MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I - B.A. ECONOMICS

SUBJECT CODE : 23UEC12

SUBJECT NAME: STATISTICS FOR ECONOMICS -I

SYLLABUS

UNIT-IV

Measures of Dispersion

Absolute and Relative Measures of Dispersion – Range – Quartile Deviation – Mean Deviation – Standard Deviation – Variance - Coefficient of Variation –-Skewness and Kurtosis.

Measures of Dispersion

The Various Measures of averages
give a single number as the
representative of the whole data.

The items are nearer to the mean and is the other they are spread away from the mean.

Two distributions may also have Same median. But the deviations of the observations from the median may be of different type is the two distributions

The measures of dispersion can be classified as the positional measures based on all the observations. The various measures of dispersion.

) Range 2) Quartile deviation 3) Mean deviation 4) Standard deviation

The first two sare positional measures of dispersion and the last two sare measures of dispersion based on all the observation.

The measures of dispersion there are two kinds of measures

- a) absolute measures of dispersion
- b) relative measures of dispersion

Range:

Range is defined to be the difference between the largest and the smallest of the observation.

Range = 1-8 $1 \rightarrow largest value$ S \rightarrow smallest value

1. The Bet of observations 13,25,36,22,18.
45,21,26,30,22.

$$7kamge = 1-S$$
= $45-13$
= 32

co-efficient of range =
$$\frac{2-S}{L+S}$$

$$=\frac{82}{68}=0.55$$

Merits and Demerits:

- i) It is simple to understand and easy to calculate.
- ii) It is unaffected by all other items except the simillest and the largest.
- in) It is affected by the presence of an extremely high or low item.

given point observations.

Quartile deviation:

In range we consider only the smallest and largest of the observation.

It is not a stable measure of dispersion it is very much affected by the extreme value.

The measures of dispersion based on Quartile is used it is called quartile deviation.

The difference between the lowest and this highest of this group is called the inter-quartile range.

Inter quartile range = $Q_3 - Q_1$,

Quartile deviation = $Q_3 - Q_1$

sco-efficient of Quartile deviation = Q3-Q1

Menits and Demerits

- i) It is better than range.
- ii) It is easy to calculate.
- iii) It is useful measures when the extreme classes is a frequenty distribution are not well-defined.
- iv) It is not based on all the observation.
- v) It is not suitable for mathematical treatment.
- Vi) It is affected by Gampling fluctuations.

Individual beries:

1 Find the quartile and the third quartile and also find the Q.D from the given data. 8, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22.

Q, = singe of [N+1 th] item in queto

= Singe of
$$\left[\frac{11+1}{4}\right]^{\frac{1}{2}}$$
 item
= Singe of $\left[\frac{12}{4}\right]$ item
= 3rd item

sent and commit a new sun

Q₁=b

Q₃= Dinge of
$$3 \left[\frac{N+1}{4} \right]^{th}$$
 item

= Dinge of $3 \left[\frac{11+1}{4} \right]^{th}$ item

= Dinge of $3 \left[\frac{12}{4} \right]^{th}$ item

= Dinge of $3 \left(\frac{3}{4} \right)^{rd}$ item

= Q th item

$$Q \cdot D = Q_3 - Q_1$$

$$\frac{18}{2}$$

$$\frac{18 + 6}{2}$$

$$\frac{18 + 6}{2}$$

$$\frac{12}{2}$$

$$co-efficient$$
 of $Q.D = Q_3 - Q_1$

$$Q_3 + Q_1$$

$$= 18 - 6$$

$$18 + 6$$

$$= 12$$

$$24$$

$$= 0.5$$

2. The de guartle desiation and the Find the co-efficient of range from the following data.

Wages 35-45 45-55 55-65 6515 75-85

No cof. 18 22 30 workers

THE SO. 35 - 35 - 10 P 110 - 115 Soln:

35+45 mid value of the last class (L) = 80 15+85 Mid value of the first class (S) = 40 chair

R = 1-S

R = 80-40

= 40

co-efficient of Range = $\frac{L-S}{s} = 0.33$

$$= 80-40$$

$$= 80+40$$

$$= 40$$

$$= 120$$

$$= 0.33$$

continuous Series:

2. Find the quartile deviation and the quartile co-efficient of dispersion for the following data.

class 0-5 5-10 10-15 15-20 20-25 25-30 f 3 5 8 12 3H 46 class 30-35 35-40 40-45 28 14 10 I will realize the the last clared

		ACCUPATION OF THE PARTY OF THE
class	f	cf
0-5	3	23
5-10	5	8
10-15	N28	16
15-20	3/4 12	28

82 4 4	N = 160	B44 = 1
HO - 45	10	160
35 - 40	14	(150)
30-35	28	136
25 - 30	46	108
20-25	1 (34)	62

$$\frac{N}{A} = \frac{160}{4} = 40$$

The lies between 20-25

$$Q_1 = 1 + \frac{N_4 - cf}{4 - cf} \times c$$

$$= 20 + \frac{160a - 28}{34} \times 5$$

1.0 1 311

1 3 4 4 9

Discrete Deries:

1. calculate the Q.D for the following data find Quartile co-efficient.

Age (in yrs) 20 30 40 50 60 70 80
W.o. of.
3 61 132 153 140 51 3
members

f	cf
3	3
61	64
132	196
153	349
	(H89)
3	540
	3 61 132 153 140

N = 543

O = Singe of
$$\begin{bmatrix} N+1 \end{bmatrix}$$
 the stem

= Singe of $\begin{bmatrix} 5HH \end{bmatrix}$ the stem

= Singe of $\begin{bmatrix} 5HH \end{bmatrix}$ the stem

Q = HO

Q = HO

Q = Dinge of 3 $\begin{bmatrix} N+1 \end{bmatrix}$ the stem

= Singe of 3 $\begin{bmatrix} N+1 \end{bmatrix}$ the stem

= Singe of 3 $\begin{bmatrix} 136 \end{bmatrix}$ th stem

= Singe of 4 (136) th stem

= Singe of 408 th stem

Q = 60.

Q D = Q = Q = 0.

Co-efficient of Q D = Q = Q = Q,

Q = 0.

 $\begin{bmatrix} 0 - HO \end{bmatrix} = \begin{bmatrix} 20 \\ 2 \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \end{bmatrix}$

= $\begin{bmatrix} 60 - HO \end{bmatrix} = \begin{bmatrix} 20 \\ 60 + HO \end{bmatrix} = \begin{bmatrix} 20 \\ 100 \end{bmatrix}$

= 1 = 0.2

continuous deries:

$$Q_1 = L + \frac{N}{4} - cf$$

$$f$$

$$Q_3 = L + \frac{3N}{4} - cf$$

$$x = c$$

1 = Lower limit

Q3 = Upper limit

Cf = sumulative frequency is preceeding of lower quartile.

f = frequency of the Lower quartile.

1. calculate the semi-inter quartile trange of co-efficient of Q.D

Wages 30-32 32-34 34-36 36-38 38-40

40-42 42-44

Laborers 12 18 16 14 12

8 6

soln:

9	The state of the s	
Wages	f	cf
30 - 32	× 12	12 CK
32 - 34	[18]+	30
34 - 36	16	46
36 - 38	14	(60) ct
38 - 40	12 t	72
40-42	8	80
42-44	and a	86
with the	N=86	Joseph -

$$\frac{N}{A} = \frac{86}{A} = 21.5, \quad 1 = 32, \quad cf = 12, \quad f = 18$$

$$Q_1 = 1 + \frac{N}{A} - cf \times c$$

$$= 32 + \frac{21.5 - 12}{8} \times c$$

$$= 32 + \frac{9.5}{9}$$

$$= 32 + 1.05$$

$$Q_1 = 38.05$$

$$3 \left(\frac{N}{4}\right) = 3(21.5) = 64.5$$

$$1 = 38, \quad cf = 60, \quad f = 12, \quad c = 2$$

$$Q_3 = 1 + \frac{3N}{4} - cf \times c$$

$$= 38 + \frac{64.5 - 60}{12} \times 2$$

$$= 38 + 0.75$$

$$= 38.75$$

$$Q.D = \frac{3}{2} - \frac{2}{12}$$

$$= \frac{5.7}{2}$$

$$QD = 2.85$$

$$co-efficient of Q.D = \frac{Q_3 - Q_1}{Q_3 + Q_1}$$

$$= \frac{38.75 - 33.05}{38.75 + 38.05}$$

$$= \frac{5.1}{71.8}$$

PP0= = 0.079

2.	calu	late	Q.D	and	its	10-	effic	ient	of	9
	Months	1=	2	3	4	5	6	7	8	9
		10	11	12						
	Monthly	239	250	251	251	257	258	260	261	262
1	'		273	275						
1	-	BILL			(C) (I)	Britis			-1	

		10
Months (x)	f	cf
1	239	239
2	250	489
3	251	J710
(4)	251	(991)
5	257	1248
6	258	1506
7	260	1766
8	261	2027
9	262	2289
10	262	(2551)
0	273	2894
12	275	3099

N=3099

Q = Durpe of
$$\left[\frac{N+1}{H}\right]^{th}$$
 them

= durpe of $\left[\frac{3099+1}{H}\right]^{th}$ item

= durpe of $\left[\frac{3100}{H}\right]^{th}$ item

= $\left[\frac{3100}{H}\right]^{th}$ item

 $= \frac{6}{14}$ = 0.42

Mean Devication (or) Average Devication.

Definition:

mean Deviation is the airthmetic mean of the deviation of a Series computed from any measure of central tendency.

(i.e) The Mean Median or mede all the deviation are taken as position.

(i.e) + and - signs are ignored

It is denoted by mean deviation

Mean deviation (formula)

Mean deviation (\bar{x}) Mean = \underline{z} IDI

N

(M) Median = \underline{z} IDI

N

(Z) Mode = \underline{z} IDI

so-efficient of mean deviation (wr)
relative mean deviation (formula).

co-efficient of M.D. Mean Deviation

Mean (or) Median (or)
mode

Individual Series:

Step 1: calculate the average mean,

Median or mode of the Levies

Step 2: Take the deviations of the items

from average and denote those

deviations by 101

Step 3: compute the total of these deviation. (i.e.) $\leq |D|$

Step 4 : Divide the total obtained by the number of items

M.D = [101 N

 \rightarrow \$1D1 = Sum of the deviation \rightarrow N = N.O. of , items

the following solata 100, 150, 200, 250, 360, 490
500, 600, 671 also calculate co-efficient of M.D.

Mean =
$$\frac{2x}{N}$$
 => $\frac{3321}{9}$ = 369

Median = ding of $\left[\frac{N+1}{2}\right]^{\frac{1}{2}}$ item

= ding of $\left[\frac{9+1}{2}\right]^{\frac{1}{2}}$ item

= ding of $\left[\frac{10}{2}\right]^{\frac{1}{2}}$ item

= ding of $\left[\frac{10}{2}\right]^{\frac{1}{2}}$ item

median = 360

× 10	101 = x - Mean	1D1 = x - median
	= 2 - 369	= x - 360
1000	= 100 - 3(A	= 100 + 360
100	269	260
150	219	210
200	169	U.S.
	Samber of these	160
250	119	110
360	9	
490	121012	/30
500	13)	
600		140
arter of the said	231	240
671	302 000	311
£x=3321	≤ (D) = 15 TO	≱[D]= 1561

mean deviation from mean = \$101 = 174.4 mean deviation from median = £101 = 1561 = 173.4 co-efficient of nean deviation = nean deviation Mean #2 -10 | 2 | Ele -10 | 369 = 0.47 co-efficient of Median deviation = Mean deviation Median mall 176.4 media 11 1 1 2 20 20 360 = 0.48 Copy of [10] the special calculate Mean deviation from Mean and median for the following data.

7, 4, 10, 9, 15, 12, 7, 9, 7

×	$ D = x - \overline{x}$	IDI= x - Median
	= 2-8.8	= X = 15
7	1.8	8
11 4	4.8	1)
10/10	1.2	5
9	0.2	6
15	6.2	o
12	3.2	3
atital .	1.8 m /s 3s	1977/15 -02
9	0.2	6
7	1.8	8
£x=80	EID1= 21.2	£ D1=55

Mean =
$$\frac{\angle x}{N} \Rightarrow \frac{80}{9} = 8.8$$

Median = $\frac{2}{N} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{2}{N} \Rightarrow \frac{80}{9} = 8.8$

= $\frac{80}{9} \Rightarrow \frac{9}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{9}{9} = 8.8$

= $\frac{80}{9} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{9}{9} = 8.8$

= $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

= $\frac{80}{9} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

= $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

= $\frac{80}{N} \Rightarrow \frac{80}{9} = 8.8$

Median = $\frac{80}{N} \Rightarrow \frac{80}{9} \Rightarrow \frac{80}{9} \Rightarrow \frac{80}{N} \Rightarrow \frac{80}$

Median = 15

B 01 A

```
nean deviation from nean = \( \geq | \DI
                             = 2.35
 Mean deviation from Median = 51DI
                               = 55
co-eff of mean deviation = mean deviation
                                 Mean
                            - 0.26
so-eff of Medan deviation = Medan deviation
                                  Median
                            = 6.1
                            = 0.40
```

Discrete deries:

Step 1: Find out an average (Mean. Median, Mode)

Size from the sentral tendency.

ignoring plus (+ or -) or

minimize sign and denote

then IDI

Step 5: Multiply the deviation of its

stize |D| by its trespective

frequency (f) and find out

the total &f |D|

Step 4: Divide the total by the total

frequency Mean deviation = \(\frac{1}{N} \)

Dealculate mean deviation from mean from the following data

x 2 4 6 8 10

			The second second at the	10
×	f	f×	D = x-A	f IDI
2	1/3/02	2	= 2 - 6 - H	- 4+
			1 -2 E	8 - 42
(P)	in 6 sits	36	0	D
	A -w	I DECEMBED AT I SEE		8
10	estion con	10	A	L ₁
	£f=16	2fx=96		€f 101:01

Mean
$$\bar{x} = \frac{2f}{N} \times 1$$
, $N = \frac{2}{5} = 16$

$$= \frac{96}{16} = 6$$

Mean deviation =
$$\frac{5}{10}$$

co-eff of mean deviation. Mean deviation Mean = 1.5 = 0.25

$$=\frac{1.5}{b}=0.25$$

2) calculate Mean deviation from Median from the following Leries

× 10 11 12 13 14

f 3 12 18 12 3

×	t do a	cf	1D1 = x - Median = x - 12	f IDI
10	3	3	Askrade symunitina	Ь
11	12	15	Mean desiral	12
12	181	33	10000 = +2 - M	0
13		40	1 10 miles = 101 h	12
14		34.2	2	6
	N = 48	aprila u	מונעומט ואו יחובש	£ f 1 D 1 = 36

Median = dring of $(\frac{N+1}{2})^{\frac{1}{2}}$ item

= dring of $(\frac{148+1}{2})^{\frac{1}{2}}$ it item

= dring of $(\frac{149}{2})^{\frac{1}{2}}$ it item

= 24.5 th item

median = 12

Mean deviation = $\frac{2 + 1 D1}{N} = \frac{36}{48}$

= 0.75

co-eff of mean deviation = mean deviation median

= 0.75

= 0.0625

continuous series:

mean deviation = $\leq f \mid D \mid$ N

N = &f = Total frequency

If IDI = Sum of the product of frequency

1) salculate the mean deviation from Mean, median, mode and also find so-efficient of Mean deviation.

age in upor

1019-

0-10 10-20 20-30 30-40 40-50 50-60 60-70 703

No. of.

20 25 32 40 42 35 10 8

Mediane

C.I	f	m	fm	1D1= x - Mean = x - 36.50	f IDI
0-10	20	5	100	5 - 36.50 = 31.5	630
10-20	25	15	375	1 (21.5)	537.5
20 - 30	32	25	800	H.50 - 1	368
30-40	40	35	1400	1.5 mball	60
40-50	42	45	1890	8.5	382.5
50-60	35	55	1925	18.5	647.5
60-70	10	65	650	28.5	285
70-80	8	75	600	38-5	308
	N=212	81X	סאדר		≤f D = 3218.5

Mean :

Mean =
$$\leq fm$$
 = $\frac{7740}{N}$ $\Rightarrow 36.50$

Mean deviation =
$$\leq f \mid D \mid$$

N

= $\frac{3218.5}{212}$

co-eff of mean deviation = mean deviation

Mean

= 151.8

$$=\frac{151.8}{36.50}=4.15$$

Median:

STOLE 188 198 1

8.8148

$$\frac{N}{2} = \frac{212}{2} = 106$$

L = 30-40 the lies between

Median =
$$1 + \left(\frac{N}{2} - cf\right) \times c$$

= $30 + \left(\frac{10b - 77}{40}\right) \times 10$
= $30 + \left(\frac{29}{40}\right) \times 10$

The state of		31.4			
C ·I	f	m	cf	IDI = x - Median	f ID
0-10	20	5	20	32.5	650
10-20	25	15	45	22.5	562-5
20-30	32.	25	77	12.25	392
30-40	40	35	ווד	2.25	90
HO-50	H2	45	159	7.75	3255
50-60	35	55	194	17.76	621.25

	Ef = 212				£f D = 3220.35
70-80	8	75	212	37. 75	301.6
60-70	10	65	5014	27.75	277.5

Mean ideviation =
$$\leq f \mid D \mid$$

N

= 3220.35
 212

co. eff of mean deviation = rean deviation

redian

= 15.19

= 0.40

Mode :.

all

Mode (2) = 1 +
$$\left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times c$$

The dies between 40-50

$$L = 40$$
, $f_1 = 42$, $f_2 = 36$, $f_0 = 40$

$$= 40 + \left(\frac{42 - 40}{2 \times 42 - 40 - 35}\right) \times 10$$

$$= 40 + \left(\frac{2}{8h - 40 - 35}\right) \times 10$$

$$= 40 + \left(\frac{2}{9}\right) \times 10^{-10}$$

= 40 +0.222 ×10

= 40 + 2.22

= 412.22

Mode byourping table:

Year	Cı	C2	C3	CH	C5	Cb
0-10	20	(20+25)	1			
10-20	25	45	(25+32)	(20+25+3		
20-30	32	(32+40)	57		(25+32+10)	
30-40	40	72	(10+42)		1.1	(33.100
40-50	42	(42+35)	82	(AO+112+35		114
50-60	35	77	(35+10)		(H2+35+10)	
60-70	10	(10+8)	45			35°10°
10-80	8	18	between			03

Year	С,	C2	C3	Сн	Съ	C 6
0-10	The state of			Rein		
10-20	23.4	No.			1	
20-30	- 179	deviate	maal	N A	12	1
30-40			1	1	+	3
40-50	1	i	1	1	But .	1
50 - 60		ı		1	1	
60-10					dias	
70 - 80					Paris .	
prin-	hanter	Mad	L = 5	Amer.	501 - F3	
Year	f	m	[D]	= x - me	de	f 1 Dl
\$0 -10	20	5	30 30	37.22	r in	7 A A · A
10-20	25	15	27.22			680.5
20 - 30	32	32 25 17.22			16/11	551.04
30-40	40	40 35 7.22				238 .8
40-50	42	45	Apisos	2.78		116.76
50-60	35	55	12.78			H47.3
60-10	10	65	2:	2.78	AL I	227.8
70-80	8	75		- 70		
	,	1.9	3	2.78		262.24

Mean deviation = $\frac{2f101}{N}$ = 3318.84 = 212

co eff of Mean deviation = Mean deviation

= 15.65

 $= \frac{15.65}{42.22}$ = 0.3706

Merits:

- 1. It is simple to understand and easy to compute.
- 2. Mean deviation is a calculated value.
- 3. It is not much affected by the fluctuations of sampling.
- 4. It is based on all items of the Series and gives weight according to their Size.
- 5. It is less affected by the entreme items
- b. It is origidly defined

Demerits :

- 1. It is non-algebric treatment.
- 2. It is not a very accurate measure of dispersion.
- 3. It is not suitable for further mathematical calculation.
 - H It is narely used. It is not as popular as standard deviation.

standard deviation

Definition :

It is defined as positive squareeroot of the arithmetic mean of the
square of the deviation of the given
observation from their arithmetic mean.
The standard deviation is denoted
by (o) sigma.

Individual Deries:

(1) Deviation taken from actual mean

$$\sigma = \sqrt{\frac{2}{x^2} - \left(\frac{2}{x}\right)^2}$$

(11) Deviation taken from assumed Mean outh marked

$$\sigma = \sqrt{\frac{2}{N}} - \left(\frac{2}{N}\right)^2$$
 where $d = x - x$

1) salculate the standard deviation from the following data.

14, 22, 9, 15, 20, 17, 12, 11.

- stan by sydnex x some punglab x 2

ads to 114 me attended 196 se the

many set 122 military 484

many strong of the season of the season of the season

harman 15 milhiush p.225 man at

400

Colomo Signature 289

12 144

121

$$\sigma = \sqrt{\frac{2x^2}{N} - (\frac{2x}{N})^2}$$

$$= \sqrt{\frac{1940}{8} - (\frac{120}{8})^2}$$

$$= \sqrt{242.5 - (15)^2}$$

$$= \sqrt{17.5}$$

$$= 4.18$$

Assumed mean

calculate the standard deviation from the following data.

5, 10, 20, 25, HO, H2, H5, H8, T0, 80

S. No	Marks	d = x - A	d2
1	5	5 - 40 = -35	1225
2	10	10-40=-30	900
3	20	20-40=-20	1100
4	2.5	25-40=-15	225
5	40	110 - 110 = 0	0
6	42000	112 - 110 = 2	4
7	45	45-40=5	25
8	48	48-40=8	6.4
9	70 /	70-110 = 30	900
10	80	80 - HO = HO	1600
9105 91	DVIII T	£d = -15	4d2 = 5343

Discrete deries:

There are three methods for calculating standard deviation is discrete series.

a) Actual Mean deviation

$$\sigma = \sqrt{\xi f d^2} \qquad N = \xi f$$

$$N$$
Where $d = \chi - \bar{\chi}$

b) Assumed mean method:

$$\sigma = \sqrt{\frac{2fd^2}{N}} \left(\frac{2fd}{N}\right)^2$$

-where d = x - A

c) Step-deviation method:
$$\sigma = \sqrt{\frac{\leq fd'^2}{N} - (\frac{\leq fd'}{N})^2 \times c}$$

Where $d' = \frac{pn - A}{c}$.

1) calculate standard deviation from the following data.

Marks 10 20 30 40 50 60.

No. of 8 12 20 10 7 3

Students

a) Actual Method

1	×	f.)	f×	d=x-x =x-30.8	d 2	fd²	
202	10	8.1	80	8.02-10	432.64	3461.12	
20	20	12	240	10.8	116.64	1399.68	
	30	2.0	600	- 0.8	0.64	12.8	
1	40 081	10	400	9.2	84.64	846. 14	
9	50	-1011	350	19.2	368 - 64	2580,48	
-	60 01	300	180	29.2	852.64	2557.92	
1	12	£f=60	≤fx= 1850	ele je		£d2 = 10858.4	

Mean
$$\bar{x} = \frac{2fx}{N}$$

= $\frac{1850}{60}$
 $\bar{x} = 30.8$
 $\sigma = \sqrt{\frac{2fd^2}{N}}$

N

= $\sqrt{\frac{10858.4}{60}}$

b) Assumed Mean Method:

1-11-11-11-11-11-11-11-11-11-11-11-11-1					
x	+	d = x - A = x - 30	d ²	fd	fd2
10	8	10 - 30 = - 20	400	-160	3200
20	12	20 - 30 = -10	100	-120	1200
30	20	30-30=0	0	O	0
40	10	40-30=10	100	100	1000
50	7 2.19	50 - 30 = 20	400	140	2800
60	3	60-30 = 30	900	90	2700
	2f =60	CHARLE SEED	203-7	£fd = 50	2fd ²

$$\sigma = \sqrt{\frac{2fd^2}{N} - (\frac{2fd}{N})^2} \qquad N = 2f$$

$$= \sqrt{\frac{10900}{60} - (\frac{50}{60})^2}$$

$$= \sqrt{181.666 - (0.083)^2}$$

$$= \sqrt{181.666 - 0.006889}$$

$$= \sqrt{181.65}$$

$$\sigma = 13.45$$

c) Step-deviation method:

marks	f	$d' = \frac{x - A}{c}$	d"2	fd'	fd ¹²
10	8	10-30 = -2	4	-16	32
20	12	20-30	1	-12	12_
30	20	30-30 .	10.0 1	(0.00)	0
40	10.	Ext.	in attailed	10	10
50	7	2	4	14	28
60	3	3	9	9	27_
	2f=60	F4		2fd'=	2fd'=

$$\sigma = \sqrt{\frac{2fd'^2}{N} - \left(\frac{2fd'}{N}\right)^2} \times c$$

$$= \sqrt{\frac{109}{60} - \left(\frac{5}{60}\right)^2} \times 10$$

continuous deries:

$$\sigma = \sqrt{\frac{\xi + d'^2}{N} - \left(\frac{\xi + d'}{N}\right)^2} \times c$$

- 1) compute the standard deviation from the following data.
- × 0-10 10-20 20-30 30-40 110-50

		-	18.000			
c.I	f	m	d'= m-A	d'2	fd'	fd'2-
0 - 10	8	5	5-35 = -3	9	-24	72
10 - 20	12	15	-2	4	-24	148
20-30	17	25	-1	ı	- 17	17
30-40	114	35	b	0	0	O
40 - 50	9	45	The state of	1	9	9
50 - 60	7	55	2	4	14	2.8
60-70	A STATE OF	65	3	9	12	36
che	Ef=71	ab all	140 N		£fd'= -30	210

$$\sigma = \sqrt{\frac{2fd'^2}{N}} \left(\frac{2fd'}{N} \right)^2 \times C$$

$$= \sqrt{\frac{210}{71}} - \left(-\frac{30}{71} \right)^2 \times 10$$

$$= \sqrt{\frac{2.95}{71}} - \left(-0.42 \right)^2 \times 10$$

$$= \sqrt{\frac{2.77}{10}} \times 10$$

combined standard deviation:

If a sample of N1 Item as a mean \bar{x} , and σ_1 and another sample of N2 items as a mean \bar{x}_2 and σ_2

We can find out the combined mean and combined standard deviation by using the formula.

 $\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$

 $\sigma_{12} = \sqrt{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}$ $N_1 + N_2$

Where,

012 = combined standard deviation

 $d_1 = \bar{x}_1 - combined mean (\bar{x}_2)$

 $d_2 = \bar{x}_2 - combined mean (\bar{x}_{12})$

Their wages are Rs. 63 and Rs. 9

Trespectively. For a group of 40 female

workers those are Rs. 54 and Rs. 6

Trespectively. Find the Standard deviation

for the combined group of 90 workers.

characteristics	nod mus.	combined	
	I Male	ITemale	group
Dirge	N ₁ = 50	N2 = 40	N1+ N2 = 90
Mean	₹,=63	×2 = 54	X ₁₂ = ?
S.D	0, = 9	02 = 6	012 = ?

We know the combined mean

$$\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2 + N_2}$$

50+40

We know that combined standard deviation

$$\sigma_{12} = \sqrt{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}$$

$$N_1 + N_2$$

 $d_1 = \bar{x}_1 - \text{combined mean } (\bar{x}_{12})$

 $d_2 = \bar{x}_2 - combined mean (\bar{x}_{12})$

$$\sigma_{12} = \sqrt{50(9)^2 + 40(6)^2 + 50(4)^2 + 40(-5)^2}$$

$$50 + 40$$

$$= \sqrt{4050 + 1440 + 800 + 1000}$$

$$= \sqrt{7290}$$

$$= \sqrt{81}$$

012 = 9

and 3.D H. A Second Sample of 65

values has mean 70 and 5.D 5. Find

the S.D of the combined Sample of

100 values.

Given $N_1 = 35$, $N_2 = 65$, $\sigma_1 = 44$, $\bar{X}_1 = 80$, $\bar{X}_2 = 70$, $\sigma_2 = 5$

We know that combined mean

$$\bar{X}_{12} = \frac{N_1 \bar{X}_1 + N_2 \bar{X}_2}{N_1 + N_2}$$

$$= 35(80) + 65(40)$$

$$= 35 + 65$$

= <u>7350</u>

X12 = 73.5

We know that combined S.D

 $d_1 = \bar{x}_1 - combined mean (\bar{x}_{12})$

= 80 - 73.5

d, 1=16.5 loves la signor de 10

 $d_2 = \bar{x}_2 - \text{combined mean } (\bar{x}_{12})$

we are pro- 43.67 and soular

d2 = -3.5 mm + 10. 10. 0.2 of.

012 = \(N, \sigma_1^2 + N_2 \sigma_2^2 + N, \displa_1^2 + N_2 \displa_2^2

N1+ N2

 $= \sqrt{35(4)^2 + 65(5)^2 + 35(6.5)^2 + 65(-3.5)^2}$

35+65

= \(35(16) + 65(25) + 35(42.25) + 65(12.25)

100

= \(\int 560 + 1625 + 1478.75 + 796.25 \)

$$= \sqrt{\frac{4460}{100}}$$

$$= \sqrt{\frac{44.6}{100}}$$

$$= 6.67$$

the arithmetic mean and s.D. are 8 and

10.5 for 50 observations believed from

these 100 observations the mean and the

S.D. are 10 and 2' respectively. Find

the Arithmetic mean and standard

deviation of the other half.

$$N_1 = 50$$
, $N_2 = 50$
 $\bar{X}_1 = 10$, $\bar{X}_{12} = 8$, $\bar{X}_2 = ?$
 $\sigma_1 = 2$, $\sigma_{12} = 10.5$, $\sigma_2 = ?$

We know that combined mean

$$\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$$

$$8 = 50(10) + 50(\bar{x}_2)$$

$$50 + 50$$

$$8 = 500 + \bar{x}_2 50$$

$$100$$

$$800 = 500 + 50 \bar{x}_2$$

$$800 - 500 = 50 \bar{x}_2$$

$$\bar{x}_2 = \frac{300}{50}$$

$$\bar{x}_2 = 6$$
Whee know that combined S.D.
$$d_1 = \bar{x}_1 - \text{combined Mean } (\bar{x}_{12})$$

$$= 10 - 8$$

$$d_1 = 2$$

$$d_2 = \bar{x}_2 - \text{combined Mean } (\bar{x}_{12})$$

$$= 6 - 8$$

nd2 = 2

$$\sigma_{12} = \sqrt{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}$$

$$N_1 + N_2$$

$$10.45 = \sqrt{50(2)^2 + 50(\sigma_2)^2 + 50(2)^2 + 50(-2)^2}$$

$$50 + 50$$

$$10.5 = \sqrt{50(4) + 50(\sigma_2)^2 + 50(4) + 50(4)}$$

$$100$$

$$10.5 = \sqrt{200 + 50 \sigma_2^2 + 200 + 200}$$

$$100$$

$$10.5 = \sqrt{600 + 50 \sigma_2^2}$$

$$100$$

$$10.25 = 600 + 50 \sigma_2^2$$

$$100$$

$$110.25 = 600 + 50 \sigma_2^2$$

$$100$$

50

02 = 14.43

Definition:

The Measures of dispersion based on Standard deviation is defined by $\frac{S \cdot D}{X \cdot 100} \times 100 \cdot Tt \text{ is called a co-efficient Mean}$ of variation.

 $C.V = \frac{S.D}{Mean} \times 100$

 $CV = \frac{\sigma}{\bar{x}} \times 100$

Individual Series :.

1. Price of a particular commodity is 5
years is 2 vities are given below

Price is sity A: 20 22 19 23 16
Price is sity B: 10 20 18 12 15

From the above data, Find the city which add were stable price,

d=x-A	d^2
20-19 = 1	
22-19 = 3	9
19-19=0	0
23-19 = 14	16
16 - 19 = -3	9
£d = 5	£d2=35
	21 - 193

Mean .

$$Mean = \frac{\leq x}{N}$$

$$= \frac{100}{5}$$

$$\overline{X} = 20$$

Standard deviation ..

$$\sigma = \int \frac{\xi d^2}{N} - \left(\frac{\xi d}{N}\right)^2$$

$$\xi d^2 = 35, \quad \xi d = 5, \quad N = 5$$

$$= \sqrt{\frac{35}{5} - \left(\frac{5}{5}\right)^2}$$

$$= \sqrt{7 - 1}$$

$$CV = \frac{\sigma}{\bar{x}} \times 100$$

$$= \frac{2.4}{20} \times 100$$

Price in city B	d = x - A	d2
10	10-18 = -8	64
20	20-18 = 2	16
18	18-18=0	D
12	12-18=-6	36
15	15 - 18 = -3	9
2x = 75 ()	2d = -15	2d2= 113

Mean:

Mean =
$$\frac{2x}{N}$$
= $\frac{15}{5}$

Standard deviation:

$$\sigma = \int \frac{2d^2}{N} - \left(\frac{2d}{N}\right)^2 \\
= \int \frac{113}{5} - \left(\frac{-15}{5}\right)^2 \\
= \int 22.26 - (-3)^2 \\
= \int 13.6$$

$$\sigma = 3.6$$

a co. eff of variation

= 0.24 × 100

C.V = 2H

in city B add more stable prices than city A because the so-efficient of variation is lower in city A.

Discrete Devies:

	d by Iwo Jeams	
is a foot l	all deasons where	e as follow
No. of goals	Team A	Team :
excerted in mat	ch) - 32.20 /98	
0	P-80 00 27	l-1
	1814	9
2	8	6
3	mitalion 5 hall	03 6
4	00 x 0 Av	3

By calculating the so-efficient of variation in each case. Find which team may be consider more consistant

Team A:

X	f	f×	d = x - A	d2	fd	fd2
0	27	0	-2	4	-54	108
1	9	9	-1	1	-9	9
2	8	16	0	0	10	0
3	5	15	J. T	1	5	5
4	4	16	2	Д	8	16
	£f= 53	2fx = 56	100 x 50	≥d2= 10	£fd = -50	£fd2=

Mean :

Mean
$$(\bar{x}) = \underbrace{\xi f x}_{N}$$

$$= \underbrace{56}_{53}$$

$$\bar{x} = 1.05$$

Standard deviation:

$$\sigma = \int \frac{2fd^2}{N} - \left(\frac{2fd}{N}\right)^2$$

$$= \int \frac{138}{53} - \left(-\frac{50}{53}\right)^2$$

$$= \int 2.60 - (-0.9)^2$$

$$= \sqrt{2.60 - 0.81}$$

so-eff of variation

$$CV = \frac{\sigma}{\bar{x}} \times 100$$

Team B :

z	f	fx	d=x-A	d²	fd	fdz
0	17	0	-2	4	-34	88
9	9	9	-1	1	-9	9
2	6	12	0	0	0	0
3	5	15	1	1	5	5
4	3	12	2	4	6	12
	£f = 40	£fx=	- Sales	£d2=	≤fd= -32	\$ fd'

-950

Mean:

Mean =
$$\frac{\varepsilon f x}{N}$$

$$= \frac{48}{40}$$

$$= 1.2$$

standard deviation;

$$\sigma = \sqrt{\frac{2fd^2}{N} - \left(\frac{2fd}{N}\right)^2}$$

$$= \sqrt{\frac{94}{40} - \left(-\frac{32}{40}\right)^2}$$

$$= \sqrt{2.35 - (-0.8)^2}$$

$$= \sqrt{1.71}$$

$$\sigma = 1.30$$

so-eff of variation;

$$CV = \frac{\sigma}{\overline{X}} \times 100$$

$$= \frac{1.3}{1.2} \times 100$$

$$= 1.08 \times 100$$

$$CV = 108$$

.. Hence the team A is more consistent then Team B.

continuous deries :

for the data

sige

20-30 30-40 40-50 50-60 60-70 70-80 80-90

No. of.

3 61 132 153 140 51 2

C.I	f	m	$d' = \frac{m-A}{c}$	d'2	fd'	fd'2	fm
20-30	3	25	-3	9	-9	27	115
30-40	61	35	1-2	1)	-122	244	2131
HO-50	132	45	2.45 .0	1	-132	132	5.910
50-60	153	55	0	0	0	0	8 1,15
60-70	140	65	1	1	140	140	91100
70-80	51	75	2	н	102	204	380
80-90	2	85	3	9	6	18	1710
	źf = 542		97143		2fd'=	2fd'2 765	£ for 2966

Mean:

Mean
$$\hat{x} = \frac{\text{2fm}}{\text{2f}}$$

$$= \frac{29660}{542}$$

Standard deviation:

$$\sigma = \sqrt{\frac{2fd^{12}}{N}} - \left(\frac{2fd^{1}}{N}\right)^{2} \times c$$

$$= \sqrt{\frac{765}{542}} - \left(\frac{-15}{542}\right)^{2} \times 10$$

$$= \sqrt{1.41 - (-0.02767)^{2}} \times 10$$

$$= \sqrt{1.41 - 0.0765} \times 10$$

$$= \sqrt{1.0635} \times 10$$

$$\sigma = 10.31$$

$$C \cdot V = \frac{\sigma}{\overline{X}} \times 100$$

Merits:

- 1. It is most important and widely used measures of dispersion.
- 2. It is possible for further algebraic treatment.
- 3. It is the basis for reasoning the co-efficient of correlation pampling and statistical inferences.
- H. The standard deviation provides the unit of measurement for the normal distribution.
- 5. It can be used to calculate the combines standard deviation of two or more groups.

Demerits:

- 1. It is not easy to understand and it is difference to calculate.
- 2. It gives more weight to extreme value

- item in the deries.
 - 4. It has not found favour with the economists and businessman.

Uses:

- 1. 9. D is the best measure of dispersion.
 - 2. It is used is co-reflicient of correlation.
 - 3. It is widely used is statistics because it possesses most of the characteristics of an ideal measure of dispersion.
- H. It is used sampling theory.
 - 5. It is used to study the symmetrical frequency distribution.

and standard deviation

Deviation are calculated Deviation are from mean, median, calculated only mode from mean

Algebric Ligns are ignored while calculating are taken into M.D

mean deviation standard deviation

Algebric sign. account

Measures of Skewners:

Dkewness:

skewness is a measure to study a statistical distribution. If a distribution is not symmetrical is called skew.

If the frequency curve as a long tail to the right is called skew to the and Standard deviation sight.

If the frequency curve as a long tall to the left is called skew to it left.

= Mean - Mode

standard deviation

(or)

= 3 (Mean - Median)

standard deviation

Emprical Relation:

Mean - mede = 3 (Mean - median)

2. Bowley's co-efficient of skewness:

$$= \frac{Q_3 + Q_1 - 2M}{Q_3 - Q_1} \quad (or) \quad \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$$

where
$$a_{i} = l_{i} + \frac{N_{4} - m_{1}}{f_{i}} \times c$$

$$Q_2 = l_2 + \frac{N_2 - m_2}{f_2} \times c (m) l_2 + \frac{2N_1 - m_2}{f_2}$$

$$Q_3 = l_3 + \frac{3N_{/4} - m_3}{f_3} \times c$$

ייייטעון נון מיייי

twhere I, - lower limit of the Q, class

m, - cummulative frequency of

preceeding class

f, - frequency of the Q, class

C - class interval

N - Total frequency

Q2 - Decend Quartile is called median

Steam - miedle - St team - maser		
Individual	Discrete	continuous
$\bar{x} = \underline{4x}$	$\bar{x} = \frac{\xi f x}{N}$	$\bar{x} = A \pm \frac{\text{ifd}}{N} \times c$
N - Number	N - Total	Where, A - Assumed Ha
57.		N- Total frequence C-class interval
200	The state of the s	A CONTRACTOR OF THE PARTY OF TH
0DD <u>n+1</u> 2	$\bar{x} = \underline{zfx}$	$M = L + \frac{N}{2} - m$
EVEN n and $(n+1)$	N - Total	f
	$\bar{x} = \underline{\leq} x$ $N = Number$ of observation $\underline{n+1}$ $\underline{2}$	Individual Discrete $ \bar{X} = \frac{\pm x}{N} \qquad \bar{X} = \frac{\pm fx}{N} $ $ N = Number \qquad N = Total $ of observation grequency $ \bar{X} = \frac{\pm fx}{N} $ $ \bar{X} = \bar{X} = \frac{1}{N} $ $ X$

78808cm	MICHAEL B. MICHAEL B. C.	SHELL CHROST PRODUCES OF THE COLORS ASSESSMENT
Mode	NA -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	$mede = l + f_1 - f_0$ $2f_1 - (f_0 + f_2)$
		where,
		d - Jonuar Simit of the model class
		f - frequency of the
	THE PROPERTY OF THE PERSON OF	for frequency of the
		for frequency of the promodel class for frequency of the
		-post model class
	OK N	c - class interval
Standard	$\sigma = \int \underbrace{\mathbb{E}(x_1 - \overline{x})^2}_{n} \qquad \sigma = \int \underbrace{\mathbb{E}f(x_1 - \overline{x})^2}_{n}$ (or) $\sigma = \int \underbrace{\mathbb{E}d^2}_{n} - (\underbrace{\mathbb{E}d}_{n})^2 \qquad \sigma = \int \underbrace{\mathbb{E}fd^2}_{n} - (\underbrace{\mathbb{E}fd}_{n})^2$	$\sigma = \sqrt{\frac{2d^2}{n} - \left(\frac{2d}{n}\right)^2}$
1.	find the Pearson's co-efficiency	
	Annual Sales (in '000 Rs)	No. of items
	0-20	20
	20-40 08 7 19 4	50
	40 -60	59
	60 -80 DB - FB 10A	30
	80 -100 Da (na) c	25
	100-120	16

Class	Mid value	f	$d = \frac{x - A}{c}$	d2	fd	fd2
0-20	10	20	-2	4	-40	80
20-40	30	50	-1	1	-50	50
40-60	50	59	О	0	0	0
00 - 80	70	30		1		
0-100	90	25	2	4	30	30
00-120	110	16	3	9	48	100
		N=200		T	£fd = 38	£fd2 404

$$Meam = A + \frac{2fd}{N} + c$$

A = 50, Efd = 38, Efd = 404
N = 200

= 50 + 0.19x20

mathematical = 53.8 proposition of sales and

$$\mathcal{M}ode = \mathcal{L} + f_1 - f_0$$

$$2f_1 - f_0 - f_2$$

$$= 40 + \frac{59 - 50}{2(59) - 50 - 30}$$

standard deviation
$$\sigma = \int \frac{2fd^2}{N} - \left(\frac{\xi fd}{N}\right)^2 \times c$$

$$= \sqrt{\frac{404}{200} - \left(\frac{38}{200}\right)^2 \times 20}$$

$$=\sqrt{2.02-(0.19)^2}\times 20$$

= 0.32

2. calculate the Pearson's co-efficient of Skewness for the following data.

25, 15, 23, 40, 21, 25, 23, 25, 20

×	d = x - A	d 2
25	-2	4
15 000	-12	144)
23 40	-4	16
40	13	169
27	0	0
25	-2	4
23	-14	16
25	-2	4
20	-7	49
x = 223	2d = -20	4d2 = 1106

$$Meam = \frac{2x}{N}$$

X = 24.7

Mode = 25 25 occurs three times

1. unimedal

standard deviation
$$\sigma = \sqrt{\frac{\epsilon d^2}{N} - \left(\frac{\epsilon d}{N}\right)^2}$$

$$= \sqrt{\frac{406}{9} - \left(-2.22\right)^2}$$

Pearson's co-efficient = Mean - Mode Standard deviation

HIW calculate the Pearson's co-efficient of skewness for the following data. 7, 4, 10, 9, 15, 4, 12, 7, 9, 7

×	d = x - A	d2		
	20	3034		
7	-8	64		
4	To market with	121		
10	-5	25		
9	-6	36		
15	0	0		
	-3	9		
70.000	-8	64		
9	- b	36		
7. mass-	- 8 m	64		
X = 80	Ed = -55	£d = 419		

$$Meam = \frac{\pm x}{N}$$

$$= \frac{80}{9}$$

$$= 8.888$$

Mede = 7

Estandard deviation
$$\sigma = \sqrt{\frac{2d^2}{n} - (\frac{2d}{n})^2}$$

$$= \sqrt{\frac{419}{9} - (\frac{-55}{9})^2}$$

- HERRINA

$$= \sqrt{46.55 - (-6.11)^2}$$

$$= \sqrt{46.55 - 37.33}$$

$$= \sqrt{9.22}$$

$$= 3.03$$

Pearson's co-efficient = Mean - Mode

standard deviation

 $= \frac{8.88 - 7}{3.03}$ $= \frac{1.88}{3.03}$ = 0.62

Find the Peanson's co-efficient of skewness from the following data.

2 3 4 5 6 7 8 9 10

dinge 7 10 14 35 102 136 49 8

			_			
×	1	f×	d = x - n = x - 6	d *-	fd	fd2
3	7	21	-3	9	-21	63
4	10 fo	110	-2	4	-20	40
5	14)	70	10 pt -	1	- 114	14
6 4			0	0	0	0
7	(102)	714	1	1	102	100
8	136	1088	2	4	272	544
9	43	387	3	9	129	38 7
10	8	80	4	16	32	128
	2f = 355	2fx= 2610	A magnitude		£fd = 1180	≤ fd²

$$Mean = \underbrace{\epsilon f_{R}}_{N}$$

= <u>2610</u> 355

× = 7.352

Mede = 3 (inital value)

$$\sigma = \sqrt{\frac{2fd^2}{N} - \left(\frac{2fd}{N}\right)^2}$$

*
$$\sqrt{\frac{1278}{355} - \left(\frac{480}{355}\right)^2}$$

```
= \sqrt{36 - (1.352)^2}
   =\sqrt{3.6-1.8279}
   = 1,7721
   σ = 1.3312
   Pearson's co-efficient of skewness
          _ Mean - Mode
            standard deviation
          = 7.352 - 3
            1.3312
         = 4.352
            1.3312
           3.269
   Home work burns
 1. Find the Pearson's co-efficient of skewness
   from the following data
   class 10-19 20-29 30-39 40-49 50-59
        60-69 70-79 80-89
  frequency 5 9 14
                        20
                              25
```

15 8 4

							The state of the s
C.I	x	m	f	d=m-n	dº	fd	fd°
10-19	9-5-19.5	14.5	5	-3	9	-15	Jir.
	1/8 38 THE 2 TO 1			-2	1,	- 18	36
30-39	29.5-39.6	34.5	(IA)°	-1	-10	- 113	IJ,
	39.5-49.6	A		0	0	0	6
	49-5-69.6		1	· ·	1	25	25
	59.5-69.5		10	2	4	30	60
	69.5-79.5			The same of the	9	24	72
00 - 89	79.5-89.5	84.5			16	16	6.4
			N =			2fd.	5. Fel 3.
			100	JE 3L		118	316

Mean =
$$A \pm \frac{\xi + d}{N} \times c$$

= 44.5 + 4.8

x = 49.5

Made =
$$1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times C$$

$$= 39.5 + \frac{6}{40 - 39} \times 10$$

$$= 39.5 + \frac{6}{1} \times 10$$

Mode = 99-5

standard deviation
$$\sigma = \sqrt{\frac{5 + d^2}{N} - (\frac{5 + d}{N})^2 \times c}$$

$$= \sqrt{\frac{316}{100} - \left(\frac{48}{100}\right)^2} \times 10$$

Pearson's so-efficient of oskewness

standard deviation

Bowley's co-efficient of skewners

Find out the Bowley's co-efficient of skewness from the following data.

Mid value	21	27 38	39 45	51 57
frequency	18	22 40	60 38	12 4
b = 3	M.Y	CI	f	cf
914	21	18 - 24	18	18
	27	24-30	2.2	40 m,
	33	1 30-36	40 T,	80 m2
	39	1236-42	(50) fi	(130) ^m 3
	45	13 42 - 48	38 f3	168
	51	48 - 54	12	180
	57.	54-60	74	184
			N = 1814	N. U.

$$B = Q_3 + Q_1 - 2Q_2$$

$$Q_3 - Q_1$$

$$\begin{array}{c}
(R_1 = l_1 + \frac{N}{4} - m_1) \\
\hline
f_1 \\
= 30 + \frac{184}{40} - 40 \\
\hline
40
\end{array}$$

$$= 30 + \frac{184}{40} - 10 \times 6$$

$$= 30 + \frac{1}{40} \times 6$$

$$= 30 + 0.15 \times 6$$

$$= 30 + 0.9$$

$$Q_1 = 30.9$$

$$Q_3 = l_3 + \frac{3N}{4} - m_3 \times c$$

$$f_3 \\
= 42 + \frac{3(184)}{4} - 130 \times 6$$

$$38$$

$$= 42 + \frac{562}{4} - 130 \times 6$$

$$38$$

$$= 42 + \frac{138 - 130}{38} \times 6$$

$$= 42 + \frac{138 - 130}{38} \times 6$$

$$= 42 + 0.210 \times 6$$

= 42 + 1.26

$$Q_{2} = J_{2} + \frac{N}{2} - m_{2}$$

$$= 36 + \frac{184}{2} - 80 \times 6$$

$$= 36 + \frac{92 - 80}{50} \times 6$$

$$= 36 + \frac{12}{50} \times 6$$

$$= 36 + 0.24 \times 6$$

$$= 36 + 1.44$$

$$Q_{2} = 37.44$$

Bowley's co-efficient of skewners = Q3+Q,-2Q2 Q3-Q1

$$= -0.72$$

$$12.36$$

$$= -0.058$$

1.	Payments	of commission	No. of . Dalesr	na
	100-	120	4	
	120 -	140	10	
	140 -	160	16	
	160 -	180	29	
	180 -	200	52	
	200 -	220	80	
	220 -	240	42	
	240 -		23	
	260 -	2.80	17	
	280 -	800	7	
	c.2	os and	c f	
	100 - 120	4 4 6 6 6 6	34	
	120 - 140	10	114	
	140 - 160	16	30	
	160 - 180	29	59 m	
£,	180 - 200	52 f1	(III) m ₂	
1,2	200- 220	90 12	(191) m ₃	
13	220-240	(H2) f3	233	
	240 - 260	23	256	
	260 - 280	Te a cost	273	
	280 - 300	Т	280	
		N = 280		

$$Q_{1} = \left(\frac{N}{h}\right)^{\frac{1}{1}} \text{ item} = \frac{280}{2} = 140$$

$$Q_{3} = 3\left(\frac{N}{h}\right)^{\frac{1}{1}} \text{ item} = 3(70) = 210$$

$$Q_{1} = l_{1} + \frac{N}{H} - m_{1} \times c$$

$$= 180 + \frac{10 - 59}{52} \times 20$$

$$= 180 + 0.2115 \times 20$$

$$= 184.23$$

$$= 184.23$$

$$Q_{2} = l_{2} + \frac{N}{2} - m_{2} \times c$$

$$= 200 + \frac{140 - 111}{80} \times 20$$

$$= 200 + 0.3625 \times 20$$

$$= 200 + 7.25$$

Q2 = 207.25

$$Q_3 = J_3 + 3 \left(\frac{N}{H}\right) - m_3 \times C$$

$$= 220 + 210 - 191 \times 20$$

$$= 220 + \frac{19}{H^2} \times 20$$

$$= 220 + 0.452 \times 20$$

Bowley's co-efficient of skewness

$$=\frac{Q_3+Q_1-2Q_2}{Q_3-Q_1}$$

For a distribution Bowley's co-efficient of skewness is -0.36. lower Quartile is 8.6 and Median is 12.3. What is the Quartile co-efficient of dispersion.

Quartile co-efficient of dispersion = Q3-Q, Q3+Q, Given:

B.k = -0.36

P, = 8.6 (1) per

2)

Q2 = 12.3

Boroley's co-efficient of skewners = 03+91-202 Q2-Q1

-0.36 = Q3+8.6-2(12.3) (an mac) = ex 1181 + 110 1 @3 - 8.6

- 0.36 (Q3-8.6) = Q3+8.6-24.6

- 0.36Q3 + 3.096 = Q3-16

3.096+16 = 03+0.3603

19.096 = Q3 (1+0.36)

19-096 = Q3 (1.36)

Q3 = 19.096 1.36

03 = 14.0411

Sub Q3 & Q, in eqn 0 20 -efficient of dispension = $Q_3 - Q_1$ $Q_3 + Q_1$ = 14.0411 - 8.6 14.0411 + 8.6 = 5.4411 = 22.6411

Home work dums:

Find out the Boroley's co-efficient of skewness from the following Sata.

Mid value 75 100 125 150 175 200

225 250

Frequency 35 40 48 100 125 80

on the thing

50 22

	Day Strain Land		4
M.V	C.I	f	cf
76	62.5-87.5	35	35
100	87.5 - 112.5	40	75
125	112.5 - 137.5	48	(123)
150	1, 137.5 - 162.5	100 f	223
175	12 162.5- 187.5	(125) f ₂	348
200	L3 187.5 - 212.5	90 f2	428
225	212.5 - 237.5	50	478
250	237.5 - 262.5	22	500
and solate	liver the follow	N = 500	
Q, - (N) the item = 5	00 ± 125	
Q2 = ($\left(\frac{N}{2}\right)^{th}$ item = $\frac{6}{2}$	H 500 = 250	
Q3 = 3	$3\left(\frac{N}{4}\right)^{4}$ item = 3((500) = 3 (12	5)= 37
Q,	$= \mathcal{L}_1 + \frac{N}{4} - m,$ $\frac{1}{4} \times m$	cc	
	= 137.5 + 125=		
	100		
	= 137.5 + 2 ×2		

= 137.5 + 0.02 x 25

$$Q_2 = J_2 + \frac{N}{2} - m_2 \times c$$

$$Q_3 = l_3 + 3 \left(\frac{N}{4}\right) - m_3 \times c$$

$$= 187.5 + 3 \left(\frac{500}{4} \right) - 348 \times 25$$

3. In distribution mean = 65, median = 70

and co-eff of skewness is -0.6

Gwen :

5tandard deviation

$$S.k = 3(65-10)$$

$$S.D$$

$$\sigma = 3(65-10)$$

$$S.k$$

$$\sigma = 3(5)$$

$$-0.6$$

$$\sigma = -15$$

$$-0.6$$

Sub
$$\sigma = 25$$
 in eqn (1)

20-4f of variation = $\frac{25}{65} \times 100$

= 0.3846 × 100

= 38.46

Mean - Mede =
$$3$$
 (Mean - Median)
 65 - Mede = $3(65 - 10)$
 65 - Mede = $3(-5)$
 65 - Mede = -15

H. From a cube distribution the Mean value is the 20 and the median price is the 20 percentage find the Pearson's co-eff of Skewness.

co-eff of variation = $\frac{\sigma}{\bar{x}} \times 100$ co-eff of variation $\times \frac{\bar{x}}{100} = \sigma$ $\sigma = \frac{26}{100} \times \frac{20}{100}$ $\sigma = \frac{400}{10,000}$ $\sigma = 0.04$

Pearson's co-eff of Skewness = 3(Mean-Median)

standard

deviation

 $= \frac{3(20-17)}{0.04}$ $= \frac{3(3)}{0.04}$ $= \frac{9}{0.04}$

5. In a distribution sum of two Quaronds
is 78.2 and its difference is 14.3 and
if its redian is 35.7. Find the co-efficient
of skowness.

$$Q_3 + Q_1 = 78.2$$
 $Q_3 - Q_1 = 14.3$
 $Q_2 = 35.7$

Bowley's co-efficient of skewness

$$= \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$$

= 0.4755

Kurtosis Based on Moments:

Definition:

SECULO DELLA DELLA

or Peakness of a distribution.

Types of Turtosis:

Mesakurtic:

The normal surve (Bell Shaped surve) is called Mesokurtic.

Platykurtic:

The come which is more plategred that the normal scurve is scalled platykuntic.

Leptokurtic:

than the normal curve is called leptokurte

1. β2 23 (61) 82 39 (1) 3. β2 23 (61) 82 39 (1) 3. β2 >3 (61) 82 39 (1)

Measures of kurtosis:

Kurtosis is measured by the co-efficient

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$
 (or) $\beta_2 = \frac{\mu_4}{\mu_2^2} - 3$

For the normal distribution $\ell_2 = 0 \times \beta_2 = 3$

If $\beta_2 = 3$ (or) $\beta_2 = 0$ then the curve is called Mesokurtic.

If $\beta_2 > 3$ (01) $\beta_3 > 0$ then the curve is called Leptchwrtic.

If $\beta_2 < 3$ (01) $\gamma_2 < 0$ then the surver is called platykurtic.

central moments.

The measure of skewners based on moments is given by $\beta_1 = \frac{\mu_3^2}{\mu_3^3}$

measure of skewness $\beta_1 = \frac{\mu_3^2}{\mu_2^3}$

Measure of Fuortosis $\beta_2 = \frac{\mu_4}{\mu_2^2}$

central moments = \mu'_{\gamma}

(EF (E)

A = -0.129

8 = -0.251

The first four contral moments of a distribution are 0, 2.5, 0.7, 18.75. Test the skewness & runtosis of a distribution the 20-eff of skewness is $\beta_1 = \frac{V_3^2}{\mu_3^2}$

Graven:

$$\mu'_{1} = 0, \quad \mu'_{2} = 2.5, \quad \mu'_{3} = 0.7, \quad \mu'_{4} = 8.75$$

$$\therefore \beta_{1} = \frac{(0.7)^{2}}{(2.5)^{3}} \qquad \mu_{1} = \mu'_{1}$$

$$= \frac{0.49}{15.625} \qquad = 2.5$$

$$\beta_{1} = 0.031$$

B, is postive the distribution is positively observed.

$$\mu_{3} = \mu_{3}^{1} - 3\mu_{2}^{1} \mu_{1}^{1} + 2\mu_{1}^{13}$$

$$= 0.7 - 3(2.5)(0) + 2(0)^{3}$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.7$$

$$= 0.$$

the distribution.

$$(\mu_3 = \mu_3' - 3\mu_2' \mu_1' + 2\mu_1'^3)$$

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

$$= \frac{(-6\mu)^2}{(16)^3}$$

$$= \frac{\mu 096}{\mu 096}$$

$$\beta_1 = 1$$

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

$$= \frac{262}{(16)^2}$$

B2 = 1.023

Home work Sums

Find the quartile co-eff of skewness of the Iwo groups below which group is more skewness

mark	A	B
55 - 58	12	(DE) A
58 - 61	17	22
61 - 64	23	25
64-67	18	13

Group	A	
C.I	f	cf
55 - 58	12	12
1 58-61	(T) f.	29
1260-64	23f2	52
13 64- 67	(18) f3	70

$$Q_{1} = \left(\frac{N}{H}\right)^{th} term$$

$$= \frac{70}{H}$$

$$Q_{1} = 17.5$$

$$Q_{2} = \left(\frac{N}{2}\right)^{th} term$$

$$= \frac{70}{2}$$

$$Q_{2} = 35$$

$$Q_{3} = 52.5$$

Burvley's co-efficient of skewners $= Q_3 + Q_1 - 2 Q_2$ $= Q_3 - Q_1$

$$Q_{i} = \frac{l_{i} + \frac{N}{H} - m_{i}}{f_{i}} \times c$$

$$= 58 + \frac{17.5 - 12}{17} \times 3$$

$$= 58 + \frac{5.5}{17} \times 3$$

$$= 58 + 0.323 \times 3$$

$$= 58 + 0.969$$

$$= 58.969$$

$$= 58.969$$

$$= 61 + \frac{35 - 29}{23} \times 3$$

$$= 61 + \frac{6}{23} \times 3$$

$$= 61 + 0.260 \times 3$$

$$= 61 + 0.78$$

$$= 61.78$$

$$Q_3 = \frac{1}{3} + 3 \left(\frac{N}{4} \right) - m_3 \times C$$

$$= \frac{64}{18} \times 3$$

$$= 64 + \frac{52.5 - 52}{18} \times 3$$

$$= 64 + \frac{0.5}{18} \times 3$$

$$= 0.027 \times 3 + 6.4$$

= 64.081

Boroley's co-efficient of skewness
$$= R_3 + R_1 + 2R_2$$

$$R_3 - R_1$$

$$= 64.081 + 58.969 - 2(61.78)$$

$$64.081 - 8.969$$

$$= 123.05 - 123.56$$

$$= 1.112$$

$$= -0.51$$

$$= 5.112$$

булогир В

C.Z f cf

55-58 20 20

58-61 22 42

61 - 64 25 67

64-67 13 80

Q1 = (N) tom

80 H

 $Q_1 = Q_0$

Q2 = (80) th term

$$Q_{3} = 3(20) = 60$$

$$Q_{1} = \frac{1}{4} + \frac{N}{4} - m_{1} \times c$$

$$= 58 + \frac{20 - 20}{33} \times 3$$

$$Q_{1} = 58$$

$$Q_{2} = \frac{1}{4} + \frac{N}{2} - m_{2} \times c$$

$$= 61 + \frac{10 - 12}{25} \times 3$$

$$= 61 + (-0.08) \times 3$$

$$= 61 - 0.24$$

$$= 60.76$$

$$Q_{3} = \frac{1}{3} + \frac{3(\frac{N}{4}) - m_{3}}{25} \times 3$$

$$= 61 + (-\frac{7}{25}) \times 3$$

$$= 61 + (-\frac{7}{25}) \times 3$$

$$= 61 + (-0.28) \times 3$$

$$= 61 - 0.84$$

$$= 60.16$$

Bowley's co-efficient of skewners $= \frac{Q_3 + Q_1 - 2Q_2}{Q_3 - Q_1}$ $= \frac{60.16 + 58 - 2(60.76)}{60.16 - 58}$ $= \frac{118.16 - 121.52}{2.16}$ = -3.36 = -1.55