Sum of Symmetric, and skew Symmetric.

Let A be a Square matrix.
Thereflare $A=\frac{1}{2}\left(\widehat{A+A^{\prime}}\right)+\frac{1}{2}\left(A^{\prime}-A^{\prime}\right) \rightarrow(1)$
Now $\left(\frac{A+A^{\prime}}{A^{\prime}}\right)^{\prime}=A^{\prime}+\left(A^{\prime}\right)^{\prime}=A^{\prime}+A=A+A^{\prime}$

$$
\begin{aligned}
& \left(A-A^{\prime}\right)^{\prime}=A^{\prime}-\left(A^{\prime}\right)^{\prime}=A^{\prime}-A=-\left(A-A^{\prime}\right) \\
& A^{\prime}=-A
\end{aligned}
$$

$A+A^{\prime}$ is Symmetric
$A^{\prime}-A^{\prime}$ is Skew Symmetric
from (1)

$$
\begin{aligned}
& \bar{A}=P+Q \rightarrow(2) \\
& P=\frac{\Gamma}{2}\left(A+A^{\prime}\right) \text { is Symmetric } \\
& Q=\frac{1}{2}\left(A-A^{\prime}\right) \text { is Skew Symmetric }
\end{aligned}
$$

Any Square matrix can be expressed as the Sum. of Symmetric and Skew Symmetric.
uniqueness:
Suppose $\dot{A}=R+S \rightarrow(3)$
where R is Symmetric S is Skew Symmetric
Then

$$
\begin{aligned}
& A=R+S \\
& A^{\prime}=R-S \rightarrow(4)
\end{aligned}
$$

(3) $\&(4)$

$$
\begin{aligned}
& A+A^{\prime}=2 R \\
& R=\frac{1}{2}\left(A+A^{\prime}\right)=P \\
& A-A^{\prime}=2 S \\
& S=\frac{1}{2}\left(A-A^{\prime}\right)=Q
\end{aligned}
$$

Therefore there is only one way of
Expressing a square matrix as a Sum of Symmetric and Skew Symmetric.

Express $A=\left[\begin{array}{lll}6 & 8 & 5 \\ 4 & 2 & 3 \\ 9 & 7 & 1\end{array}\right]$ as the Sum of Symmetric and Skein Symmetric.

$$
\begin{aligned}
& A^{\prime}=\left[\begin{array}{lll}
6 & 4 & 9 \\
8 & 2 & 7 \\
5 & 3 & 1
\end{array}\right] \\
& A=\frac{1}{2}\left(A+A^{\prime}\right)+\frac{1}{2}\left(A-A^{\prime}\right) \\
& \frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left\{\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
9 & 7 & 1
\end{array}\right]+\left[\begin{array}{lll}
6 & 4 & 9 \\
8 & 2 & 7 \\
5 & 3 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left[\begin{array}{ccc}
12 & 12 & 14 \\
12 & 4 & 10 \\
14 & 10 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
6 & 6 & 7 \\
6 & 2 & 5 \\
7 & 5 & 1
\end{array}\right] \\
& \frac{1}{2}\left(A-\dot{A}^{\prime}\right)=\frac{1}{2}\left\{\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
9 & 7 & 1
\end{array}\right]-\left[\begin{array}{lll}
6 & 4 & 9 \\
8 & 2 & 7 \\
5 & 3 & 1
\end{array}\right]\right\} \\
& =\frac{1}{2}\left[\begin{array}{ccc}
0 & 4 & -4 \\
-4 & 0 & -4 \\
4 & 4 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & -2 \\
2 & 2 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
6 & 6 & 7 \\
6 & 2 & 5 \\
7 & 5 & 1
\end{array}\right]+\left[\begin{array}{ccc}
0 & 2 & -2 \\
-2 & 0 & -2 \\
2 & 2 & 0
\end{array}\right] \\
A & =\left[\begin{array}{lll}
6 & 8 & 5 \\
4 & 2 & 3 \\
9 & 7 & 1
\end{array}\right]
\end{aligned}
$$

Theorem: $\left[\begin{array}{ccc}9 & 7 & 1\end{array}\right]$ both symmetric then Poroof: B - Symmetric if and only if A and B are Commutation e $A \cdot \xi B$ is Symmetric

$$
\begin{aligned}
& A^{\prime}=A \\
& B^{\prime}=B
\end{aligned}
$$

Hence $(A B)^{\prime}=B^{\prime} A^{\prime}=B A \rightarrow$ (1)
\Rightarrow If $A \xi_{1} B$ are Commutative then

$$
A B=B A \rightarrow(2)
$$

from (1) $\Rightarrow(A B)^{\prime}=B A=A B$
$A B$ is symmetriC
\Rightarrow Also (AB) is symmetric
(2) Then

$$
(A B)^{\prime}=A B \rightarrow 3
$$

But $(A B)^{\prime}=B^{\prime} A^{r}=B A \rightarrow$ (4)
from (3) (4)

$$
A B=B A
$$

Hence $A \& B$ is Commutative.

Theorem:
If $A \& B$ are symmetric (Skew
Symmetric) Show that $A+B$ is
Symmetric (Skew Symmetric)
i) $A \& B$ are Symmetric

$$
\begin{aligned}
& A^{\prime}=A \\
& B^{\prime}=B
\end{aligned}
$$

Now $(A+B)^{\prime}=A^{\prime}+B^{\prime}=A+B$
$A+B$ is Symmetric.
ii) $A \& B$ is Skew Symmetric

$$
\begin{aligned}
A^{\prime} & =-A \\
B^{\prime} & =-B \\
(A+B)^{\prime} & =A^{\prime}+B^{\prime}=-A-B=-(A+B)
\end{aligned}
$$

$A+B$ is Skew Symmetric
10 m Cutamert's Rule:
Consider the equation

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=d_{1} \rightarrow(1) \\
& a_{2} x+b_{2} y+c_{2} z=d_{2} \rightarrow(2) \\
& a_{3} x+b_{3} y+c_{3} z=d_{3} \rightarrow(3)
\end{aligned}
$$

Let $\Delta=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$
x lying both Side by x

$$
\Delta x=\left[\begin{array}{ccc}
a_{1} x & b_{1} & c_{1} \\
a_{2} x & b_{2} & c_{2} \\
a_{3} x & b_{3} & c_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right]=\Delta x(S \text { Say })} \\
& \text {-Then } x-\frac{\Delta x}{x \Delta} \quad x= \\
& \text { Similarly }^{\mid y} y=\frac{\Delta y}{\Delta} \\
& z=\frac{\Delta z}{\Delta}
\end{aligned}
$$

Where

$$
\Delta y=\left[\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right] \Delta I=\left[\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right]
$$

1. Solve the equation

$$
\begin{aligned}
& x+y+z=-1 \rightarrow(1) \\
& x+2 y+3 z=-4 \rightarrow(2) \\
& x+3 y+4 z=-6 \rightarrow(3)
\end{aligned}
$$

$$
\text { Let } \Delta=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 4
\end{array}\right]
$$

$$
=1(8-9)-1(4-3)+1(3-2)
$$

$$
=-1-1+1
$$

$$
\Delta=-1
$$

$$
\begin{aligned}
\Delta x & =\left[\begin{array}{lll}
-1 & 1 & 1 \\
-4 & 2 & 3 \\
-6 & 3 & 4
\end{array}\right] \\
& =-1(8-9)-1(-16+18)+1(-12+12) \\
& =-1(-1)-1(2)+1(0) \\
& =1-2+0 \\
\Delta x & =-1
\end{aligned}
$$

$$
\begin{aligned}
\Delta y & =\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & -4 & 3 \\
1 & -6 & 4
\end{array}\right] \\
& =1(-16+18)+1(4-3)+1(-6+4) \\
& =1(2)+1(1)+1(-2) \\
& =2+1-2 \\
\Delta y & =1 \\
\Delta z & =\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & -4 \\
1 & 3 & -6
\end{array}\right] \\
& =1(-12+12)-1(-6+4)-1(3-2) \\
& =1(0)-1(-2)-1(1) \\
& =0+2-1 \\
\Delta z & =1
\end{aligned}
$$

$$
x=\frac{\Delta x}{\Delta}=\frac{-1}{-1}=1
$$

$$
y=\frac{\Delta x}{\Delta}=\frac{1}{-1}=-1
$$

$$
I=\frac{\Delta I}{\Delta}=\frac{1}{-1}=-1
$$

$$
\therefore x=1
$$

$$
\therefore y=-1
$$

$$
\therefore \quad I=-1
$$

1. W
2. Solve the equation

$$
\begin{aligned}
& 2 y-3 z=0 \rightarrow(1) \\
& x+3 y=-4 \rightarrow(2) \\
& 3 x+4 y=3 \quad \rightarrow(3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } \Delta=\left[\begin{array}{lll}
0 & 2 & -3 \\
1 & 3 & 0 \\
3 & 4 & 0
\end{array}\right] \\
& =0(0-0)-2(0-0)-3(4-9) \\
& =0-0-3(-5) \\
& \Delta=15 \\
& \Delta x=\left[\begin{array}{ccc}
0 & 2 & -3 \\
-4 & 3 & 0 \\
3 & 4 & 0
\end{array}\right] \text {. } \\
& \begin{array}{l}
=00(0-0)-2(0-0)-3(-16-9) \\
=0-0-3(-25)
\end{array} \\
& =75 \\
& \Delta y=\left[\begin{array}{ccc}
0 & 0 & -3 \\
1 & -4 & 0 \\
3 & 3 & 0
\end{array}\right] \\
& =0(-0-0)-0-3(3+12) \\
& =-3(15) \\
& =-45 \\
& \Delta I=\left|\begin{array}{ccc}
0 & 2 & 0 \\
1 & 3 & -4 \\
3 & 4 & 3
\end{array}\right| \\
& =0-2(3+12)+0 \\
& =-2(15) \\
& =- \text { 物 } 30 \\
& x=\frac{\Delta x}{\Delta}=\frac{75}{15}=\text { ₹ } \\
& x=5 \\
& y=\frac{\Delta y}{\Delta}=\frac{-45}{15}=-3 \\
& y=-3 \\
& I=\frac{\Delta z}{\Delta}=\frac{-30}{15}=-2 \\
& z=-2
\end{aligned}
$$

१. Solve the equation

$$
\begin{aligned}
& \frac{x^{2} z^{3}}{y}=e^{8} \\
& \frac{y^{2} z}{x}=e^{4} \\
& \frac{x^{3} y}{z^{4}}=1
\end{aligned}
$$

Formula:-
$\log \left(\frac{a}{b}\right)=\log _{a}-\log _{b}$
$\log (a b)=\log a+\log b$
$=\log a^{x}=x \log a$

Taking \log on both Side

$$
\log \left(\frac{x^{2} z^{3}}{y}\right)^{109}=\left(x^{8}\right)
$$

$$
\log \left(x^{2} z^{3}\right)-\log y=8
$$

$$
\log x^{2}+\log z^{3}-\log y=8
$$

$$
2 \log x+3 \log z-\log y=8
$$

$$
2 \log x-\log y+3 \log z=8 \rightarrow \text { (1) }
$$

Taking \log on bS

$$
\begin{aligned}
& \log \left(\frac{y^{2} z}{x}\right)=\log \left(e^{4}\right) \\
& \log \left(y^{2} z\right)-\log x=4 \\
& \log y^{2}+\log z-\log x=4 \\
& 2 \log y+\log z-\log x=4 \\
& -\log x+2 \log y+\log z=4 \rightarrow(2) \\
& \frac{x^{3} y}{z^{4}}=1
\end{aligned}
$$

Taking \log on bs

$$
\begin{aligned}
& \log \left(\frac{x^{3} y}{z^{4}}\right)=\log 1 \\
& \log \left(x^{3} y\right)-\log z^{4}=0 \\
& \log x^{3}+\log y-\log z^{4}=0 \\
& 3 \log x+\log y-4 \log z=0 \rightarrow \text { (3) }
\end{aligned}
$$

This is a Set of linear equation in the variables $\log x, \log y, \log z$

$$
\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2 & -1 & 3 \\
-1 & 2 & 1 \\
3 & 1 & -4
\end{array}\right| \\
& =2(-8-1)+1(4-3)+3(-1-6) \\
& =2(-9)+1(1)+3(-7)^{\prime} \\
& =-18+1-21 \\
& =-39+1 \\
\Delta & =-38
\end{aligned}
$$

$$
\begin{aligned}
\Delta \log x & =\left|\begin{array}{ccc}
8 & -1 & 3 \\
4 & 2 & 1 \\
0 & 1 & -4
\end{array}\right| \\
& =8(-8-1)+1(-16-0)+3(4-0)
\end{aligned}
$$

$$
=8(-9)+1(-16)+3(4)
$$

$$
=-72-16+12
$$

$$
=-88+12
$$

$$
=-76
$$

$$
\Delta \log y=\left|\begin{array}{ccc}
2 & 8 & 3 \\
-1 & 4 & 1 \\
3 & 0 & -4
\end{array}\right|
$$

$$
=2(-16-0)-8(4-3)+3(0-12)
$$

$$
=2(-16)-8(1)+3(-12)
$$

$$
=-32-8-36
$$

$$
=-76
$$

$$
\begin{aligned}
& \begin{aligned}
& \Delta \log I=\left|\begin{array}{ccc}
2 & -1 & 8 \\
-1 & 2 & 4 \\
3 & 1 & 0
\end{array}\right| \\
&=2(2-4)+1(-0-12)+8(-1-6) \\
&=2(-44)+1(-12)+8(-7) \\
&=-8-12-56 \\
& \begin{aligned}
\Delta \log I & =-76
\end{aligned} \\
& \begin{aligned}
\log x & =\frac{\Delta \log x}{\Delta} \\
& =\frac{-T b}{-38}
\end{aligned} \\
& \log x=2
\end{aligned}
\end{aligned}
$$

Taking 'e' on bs

$$
\begin{aligned}
& \log e^{x}=e^{2} \\
& \therefore x=e^{2} \\
& \log y=\frac{\Delta \log y}{\Delta}=\frac{-76}{-38}=2
\end{aligned}
$$

Taking 'e" on bs

$$
\begin{aligned}
& x^{\log x=e^{2}} \\
& \therefore y=e^{2} \\
& \log z=\frac{\Delta \log z}{\Delta}=\frac{-76}{-38}=2
\end{aligned}
$$

Taking e' on bs

$$
\begin{aligned}
& \notin \log I=e^{2} \\
& \therefore \quad I=e^{2}
\end{aligned}
$$

Elementary Operation \& Rants of Matrix:
There are three types of Elementary sow Operation and there types of. Elementary Column operation.
is The interchange of cay two sows.
is Muthiphing multiplication of a row
by
noil zero number (α).
iii Addition of any multiple of one sow with any other sow.
Inverse of a matrix using Now
Operation: Operation:
Find the inverse of $\left[\begin{array}{ccc}9 & -1 & -3 \\ -5 & 1 & 2 \\ 10 & -1 & -4\end{array}\right]$
Using Elementary operation.

$$
\begin{aligned}
|A| & =\left|\begin{array}{ccc}
8 & -1 & -3 \\
-5 & 1 & 2 \\
10 & -1 & -4
\end{array}\right| \\
& =8(-4+2)+1(20-20)-3(5-10) \\
& =8(-2)+0-3(-5) \\
& =-16+15 \\
|A| & \neq-1 \quad|A| \neq 0
\end{aligned}
$$

The inverse A^{-1} exist

$$
\begin{gathered}
A=I A \\
{\left[\begin{array}{ccc}
8 & -1 & -3 \\
-5 & 1 & 2 \\
10 & -1 & -4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & \frac{-1}{8} & -3 / 8 \\
-5 & 1 & 2 \\
10 & -1 & -4
\end{array}\right]=\left[\begin{array}{lll}
y_{8} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A \quad R_{1} \rightarrow \frac{R_{1}}{8}} \\
& {\left[\begin{array}{ccc}
1 & -1 / 8 & -3 / 8 \\
0 & 3 / 8 & 1 / 8 \\
0 & 2 / 8 & -2 / 8
\end{array}\right]=\left[\begin{array}{ccc}
1 / 8 & 0 & 0 \\
5 / 8 & 1 & 0 \\
-10 / 8 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}+5 R_{1} \\
R_{3} \rightarrow R_{3}-10 R_{1}
\end{array}} \\
& {\left[\begin{array}{ccc}
1 & -1 / 8 & -3 / 8 \\
0 & 1 & 1 / 3 \\
0 & 2 / 8 & -2 / 8
\end{array}\right]=\left[\begin{array}{ccc}
1 / 8 & 0 & 0 \\
5 / 8 & 8 / 3 & 0 \\
-10 / 8 & 0 & 1
\end{array}\right] A R_{2} \rightarrow\left(\frac{8}{3} R_{2}\right)} \\
& {\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & -1 / 3
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 0 \\
5 / 3 & 8 / 3 & 0 \\
-5 / 3 & -2 / 3 & 1
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+\frac{1}{8} R_{2} \\
R_{3} \rightarrow R_{3}-\frac{2}{8} R_{2}
\end{array}} \\
& {\left[\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 1 / 3 & 0 \\
5 / 3 & 8 / 3 & 0 \\
5 & 2 & -3
\end{array}\right] \quad A \quad R_{3} \rightarrow-3 R_{3}} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{array}\right] \begin{array}{l}
R_{1} \rightarrow R_{1}+\frac{1}{3} R_{3} \\
R_{2} \rightarrow R_{2}-\frac{1}{3} R_{3}
\end{array}} \\
& \text { Hence } A^{-1}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 2 & 1 \\
5 & 2 & -3
\end{array}\right]
\end{aligned}
$$

Rank of Matrix:-
Two matrices A and B of the Sane Order are Said to be equalvalent to each others if one of them can be obtained from the other by Successive applications of elementary operations. We unite,
Column Column operations.

Canonical form
If A is a $\pi x n$ matrix then the
unique
non
Surich that
$A \sim\left[\begin{array}{cc}I_{0} & 0 \\ 0 & 0\end{array}\right]$ is Said to be the coranto of A. and is denoted by or (A). The matrix is Called Cosmical form of A.
Find the Tank of $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 \\ 0 & 3 & 4 & 2\end{array}\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 \\
0 & 3 & 4 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -3 & -4 & -2 \\
0 & 3 & 4 & 2
\end{array}\right] \quad R_{2} \rightarrow R_{2}-4 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & -3 & -4 & -2 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{3} \rightarrow R_{3}+R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 4 / 3 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{2} \rightarrow-\frac{1}{3} R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 14 / 3 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
C_{2} \rightarrow C_{2}-C_{1} \\
C_{3} \rightarrow C_{3}-C_{1} \\
C_{4} \rightarrow C_{4}-C_{1}
\end{array} \\
& \sim\left[\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right] \begin{array}{l}
C_{3} \rightarrow C_{3} \frac{-4}{3} C_{2} \\
C_{4} \rightarrow C_{4}-\frac{2}{3} C_{2}
\end{array} \\
& \sim\left[\begin{array}{ll}
I_{2} & 0 \\
0 & 0
\end{array}\right] \\
& \pi(A)=2 \\
& \text { Find the Canonical form of } A=\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 14 \\
1 & 4 & 7 & 30
\end{array}\right] \\
& A=\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 4 \\
1 & 4 & 7 & 30
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 3 & 6 & 24
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 1 & 2 & 8
\end{array}\right] \quad R_{3}-\frac{R_{3}}{3} \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] R_{3} \rightarrow R_{3}-R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] R_{1} \rightarrow R_{1}-R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] C_{3} \rightarrow C_{3}+C_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & -2 \\
0 & 1 & 0 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] C_{3} \rightarrow C_{4}-2 C_{1} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 8 \\
0 & 0 & 0 & 0
\end{array}\right] C_{4} \rightarrow C_{4}+2 C_{1} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] C_{4} \rightarrow C_{4}-8 C_{2} \\
& \sim\left[\begin{array}{ccc}
I_{2} & 0 \\
0 & 0
\end{array}\right] \\
& \sim(A)=2
\end{aligned}
$$

Solving a System of linear equation.
(A^{x} System $A x=B$ Suppose we are given m equation and) n)

Consider a system of m linear equations in n variables $x_{1}, x_{2} \ldots x_{n}$ given by $a_{11} x_{1}+a_{12} x_{2}+\ldots .+a_{1 n} x_{n}=b_{1}$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \cdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

Hest the Contusions Coefficients $a_{i j}$ are seal ar Complex. numbers. The Constants $b_{1}, b_{2} \ldots b_{m}$ are also" steal or Complex numbers.

The System can be written as $A x=B \quad$ Whet

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{m_{1}} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text { and } B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\check{b}
\end{array}\right]
$$

The $m \times n$ matrix A is called the Coefficient matrix.

$$
\text { The } m \times(n+1) \text { matrix }\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\cdots & \cdots & \cdots & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

is called the argumented matrix of the System ξ is denoted by $[A \mid B]$

As A is a Submatrix. of a matrix [A/B].

We have sonant of $A \quad R(A) \leq R[A \mid B]$
The System have a Solution
A System $A x=B$ is Said to be
Consistent if it has atleast one Solution otherwise it is Said to be inconsistent.
i) A System $A=B$ is Consistent if and only if $R(A)=R[A \mid B]$ Solution
is Has a unique Solution if and only if oTranto of $A=R(A)<R(A, B)$

$$
\begin{aligned}
R(A) & =R[A \mid B] \quad \text { Inconsistent \& no Sol } \\
& =\min \{m, n\}
\end{aligned}
$$

iii) As infinitely mary Solution
if and only if $\operatorname{tr}(A)=R[A \mid B]$

$$
<\min \{m, n\}
$$

i) Coefficient of A
ii) argument (A, B)
iii) find 'the Ranks Consent $A(A)=Q R(A \mid B)=\gamma$ - $\partial=n \cdot$ undrape

$$
R(A)=R(A, B)=r
$$

IT\& $<$ infinite

Verify whether the following System of equation is Consistent if it is Consistent find the Solution.

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=1 \\
& 2 x_{1}+x_{2}+4 x_{3}-2 \\
& 3 x_{1}+5 x_{2}+x_{3}=-1 \\
& A= {\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 4 \\
3 & 5 & 1
\end{array}\right], B=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right] \times\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } \\
& {[A, B]=\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
2 & 1 & 4 & 2 \\
3 & 5 & 1 & -1
\end{array}\right] } \\
& \sim {\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -1 & 0 & 0 \\
3 & 5 & 1 & -1
\end{array}\right], R_{2} \rightarrow R_{2}-2 R_{1} } \\
& \sim {\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -1 & 0 & 0 \\
0 & 2 & -5 & -4
\end{array}\right], R_{3} \rightarrow R_{3}-3 R_{1} } \\
& \sim {\left[\begin{array}{cccc}
1 & 1 & 2 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -5 & -4
\end{array}\right] \quad R_{3} \rightarrow R_{3}+2 R_{2} } \\
& P(A)=3 \\
& P(A, B)=3 \\
& P(A)=P(A, B) .
\end{aligned}
$$

The System of. equation is Consistent.

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=1 \\
& 0 x_{1}-x_{2}+o x_{3}=0 \\
& 0 x_{1}+o x_{2}-5 x_{3}=-4
\end{aligned}
$$

$$
\begin{array}{r}
x_{2}=0 \\
-5 x_{3}=-4 \\
x_{3}=\frac{4}{5} \\
x_{1}+x_{2}+2 x_{3}=1 \\
x_{1}+0+2\left(\frac{4}{5}\right)=1 \\
x_{1}+\frac{8}{5}=1 \\
x_{1}=1-\frac{8}{5} \\
=\frac{5-8}{5} \\
x_{1}
\end{array}=\frac{-3}{5} .
$$

The Solutions are

$$
\begin{aligned}
& x_{1}=-3 / 5 \\
& x_{2}=0 \\
& x_{3}=4 / 5 .
\end{aligned}
$$

d.

$$
\begin{aligned}
& x+2 y+z=11 \\
& 4 x+6 y+5 z=8 \\
& 4 x+4 y+6 z=38
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 1 \\
4 & 6 & 5 \\
4 & 4 & 6
\end{array}\right]: B=\left[\begin{array}{c}
11 \\
8 \\
38
\end{array}\right] \quad X=\left[\begin{array}{c}
x \\
y \\
7
\end{array}\right] \\
& {[A, B]=\left[\begin{array}{llll}
1 & 2 & 1 & 11 \\
4 & 6 & 5 & 8 \\
4 & 4 & 6 & 38
\end{array}\right] .}
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 11 \\
0 & -2 & 1 & -36 \\
0 & -4 & 2 & -6
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-4 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}
\end{array} \\
& \approx\left[\begin{array}{cccc}
1 & 2 & 11 \\
0 & -2 & 10 \\
0 & 0 & 0 & 66
\end{array}\right] \quad \begin{array}{l}
R_{3} \rightarrow R_{3}-2 R_{2}
\end{array} \\
& \rho(A)=2 \\
& \rho(A, B)=3 \\
& \rho(A) \neq \rho(A, B)
\end{aligned}
$$

The System if equation is inconsistent \& there is no Solution.
For what Values of $\lambda \xi \mu$ the System of equation

$$
\begin{aligned}
& x+y+z=6 \\
& x+2 y+3 z=10 \\
& x+2 y+\lambda z=\mu
\end{aligned}
$$

is Inconsistent
ii) Consistent
iii> Consistent and the Solution is unique. iv) Infinite Number of Solution

$$
[A, B]=\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 10 \\
1 & 2 & \lambda & \mu
\end{array}\right]
$$

$$
\approx\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & 1 & \lambda-1 & \mu-6
\end{array}\right] \quad \begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1} \\
& R_{3} \rightarrow R_{3}-R_{1}
\end{aligned}
$$

$$
\sim\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & x_{-3}^{-3} & \mu_{1}^{6}-10
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2}
$$

$$
\begin{gathered}
\rho(A)=3 \\
\rho(A, B)=3 \\
\rho(A)=\rho(A, B)=3
\end{gathered}
$$

(i) Inconsistent:

If $\lambda=3$ and $\mu \neq 10 \quad \rho(A) \neq \dot{\rho}(A, B)$ The System is in Consistent.
(ii) Consistent:

If $\lambda \neq 3$ and $\mu \neq 10$

$$
\rho(A)=3, \rho(A, B)=3
$$

\therefore The System of Equation is Consistent
(iii) Consistent and the Solution is unique:

$$
\begin{gathered}
\text { If } \lambda \neq 3 \quad \mu \neq 10 \\
e(A)=3 \quad e(A, B)=3 \\
\pi=3 \quad \& n=3 \\
\pi=n
\end{gathered}
$$

\therefore The System of equation is Consistent and has unique Solution.
(iv) Infinite number of Solution:

$$
\text { If } x=3 \xi \quad \mu=10 \quad C(A)=0 \quad P(A, B)=2
$$

$$
\pi=2 \quad \xi \quad n=3
$$

\therefore The system of equation has
\& has infinity mary Solution

Eigen Values and Eigen Vectors:

1. A Square Matrix A and its transpose A^{T} have the Same eigen values.
a. If a square matrix is a triangular matrix, its characteristic poufs are diagonal elements. In Particular for a diggorial
matrix its diagonal elements on the characteristic roofs
2. The sum of the eiger values of a matrix A is equal to the Sum of elements on its diagonal.

The Gum of diagonal elements of a Square matrix A is Called in trace.
Hence we have the result
-The Sum of the eiger vales of a matrix is equal to its trace. Hence we have the result.
4. If $\lambda_{1}, \lambda_{2}, \ldots \lambda$ in are the eigen values of a matrix A.
i) the inverse matrix A^{-1} has the eigen values $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}}, \cdots \frac{1}{\lambda_{n}}$.
ii) The matrix A^{m} (where m is a Positive integers has the eigen values $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots \lambda_{n}^{m}$.
iii) The matrix KA (where k is an arbitrary Scalar) has the latent Grots $k \lambda_{1}, k \lambda 2, \ldots k \lambda n$. (Egigen values are also Called, latent: roots).:

5 Every Square matrix A Satisfies it $s_{2 m}$ Down characteristic equation. (Eayley Hamitten Héorem).
6. The characteristic roots of a real Symmetric: matrix are, all Teal.

Theorem:
Two Similar matrices have the Same characteristic cots.
Poroof:
Let A and B be Similar matrix, then $B=P^{-1} A P$ for Some inverable matrix P. Now

$$
\begin{aligned}
& \lambda I=B=\lambda I-P^{-4} A P=P^{-1} \lambda I P-P^{-1} \cdot A P=P^{-1}(\lambda I-A) P \\
& S_{0},|\lambda I-B|=\left|P^{-1}(\lambda I-A) P\right| \\
& =\left|P^{-1}\right| \lambda I-A|P=|\lambda I-A| \cdot a S \operatorname{det} \\
& |P-1|=\left(\operatorname{det}\left|P^{-1}\right|\right)
\end{aligned}
$$

Thus A and: B have the Same Characteristic equation and the Same characteristic roots

We already noted that the characteristic roots of a steal Symmetric matrix are all real. If A is a steal. Symmetric matrix of under n with characteristic roots $x_{1}, x_{2}, \ldots \lambda_{n}$ then there exists a real orthogonal matrix P Such that $P^{-1} A P=$ the diagonal matrix $\left(\lambda_{1}, \times_{2}, \ldots, n_{n}\right) \sqsubset A$ steal matrix P is Said to be orthogonal if $P^{-1}=P T$.

Given a real Symmetric matrix A, find its characteristic grots $\lambda_{1}, \lambda_{2}, \ldots \lambda n$. Arrange. The grots S_{0} that $\lambda_{1} \geq \lambda_{2} \geq \ldots$ $\geq \lambda n$. Then A is Similar: to diag $\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right)$. 10 find the matrix P, to each λ, find an eigen vector x; associates. with $>i$ If λi is a multiple root of the characteristic equation $|\lambda I-A|=0$ (ie if λi is a repeated root) of multiplicity mri Select eigon vectors associated with $>$ Such that they are mutually Orthogonal, If $x=\left(x_{1}, x_{2}, \ldots x_{n}\right)$ and $y=\left(y_{1}, y_{2} \ldots y_{n}\right)$ we Say x and y ore orthogonal if and only if $x_{1} y_{1}+x_{2} y_{2}+\ldots x_{n} y_{n}=0$)

Now, normalize the eigen vectors $x_{1}, x_{2}, \ldots x_{n}$ and obtain $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots x_{n}{ }^{\prime}$. Then $P=\left[x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \ldots x_{n}{ }^{\prime}\right]$

Characteristic Root:
Let A be a $\pi \times n$ Square matrix
Over a field F and I be the unit matrix of the Same order: The determine characteristic $|A-\lambda I|$ is called matrix A. The equation Polynomial of the called the $\operatorname{det}|A-\lambda I|=0$ equation of matrix $A \cdot T_{e}$ cOrot. of this equation is called characteristic roots of matrix A. Characteristic roots are also Called latent shoots OT eigen values.
Characteristic vector:
A Scalar λ is a characteristic Snot of A if and only if
their is a nor zero vectors $x \in C^{n}$ Such that $A x=\lambda x$. Given a. Characteristic Trot A of λ, the nom. Trivial Solution x which. Satisfies $A x=\lambda x$ are called characteristic vector associative

Find the eigen Values \& eigen vector of the matrix $A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.

The characteristic equation $|A-\lambda I|=0$

$$
\begin{aligned}
& \left.\left\lvert\, \begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2-4 & 3
\end{array}\right.\right) \left.-\lambda\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\,=0 \\
& \frac{\left|\begin{array}{ccc}
8-\lambda & -6 & 2 \\
-6 & 7-\lambda & -4 \\
2 & -4 & 3-\lambda
\end{array}\right|=0}{8-\lambda\left((21-9 \lambda)-16^{2}\right)+6((-18+6 \lambda)-(-8))} \\
& +2(24-(14-2 \lambda)) \\
& 8-\lambda(5-9 \lambda)+6(-10+6 \lambda)+2(10+2 \lambda) \\
& 40-72 x-5 \lambda+9 \lambda^{2}-60+36 \lambda+20+4 \lambda \\
& 9 \lambda^{2}-77 \lambda+40 \lambda-60+66 \\
& 9 \lambda^{2}-37 \lambda
\end{aligned}
$$

$$
\begin{gathered}
8-\lambda[(7-\lambda)(3-\lambda)-16]+6[-6(3-\lambda)+8] \\
+2[(24-(7-\lambda)(2)]=0 \\
8-\lambda\left[21-10 \lambda+\lambda^{2}-16\right]+6[-19+6 \lambda+8]+2 \\
{[24-14+2 \lambda]=0} \\
8-\lambda\left[\lambda^{2}-10 \lambda+5\right]+6[6 \lambda-10]+2[2 \lambda+10]=0 \\
8 \lambda^{2}-80 \lambda+40-\lambda^{3}+10 \lambda^{2}-5 \lambda+36 \lambda-60+4 \lambda+20=0 \\
-\lambda^{3}+18 \lambda^{2}-85 \lambda+40 \lambda+60-60 \\
-\lambda^{3}+18 \lambda^{2}-45 \lambda=0
\end{gathered}
$$

$$
\begin{aligned}
& -\lambda^{3}+18 \lambda^{2}-45 \lambda=0 \\
& (-\lambda)\left(\lambda^{2}-18 \lambda+45\right)=0 \\
& -\lambda=0 \quad(\lambda-15)(\lambda-3)=0 \quad-15-3 \\
& \lambda=0 \quad \lambda 5
\end{aligned}
$$

The stoots ãe $x=0,15,3$
Case(i)
When $\lambda=0$.

$$
\begin{align*}
& \text { (A- } \lambda I) x_{1}=0 \\
& {\left[\left(\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)-0\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0} \\
& {\left[\left(\begin{array}{ccc}
9 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right]=0} \\
& 8 x_{1}-6 x_{2}+2 x_{3}=0 \tag{1}\\
& -6 x_{1}+7 x_{2}-4 x_{3}=0-1 \text { (2) } \tag{2}\\
& 2 x_{1}-4 x_{2}+3 x_{3}=0 \tag{3}\\
& \text { from (1) \& (2) } \\
& 211 \frac{x_{1}}{10}=\frac{x_{2}}{-12+3 \pi}, \frac{x_{3}}{20^{2}} \frac{20^{56}-36}{} \\
& \frac{x_{1}}{1}=\frac{x_{2}}{2} \cdots \frac{x_{3}}{2} \text { : } \\
& \lambda=k\left[\begin{array}{l}
1 \\
2 \\
12
\end{array}\right]
\end{align*}
$$

Case (ii)
when $\lambda=15$
(A- λI) $x=0$
$\left[\left(\begin{array}{ccc}9 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)-\left(\begin{array}{ccc}15 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 15\end{array}\right)\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
$\left[\left[\begin{array}{lll}-7 & -6 & 2 \\ -6 & -8 & -4 \\ 2 & -4 & -12\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\right]=0$.
$-7 x_{1}-b x_{2}+2 x_{3}=0 \rightarrow$ (1)
$-b x_{1}-8 x_{2}-4 x_{3}=0 \rightarrow(2)$
$+2 x_{1}-4 x_{2}-12 x_{3}=0 \rightarrow(3)$
From (2) \& (3)
$\frac{x_{1}}{96-16}=\frac{x_{2}}{-8-12}=\frac{x_{3}}{24+16}$
$\frac{x_{1}}{80}=\frac{x_{2}}{-80}=\frac{x_{3}}{40}$
$\frac{x_{1}}{2}=\frac{x_{2}}{-2}=\frac{x_{3}}{1}$
$\lambda=k\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$
Case (iii)

$$
\begin{gathered}
\text { When } \lambda=3 \\
\left(A^{\prime}-\lambda I\right) x=0 \\
{\left[\left(\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right)-\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0}
\end{gathered}
$$

1. Verify whethers the system of equation is Consistent \& find Solution.

$$
\begin{aligned}
& x-y+2 z=3 \\
& x+y+2 z=6 \\
& 3 x-y+6 z=10
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
1 & 1 & 2 \\
3 & -1 & 6
\end{array}\right] \quad B=\left[\begin{array}{c}
3 \\
b \\
10
\end{array}\right] \times=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\left(\begin{array}{ccc}
5 & -6 & 2 \\
-6 & 4 & -4 \\
2 & -4 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{20} \\
x_{3}
\end{array}\right)\right]=0 .} \\
& 5 x_{1}-b x_{2}+2 x_{3}=0 \rightarrow \text { (1) } \\
& -6 x_{1}+4 x_{2}-4 x_{3}=0 \rightarrow \text { (2) } \\
& 2 x_{1}-4 x_{2}+0 x_{3}=0 \rightarrow \text { (3). } \\
& \text { Foromi (a) \& (3) } \\
& \frac{x_{1}}{0-16}=\frac{x_{8}}{-8-0}=\frac{x_{3}}{24-8} \quad \begin{array}{c}
2^{-6} x_{-4}^{4} \\
\text { From (1) } \varepsilon_{1} \text { (2) }
\end{array} \\
& \frac{x_{1}}{-16}=\frac{x_{2}}{-8}=\frac{x_{3}}{16} \quad \frac{x_{1}}{24-8}=\frac{x_{2}}{-12+20}=\frac{x_{3}}{20-36} \\
& \frac{x_{1}}{-2}=\frac{x_{2}}{-1}=\frac{x_{3}}{2} \quad \frac{x_{1}}{10}=\frac{x_{2}}{8}=\frac{x_{3}}{-16} \\
& \lambda=k\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right] \quad \lambda=k\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {[A, B]=\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
1 & 1 & 2 & 6 \\
3 & -1 & 6 & 10
\end{array}\right] .} \\
& \begin{array}{cccc}
3 & -1 & 6 & -9 \\
\frac{-3}{}+3 & -6 & -1 \\
\hline 0 & 2 & 1
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 2 & 0 & 3 \\
0 & +2 & 0 & 41
\end{array}\right], \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 2 & 0 & 3 \\
0 & 0 & 0 & -2
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2} \\
& \rho(A)=2 \\
& e(A, B)=3 \\
& e(A) \neq e(A, B)
\end{aligned}
$$

The System of equation is inconsistent \& There is no Solution.
2.

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x-y+7 z=22 \\
& b x+2 y+\mu z=\lambda \\
& A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & -1 & 7 \\
b & 2 & \mu
\end{array}\right] \quad B=\left[\begin{array}{l}
b \\
22 \\
\lambda
\end{array}\right] \times=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& {[A, B]=\left[\begin{array}{cccc}
1 & 1 & 1 & b \\
3 & -1 & 7 & 22 \\
b & 2 & \mu & \lambda
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \sim {\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
0 & -4 & 4 & 4 \\
0 & -4 & \mu-6 & \lambda-36
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-b R_{1}
\end{array} } \\
& \approx\left[\begin{array}{cccc}
1 & 1 & 6 \\
0 & -4 & -4 & 4 \\
0 & 0 & \mu-10 & \lambda-40
\end{array}\right] \quad R_{3} \rightarrow R_{3}-R_{2} \\
& C(A)=3 \\
& e(A, B)=3 \\
& C(A)=e(A, B)
\end{aligned}
$$

The System of equation is Consistent
(i) InConsistent:

$$
\begin{gathered}
\text { If } p=10 \text { and } \quad x \neq 40 \\
e(A) \neq e(A, B)
\end{gathered}
$$

The System is in consistent
(ii) Consistent:

$$
\begin{gathered}
\text { If } \lambda^{\mu} \neq 10 \text { and } \quad \hat{k} \neq 40 \\
P(A)^{\prime}=3 \quad P(A, B)=3 \\
P(A)=P(A, B)
\end{gathered}
$$

\therefore The System, of equation, is Consistent.
iii) Consistent and the Solution is unique.

If $\lambda \neq 10$ \& $\hat{x} \neq 40$

$$
\begin{aligned}
& e(A)=3 \cdot e(A, B)=3 \\
& M=3 \quad \xi \quad \pi=3 \\
& M=\pi
\end{aligned}
$$

\therefore The system of equation is Consistent \& has unique Solution.
iv) Infinite Number of Solution:

$$
\text { If } \begin{aligned}
& A=10 \quad \xi \quad \lambda=40 \\
& \quad(A)=2 \quad \quad(A, B)=2 \\
& \pi=2 \quad \& \quad n=3 \\
& \\
& \quad \pi<n
\end{aligned}
$$

\therefore The System of equation is Consistent G has infinity many Solution.
in
Determinate the characteristic soot of the matrix $\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & -1 \\ 2 & -1 & 0\end{array}\right]$.

$$
-1, \pm \sqrt{3}, 2
$$

The characteristic equation $|A-\lambda I|=0$

$$
\left|\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & -1 \\
2 & -1 & 0
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right|=0
$$

3. Find the characteristic Vector (i) $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$ (ii) $\left[\begin{array}{l}113 \\ 526\end{array}\right.$

The characteristic equation is $|A-\lambda I|=0$

$$
\left|\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)-\left(\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right|=0
$$

$$
\left|\left(\begin{array}{cc}
3-\lambda & 2 \\
2 & 3-\lambda
\end{array}\right)\right|=0
$$

$$
(3-\lambda)(3-\lambda)-4=0
$$

$$
9-3 \lambda-3 \lambda+\lambda^{2}-4=0
$$

$$
\lambda^{2}-6 \lambda+5=0
$$

$$
(\lambda-1)(\lambda-5)=0
$$

$$
\lambda=1 \quad \lambda=5
$$

The coots are $\lambda=1,5$
Case (i)

$$
\begin{gathered}
\text { When } \lambda=1 \\
(A-\lambda I)_{\Im}=0 \\
{\left[\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]} \\
\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=0
\end{gathered}
$$

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}=0 \rightarrow 0 \\
& 2 x_{1}+2 x_{2}=0 \rightarrow(2) \\
& \frac{x_{1}}{4-4}=\frac{x_{2}}{4-4} \\
& \frac{x_{1}}{0}=\frac{x_{2}}{0} \\
& x=k\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Case (ii)

$$
\begin{aligned}
& \text { When } \lambda=5 \\
& (A-\lambda \bar{x}) x=0 \\
& {\left[\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right)-\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0} \\
& \left(\begin{array}{rr}
-2 & 2 \\
2 & -2
\end{array}\right)\binom{x_{1}}{x_{2}}=0 \\
& -2 x_{1}+2 x_{2}=0 \rightarrow \text { (1) } \\
& 2 x_{1}-2 x_{2}=0 \rightarrow 2 \\
& -2 x_{2}^{2} x_{-2}^{-2} \\
& \frac{x_{1}}{4-4}=\frac{x_{2}}{4-4} \\
& \frac{x_{1}}{0}=\frac{x_{2}}{0} \\
& \lambda=k\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

\checkmark Find the characteristic equation of the matrix $\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right] \&$ verify that it is Satisfied by A and also. find A^{-1}.

The characteristic equation is $|A-\lambda I|=0$

$$
\begin{aligned}
& \left|\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right|=0 \\
& \left|\left[\begin{array}{ccc}
2-\lambda-1 & 1 \\
-1 & 2-\lambda & -1 \\
1 & -1 & 2-\lambda
\end{array}\right]\right|=0 \\
& 2-\lambda[(2-\lambda)(2-\lambda)-1]+1\left[\left(2^{(-1)}-(2-\lambda)+1\right]\right. \\
& +1[1-(2-\lambda)]=0 \\
& 2-\lambda\left[4-2 \lambda-2 \lambda+\lambda^{2}-1\right]+1[-2+\lambda+1]+1 \\
& {[1-2+\lambda]=0} \\
& 8-4 \lambda-4 \lambda+2 \lambda^{2}-2-4 \lambda+2 \lambda^{2}+2 \lambda^{2}-\lambda^{3}+\lambda * \\
& -2+\lambda+1+\lambda-1 \\
& -\lambda^{3}+b \lambda^{2}-b \lambda+4=0 \\
& \lambda^{3}-6 \lambda^{2}+9 \lambda-4=0
\end{aligned}
$$

we have to verify $\lambda=A$. Satisfies the
Equation

$$
A^{3}-6 A^{2}+9 A-4 I=0
$$

$$
\begin{aligned}
& A^{2}=A \cdot A \\
& =\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& \because=\left[\begin{array}{ccc}
4+1+1 & -2-2-1 & 2-1+2 \\
-2-2-1 & 1+4+i & -1-2-2 \\
2+1+2 & -1-2-2 & 1+1+4
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
2 & 6 & -5 \\
-5 & 5 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \\
& =\left[\begin{array}{rrr}
12+5+5 & -6-10-5 & 6+5+10 \\
-10-6-5 & 5+12+5 & -5-6-10 \\
10+5+6 & -5-10-6 & 5+5+12
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right] \\
& A^{3}-6 A^{2}+9 A-4 I=\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right] \\
& +9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22-3 b+18-4 & -21+30-9-0 & 21-30+9-0 \\
-21+30-9-0 & 22-3 b+18-4 & -21+30-9-0 \\
21-30+9-0 & -21+30-9-0 & 22-36+18-4
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \therefore \text { Hence Verified }
\end{aligned}
$$

$$
\begin{aligned}
& A^{3}-6 A^{2}+9 A-4 I=0 \\
& A^{3}-6 A^{2}+9 A-4 I=\left[\left(\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right)-6\left(\left(\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right)\right.\right. \\
& \left.+\phi\left(\begin{array}{ccc}
2 & -1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)-\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right)\right] \\
& x \text { by } A^{-1} \\
& A^{3} A^{-1}-6 A^{2} A^{-1}+9 A A^{-1}-4 I A^{-1}=0 \\
& A^{2}-6 A+9 I-4 A^{-1}=0 \\
& -4 A^{-1}=-A^{2}+6 A-9 I \\
& \times \text { by }(-) \text { on bis } \\
& 4 A^{-1}=A^{2}-6 A+9 I \\
& =\left(\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right)-6\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)+\left(\begin{array}{lll}
9 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 9
\end{array}\right) \\
& =\left(\begin{array}{ccc}
b-120+9 & -5+6+0 & 5-6+0 \\
-5+6+0 & b-12+9 & -5+b+0 \\
5-5+1 a & -5+6+0 & b-12+9
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right) \\
& \therefore A^{-1}=\frac{1}{4}\left(\begin{array}{rrc}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right)
\end{aligned}
$$

4. Find the charactertitic equation of $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right] \xi$. Show. that the matrix A statisfies the equation.

The characteristic equation is $|A-\lambda I|=0$

$$
\begin{aligned}
& \left|\left(\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right|=0 \\
& \left|\left(\begin{array}{ccc}
1-\lambda & 1 & 3 \\
5 & 2-\lambda & 6 \\
-2 & -1 & -3-\lambda
\end{array}\right)\right|=0 \\
& (1-\lambda)[(2-\lambda)(-3-\lambda)+6]-1[5(-3-\lambda)+12] \\
& +3[-5-(-2) \cdot(2-\lambda)]=0 \\
& (1-\lambda)\left[-6-2 \lambda+3 \lambda+\lambda^{2}+6\right]-1[-15-5 \lambda+12] \\
& (1-\lambda)\left(\lambda^{2}+\lambda\right)-1(-5 \lambda-3)+3(-1-2 \lambda)=0 \\
& +3[-5-(-4+2 \lambda)]=0 \\
& \lambda^{2}+\lambda-\lambda^{3}-\lambda^{2}+5 \lambda+3-3-6 \lambda=0 \\
& -\lambda^{3}-5 \lambda+5 \lambda=0 \\
& \lambda^{3}=0
\end{aligned}
$$

We have to verify $\lambda=A$ Satisfies
the equation

$$
A^{3}=0
$$

$$
\begin{aligned}
A^{20} & =\left(\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1+5 & -6 & 1+2-3 \\
5+10 & -12 & 5+4-6 \\
-2-5 & 15+12 & -18 \\
-2-5 & -2-2+3 & -6-6+9
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right) \\
A^{3} & =A^{2} \cdot A \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0+0+0 & 0+0+0 & 0+0+0 \\
3+15 & -18 & 3+6-9 \\
-1-5+6 & -1-2+3 & -3-6+8
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& A^{3}
\end{aligned}
$$

\therefore Hence Proved

Cayley Hamilton Theorem:
Every Square matrix Satififis its own Characteristic equation.
(i.e) If the chart Polynomial is

$$
\begin{array}{r}
\phi(A)=P_{0} \lambda^{n}+P_{1} \lambda^{n-1}+P_{2} \lambda^{n-2}+\ldots \\
P_{n-1} \lambda+P_{n}
\end{array}
$$

$$
\begin{aligned}
& \text { Then } \phi(\lambda)=0 \\
& \Rightarrow A^{n}+P_{1} A^{n-4}+P_{2} A^{n-2}+\ldots P_{n-1} A+P_{n}=0
\end{aligned}
$$

Show that the matrix $\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ Satisfies
Cayley hamilton theorem.
The Characteristic equation is $|A-\lambda I|=0$

$$
\begin{aligned}
& \left|\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right)-\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right)\right|=0 \\
& \left|\begin{array}{ccc}
2-\lambda & 2 & 1 \\
1 & 3-\lambda & 1 \\
1 & 2 & 2-\lambda
\end{array}\right|=0 \\
& (2-\lambda)[(3-\lambda)(2-\lambda)-2]-2[2-\lambda-1]+1[2-3+\lambda] \\
& (2-\lambda)\left[\lambda^{2}-5 \lambda+6-2\right]-2[-\lambda+1]+1(\lambda-1)=0 \\
& (2-\lambda)\left[\lambda^{2}-5 \lambda+4\right]+2 \lambda-2+\lambda-1=0 \\
& 2 \lambda^{2}-10 \lambda+8-\lambda^{3}+5 \lambda^{2}-4 \lambda+3 \lambda-3=0 \\
& -\lambda^{3}+7 \lambda^{2}-11 \lambda+5=0 \\
& \lambda^{3}-7 x^{2}+11 \lambda-5=0
\end{aligned}
$$

We have to verify $x=A$ Satisfies the
equation

$$
\begin{aligned}
& A^{3}-7 A^{2}+11 A-5 I=0 \\
& A^{2}=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
4+2+1 & 4+6+2 & 2+2+2 \\
2+3+1 & 2+9+2 & 1+3+2 \\
2+2+2 & 2+6+4 & 1+2+4
\end{array}\right] \\
& =\left[\begin{array}{lll}
7 & 12 & 6 \\
6 & 13 & 6 \\
6 & 12 & 7
\end{array}\right] \\
& \dot{A}^{3}=A^{2} A=\left[\begin{array}{lll}
7 & 12 & 6 \\
6 & 13 & 6 \\
6 & 12 & 7
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
14+12+6 & 14+36+12 & 7+12+12 \\
12+13+6 & 12+39+12 & 6+13+12 \\
12+12+7 & 12+36+14 & 6+12+14
\end{array}\right] \\
& =\left[\begin{array}{lll}
32 & 62 & 31 \\
31 & 63 & 31 \\
31 & 62 & 32
\end{array}\right] \\
& A^{3}-7 A^{2}+11 A-5 I=\left[\begin{array}{ccc}
32 & 62 & 31 \\
31 & 63 & 31 \\
31 & 62 & 32
\end{array}\right]-7\left[\begin{array}{lll}
7 & 12 & 6 \\
6 & 13 & 6 \\
6 & 12 & 7
\end{array}\right] \\
& +11\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right]-5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
32-49+22-5 & 62-84+22-0 & 31-42+11-0 \\
31-42+11-0 & 63-91+33-5 & 31-42+11-0 \\
31-42+11-0 & 62-84+22-0 & 32-49+22-5
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
& A^{3}-7 A^{2}+11 A-5 I=0 \\
& \therefore \text { Hence Proved. }
\end{aligned}
$$

5. Show that the matrix
Galley Hanitum theorem.

The choracteristre equation is $|A-\lambda I|=0$

$$
\begin{aligned}
& \left|\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)-\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right)\right|=0 \\
& \left|\left(\begin{array}{cc}
1-\lambda & 0 \\
1 & 1-\lambda
\end{array}\right)\right|=0 \\
& (1-\lambda)(1-\lambda)-2=0 \\
& 1-\lambda-\lambda+\lambda^{2}-2=0 \\
& +\lambda^{2}-2 \lambda-1=0 \\
& +\lambda^{2}-2 \lambda-1=0
\end{aligned}
$$

We have to verify $x=A$ Satisfies the equation.

$$
\begin{aligned}
A^{2} & =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+2 & 2+2 \\
1+1 & 2+1
\end{array}\right) \\
A^{2} & =\left(\begin{array}{ll}
3 & 1 \\
2 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A^{2-2 A-1 I}=\left[\begin{array}{ll}
3 & 3 \\
2 & 3
\end{array}\right]-2\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \\
& =\left[\begin{array}{ll}
3 \overline{4}-1 & 8-4-0 \\
2-2-0 & 3-2-1
\end{array}\right] \\
& \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \therefore \quad A^{2}-2 A-1 I=0
\end{aligned}
$$

\therefore Hence, Proved \quad.

