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10 Solid State Physics | i
0% kg/m”. Since aluminium has an fcc structure,

Solution: Given: atomic Wt. = 26.98, p=2.7 X I
n=4.
From eq. 4, we have
3 _ Mn _ 26.98 x 4 = 66.36 X 107" m’

T =DON T 27 x 10° x 6.023 x 10%

This gives a = 4.05 A
Now for fcc crystals, we know that V2a =4R = 2D

D=-2_=286A
v

Therefore,

1.6 SYMMETRY ELEMENTS

In section 1.2, we observed that the repetition of an object (or a lattice point) by a translation

leaves the environment around that object (or lattice point) unchanged. In an extended array,

such as atomic pattern of a crystal, symmetries involving translation, rotation, reflection, inversion

or their combinations are found to occur. The characteristic feature of these symmetries 1s that

the translaton operation repeats an object infinite number of times, while other operations (such

as rotation, reflection, inversion or their combinations) repeat it only a finite number of times
(Fig. 1.13). Further, the operations like translation or proper rotation leave the ‘motif’ (a fundamental

group of atoms or molecules) unchanged whereas the operations like reflections, inversion or
improper rotation change the character of the motif from a right handed to a left handed one and
vice versa. The geometrical locus about which a group of finite operations act is known as
‘symmetry element’. Thus in Fig. 1.13, the line normal to the page about which a rotation takes
place, the plane about which the reflection occurs and the centre about which the inversion takes
place are simple examples of symmetry elements and are called, a rotation axis, a reflection or
a miror plane and an inversion centre, respectively.

J J J J
(a) Translation
5
J L J 7
S
(b) Rotation () Reflection (d) Inversion

Fig. 1.13 Simple Symmetry operations

A crystalline solid can have the following Symmetry elements:

(_i) Pure translation: (7) defined by eq. 2
(i) Proper rotation: through an angle ¢

PPy
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Atoms in Crystals 11

(iii) Reflection: across a line (in two dimensions) or a plane (in three dimensions)
(iv) Inversion: through a point
(v) Improper rotation: Rotoreflection/Rotoinversion.

However, it may be easily verified that the above symmetry elements are not all independent
but are interconnected to each other. We have already discussed the translation operation and
derived plane and space lattices earlier in section 1.2. In the following, we shall discuss about
other symmetry elements.

Proper Rotation

The simplest way of representing the operation for proper rotation is shown in Fig. 1.13b. One
can think of a line or axis passing through the centre and normal to the figure so that the I's (or
in general any geometrical figure) are represented by a rotation through any angle ¢ = 27/n about
the axis of rotation, the axis is said to have n-fold symmetry. However, because of the reticular
structure of crystals, only 1-, 2-, 3-, 4- and 6- fold rotational symmetries (Fig. 1.14) are possible.
They are known as symmetry elements corresponding to proper rotation, consequently, it means
that a crystalline solid can not possess either 5-fold or any other rotational symmetry higher than
6-folds. They are being demonstrated in Fig. 1.14e, 1.14g and 1.14h.

B
B 88

Fig. 1.14 Possible and non-existent symmetry axes

(a) ' (b)

© @

For n = 1 in equation ¢ = 27/n means that the crystal must be rotated through 27 (360°) to
achieve congruency. Such an axis is also called as identity axis. Every crystal possesses an
infinite number of such axes. Further, n = 2 means the crystal is rotated through 7 (180°) and the
axis is said to have 2-fold symmetry. Such an axis is termed as a diad axis and symbolically
esented as (). In a similar way for n = 3, 4 and 6 the corresponding angles of rotation are

90° and 60°, respectively. They are said to have 3-fold, 4-fold and 6-fold symmetry, the
e termed as triad, tetrad and hexad and symbolically represented as A, [1 and O respectively.
r to check the permissible rotational symmetry elements in a crystal, one may start
undamental requirement that all crystals must have periodic structure, that is the
.ments present in the crystals must conform to their translational periodicities. This
ythe number of symmetry elements found in crystals is limited. Now, let us
on of n-fold axis of rotation A, with a translation 7 as shown Fig. 1.15. As
n that a rotation axis repeats the translation ¢° (= 2n/n) away, and hence n
ing back the object into its initial position (it is immaterial whether the
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12 Solid State Physics

bt - counter clockwise). Therefore, starting from the' lint?ar iil‘l‘a.\"si?“ l” IL
B oduce new lattice points p and g as shown in Flg: 1.16. Since they
1.15, two such rotations WI!J _pl'al Jattice row by construction, the two lattice points p and g mus
are equidistant from the ongml t'a n ¢ or some integral multiple of it say m#, depending upon the
A m:lns I;ah;oallowm values of ¢ can be determined from the construction
n;?\:;n::ei:?; ¢i (fé’“;f»ﬁﬁf’éiébne geometrical consideration, we have

S . 1.16.

mt I 7 4
p\ i /
I
I
|
|
|
|

st | —Pet——Prt— [ —Pret— | —rt— | —Poa \ V<¢
Aﬂ Al'l A“ A|'| A‘n A‘ﬂ < l ¢ - ‘ L

> - fm——pi
AJ‘I An A“
Fig. 1.15 n-fold axis of rotation with a Fig. 1.16 Two dimensional array of: (a) objects, (b) points;
A translation ¢ a plane lattice
mt=t+2tcos ¢, where m =0, £1, £2, . .. (5)

Im is used dependineg whether the rotation is clockwise or counterclockwise. Dividing both sides
by 1, eq. 5 can be written as

m=1+2cos¢ or m—1=2cos ¢ (6)

Since m is an integer, (m — 1) will also be an integer. Taking (m — 1) = N. we have
N=2cos ¢ or cos¢=N/2, where N=0,+1,+2, ...

ible values of cos ¢ lie between *l1, corres
btained and are given in Table 1.3. This t
es other than 1-, 2-, 3-, 4- and 6-fold.

(7)

ponding possible values of N, ¢ and n
able clearly shows the non existence of

'rsbieiﬁ Allowed rotational axis in a crystal lattice

(1] n allowed rotational axes

- h D

chls not a quotient of 36(°. So, if

1Y, We can see that the resulting
S in between as shown by the shaded
‘angle is 135°, which again is not a
ﬁﬂ% whole space without leaving gaps
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Atoms in Crystals 13

(Fig- 1.14h). me con_sidcnums indicate that neither 5-fold nor 8-fold symmetries can exist. In
fact, all symmetries higher than 6-fold are not possible.

Reflection (Mirror Plane or Symmetry Plane)

If we Jook at Fig. 1.13c, we find that a plane transforms left handed object into a right handed
one and vice-versa. The element of symmetry in this case is known as a symmetry plane or a
mirror plane and symbolically represented by the letter m. Mirror coincident figures of this type
are known as enantiomorphous pairs and are related by reflection across a plane passing half
way between them. If a crystal is cut along symmetry plane and put on a mirror, the image will
produce the other half of the crystal.

Inversion Centre (Centre of Symmetry)

This is a symmetry operation similar to reflection, with the difference that reflection occurs in
a plane of mirror, while inversion is equivalent to reflection through a point called inversion
centre or centre of symmetry. In other words, the enantiomorphous pair of figures in this case 1s
related by inversion centre lying half way between the two (Fig. 1.13d). Each point of one figure
is obtained from the other by reflection through centre and is symmetrically inverted. The
complete figure thus obtained is inverted completely. Thus the inversion centre or the centre of
symmetry has the property of inverting all space (at present the letter J) through a point.

Improper Rotations
Symmetry operations encountered above, i.e. reflection and inversion, produce enantiomorphous

sets of objects. However, it is also possible to have a rotational operation relating enantiomorphous
objects. Such an operation is called improper rotation. The corresponding symmetry element is
known as improper rotation axis. There exist two improper rotations, they are rotore flection and

~If a rotation and a reflection is combined to form a single hybrid operation, the resulting
= tion is called rotoreflection. The corresponding symmetry element is called rotoreflection
For each proper rotation axis, there exists a corresponding rotoreflection axis. To distinguish
kinds of axes, a tilde symbolically represented as (~) is placed over the numerical
“the corresponding rotationa axis, e.g. 1, 2, 3, etc. For a better understanding, let us see
S --I o & | .m.
,: Show that 1 (one “tilde”) is equivalent to a mirror plane.
»mbined operation of rotation and reflection. In this case, the proper 1-fold
nmotif representing all space (here it is taken as J) through an angle of 07
unchanged. Combining this with reflecting plane perpendicular 1o the
ration as shown in Fig. 1.17a, which is identical to the configuration
. Thus, the operation 1 is equivalent to a reflection through a
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14 Solid State Physics - |
fold rotation will rotate the object (through an imaginary

reﬂected across an imaginary plane placed at right angle

Soiunan In this case, the proper 24
on (Fig. 1.17b). 18 identical to the configuration

h an angle

; i ersion centre.
ls(ljlg:::?n Fig. 1.13d. Thus, the operation 7 is equivalent to an inv
i ¥
PSR o T i ,
(3600 ] umE I
e : [, TR o decemmamemmmnmeeee =5
= & gi: 5 A & r
"" ; :J"' ":: ------------ iy :- ------- &
1 P ]
4 (b)

Fig. 1.17 Improper rotation axes (a) 1, (b) 2

Rotoinversion
As we stated above that an inversion is equivalent to a reflection through a point, therefore it is

possible to combine an inversion with a rotation axis to produce a rotoinversion axis in a manner
similar to the formation of a rotoreflection axis. Consequently, there exist five rotoinversion
axes corresponding to five proper rotation axes. Again, to distinguish these axes, both from pure
rotation ‘am'l rotoreflection, a bar (-) is plaed over the numerical symbol of the corresponding
rotational axis, e.g. 12,3 etc

Conventional symbol

Centre of symmetry 1

Mirror Plane m

3-fold rotoinversion 3

4 L2 A 5 Z
e :

' .' the centre of the cube. There
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Atoms in Crvstals 15

Fig. 1.18 Showing various symmetries of a cube

(i) 3-fold rotoinversion axes passing through the body diagonal. There are four such axes.

(iii) 4-fold symmetry about an axis passing through the centre of two opposite faces. There
are three such symmetry axes.

(iv) Nine mirror planes bisecting the parallel faces, and connecting diagonal edges. All of
them passing through the centre of the cube.

(v) One centre of symmetry at the centre of the cube.

Thus, there are: 6-diads + 4-triads + 3-tetrads = 13 axes, 3 surface planes + 6 diagonal planes
=9 planes, and 1 centre of symmetry. Therefore, the total symmetry elements in a cube = 13 +
0] =23

1.7 COMBINATION OF SYMMETRY ELEMENTS (POINT GROUP)

In the preceding section, we discussed about various symmetry elements and their relationships.
It was found that the symmetry elements are interlinked to each other and are not independent.
In other words, a given symmetry element could be obtained from suitable combinations (if they
are compatible) of other symmetry elements. Such a combination forms a group and gives rise
to different symmetry points called point groups. Thus, a point group in the lattice is defined as
the collection of symmetry operations which when applied about a lattice point, leave the lattice
invariant. In other words, in point groups all possible symmetry elements must pass through a
point. Suitable combinations of various

symmetry elements give rise to thirty two (32)
allowed point groups. Since crystals belonging
to different crystal systems show different point
group symmetries and therefore the
classification of crystal systems can be easily 1
made on the basis of point groups. A few
examples illustrating the locations of equivalent
positions forming groups are shown in Fig. 1.19.
Here, the dots represent equivalent points. @
2

Im
The point group 1 has no symmetry elements @

and hence the single isolated point has no other B

point equivalent to it. FOI: lm, there is a m?rr O Fig.1.19 Locations of equivalent positions for four
plane, one dot on reflection across the mirror point groups

Scanned with ACE Scanner




16  Solid State Physics

plane becomes the second dot. With a 2-fold axis 2, a rotation of 7 takes one dot into the other.
With 2-fold axis and one mirror plane there is automatically a second mirror plane normal to the
first and we have the point group 2 mm with four equivalent points.

1.8 BRAVAIS LATTICE IN TWO DIMENSIONS: PLANE LATTICE

In general, unlimited number of lattices are possible since there is no restriction on tht? IcITgth a,
b of the lattice translations and on angle ¢ between them. Such a lattice drawn earlier in Fig. 1.9
for an arbitrary a, b, and ¢ is known as oblique lattice. An oblique lattice is invariant only under
the rotation 27/n (with n = 1 and 2) about any lattice point. However, this can also be made
invariant under the rotation 22/n with n = 3, 4, 6 or mirror reflection if some suitable restrictions
are imposed on a, b and @. These symmetry elements in turn put restrictions on the shape of the
lattice (precisely the shape of the unit cell). The resulting latices are known as special lattices.
They are obtained as follows.
We know that we need two repeat distances (noncollinear translations) @ and b and an angle
- ¢ to form a two dimensional or plane lattice. Clearly there exist two possibilities @ = b, or a #
b. Further, the angle ¢ between the two vectors may take any value including that of ¢ = 90°. A
suitable combination of these possibilities leads to four possible planar lattices filling the plane
space completely. They are represented by the square, rectangle, rhombus and parallelogram, as
shown in Figs. 1.20a-d.

It is to be mentioned here that in general it is convenient to work with a cell of higher

(a) (b)

lattices: (a) Square,a = b and ¢=90°, (b) Rectangular, @ # b and ¢=90°,
) Oblique, a + b and ¢ =

¢°, (e) Hexagonal, @ = b and ¢ =60°
‘not al;iﬂ'%'sbe Primitive and therefore an alternative cell in place of a plane
- 1.20¢) may be used because the choice of the unit cell is not unique

d out as a centred rectangular lattice shown
can also be filled by hexagonal or triangular

he above, plane space
te be used as the basis of a lattice because its

l triangle cannot
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5
<

2

o b.c.c f.cc h.c.p

Fig. 11.10 The first and second Brilliouin zones for some simple lattices

Example: Find the ratio between the kinetic energies of an electron in a two dimensiong]
lattice (a) when ky = ky = a and (b) when k, = Wa and k, = 0.

{Uire

Solution: Given: Case I: k, = ky = mla and case IL: k, = 7/a and k, = 0. We know that the energy
of an electron inside a BZ is given by ,

h* 2
E= k-
87im
For case 1, the energy becomes
_ h* 2 h* 2n? h’
E; = ks + k2 = X = =
: 87r2m( s y) 8m’m a? da’*m
Similarly, for case I1
E2 = h2 _}_3‘_2_ — h2
8m%m a®  8a’m
This gives E,
B2
2

11.4 SYMMETRY PROPERTIES OF THE ENERGY FUNCTION

'%)ﬁs -ihdicat‘:: ]tl;latsyn;mm E?(k * G) = E,(k) G
Ex® s periodic, with a period equal to the reciprocal lattice vectof (=

4
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o two points in k—space_relared 10 each other b
In athef w;ttice vector, have ﬂ-];hsam(? energy. Let us take the ca
ol aIg.hcwvn in Fig. 11.11a. 1he points By, P and Py wil paye
ice 8 by 2 translation 'equal to -G, and P, is related to p
Jd reciprocal lattice vectors. :

Y a displacement equal to a
S¢ of E versus k for 5 Square
the same energy, because p,

oy by a translation -Gy, where

(e
%m]:ﬂd'Gz are
1

(c) (d)

Fig .11 (a) The translational symmetry of the energy E(k) in k-space for a square lattice. (b) Mapping
of the second zone into the first zone. (c) The rotational symmetry of the energy E(k) in k-

space for a square lattice

'Mﬁking-use of this translational symmetry, if we translate four pieces of the second zone in
b“k‘md directions by the respective lattice vectors, it can be shown that the pieces just fit into
E"'ﬁmmﬂe as illustrated in Fig. 11.11b. This means that the first and the second zones are
o “IWI The same is valid for higher-order zones. Hence, the first zone contains all necessary

"omiation of higher zones.

 Symmetry: E, (k) = E, (k) igi
M"_'fhe band is s;mmetric \:ith respect to the inversion around the origin k = 0.

Fig. 11.11a, energy at the point P is equal to that at P,.

| Symmetry

i ice. Thus, for a
a(k) has the same rotational symmetry as that of a r'e-al latif:ior di:]]izly. the
ation of 77/2 will give rise to four equivalent enerey posntlol?S\-m n Fig. 11.11c.
atpoints 0, 0, and Q5 should be the same as that of P, as sho

, REDUCED AND PERIODIC 7ZONE SCHEME

. isuous while the
tation of a plane wave eigenstate is simple and unambigy
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so that Oy = -

If we compare the densities calculated above for three cubic systems, \ue tznq that the Plane.
of widest spacings (100) of sc, (110) of bee and (111) of fcc respectively L‘_)‘Te‘~*F“‘T"d “_‘ highey
densities in their own category, while the (111) planes of fcc correspond to highest density of all
It is because of this, (111) planes of the fcc lattice are called the close packed planes.

Example: Give the Miller indices of the family of close packed planes and directions ip, sc.

be C,
fce and diamond crystal.

Solution: From above calculations of the densities and the idea of indices of directions dis
in section 1.10, we can write

L:l_l\'\l:;1

sc bee fce De
Family of close packed planes {100} {110} {111} none
Family of close packed directions <100> <111> <l 10> none

1.13 SOME SIMPLE AND COMMON CRYSTAL STRUCTURES

As we shall see later that many properties of solids can be explained only if the detail crysg
structure of the substance is taken into account. We shall, therefore, give a brief description of
some of the very common and simple crystal structures.

Out of over hundred elements in the periodic Table

, only one element (polonium) is known
to crystallize in the simple cubic form. The

geometry of this structure is easy and is very helpful
: ge number of other elements are found to crystallize in

the form of fec, bee, hep and the derivatives of the basic cubic structures.

Simple Cubic Structure
In this structure the atoms are situated only at the corners of the cube touching each other along
the edges (Fig. 1.50). This is a very open and

loosely packed structure, i.e. there is much empty y
space in it. This structure is introduced mainly *
because of its simple geometry, However, as

we shall see in the following that many other

crystal structures bear a simple relationship to T
this structure.

Body Centred Cubic Structure

As arule, atoms tend to pack more closely and
therefore if we examine the simple cubic
arrangement to see how it might accommodate

more atoms, the most obvioys €mpty space is that at the cent i 1s fi

| ' . re of the cube. If this space is filled.
we can obta;n.a body' centred qubu: (bee) structure (Fig, 1.51a). It is to be noted that it can be
considered as if two sunple.cublc stmc.:tures Interpenetrated along the body diagonal of one cube
by half the length of the diagonal (Fig. 1.5 1b). Many metals are found to have bee st

Fig. 1.50 The simple cubic structure

ructure,
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Of_,.-..___i,._(p:I: ...... Q E
e I 4
| & |
| ip ! e | :
| i
(a) (h)

Fig. 1.51 Ea} Body centred cubic structure, (b) Body centred cubic structure may be considered to be two
interpenetrated simple cubic structures

most important is iron while some others are Cr, Mo, W and also the alkali metals Li, K, Na, Rb
and Cs.
Certain simple binary compounds essentially have the bee arrangement in which the centre of
the cube is occupied by one type of atoms and the corners are occupied by the others. This is |

usually called cesium chloride structure.

Close Packed Structures
If the atoms are considered as hard spheres then the most efficient packing of these atoms in a
plane is the close packed arrangement as shown
in Fig. 1.52. There are two simple ways in which
such planes can be stacked on top of one another
to form a three dimensional structure. They are
hexagonal close packed (hcp) structure (Fig.
1.53) and the face centred cubic (fcc) structure
or equivalently the cubic close packed (ccp)
structure.

In a single close packed layer, the spheres
(atoms) may be arranged by placing each sphere
in contact with six others, say all at positions A~ Fig. 1.52 Close packed array of spheres. Note the
(Fig. 1.52). Such a layer can either be the basal three different possible positions, A, B

. and C for the successive layers

plane of hep structure or the (111) plane of the

fec structure. A second similar layer can be
placed above the A layer either in the space marked B or in those marked C. Let us suppose that

the second layer is a B layer. Where can the third succeeding layer be placed? There are two
possible arrangements each of which is an important representative structure.

Hexagonal Close Packed Structures
d layer to be placed is the layer position A, i.e., immediately

Simplest arrangement for the thir
above the atoms in the first layer, and the fourth layer to be placed at B and so on. This gives a
. (or equivalently as ACACAC . . .) as shown in Fig. 1.53b. It

stacking of the type ABABAB ..
has a hexagonal primitive cell in which the basis contains two atoms, one at the origin, 0 0 0 and
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(a) (b)

(a) The stacking sequence of layers ABABA . . . (b) The thre,

; I close packing.
Fig. 1.53 Hexagona p & shows the hexagonal pattern more clearly

dimensional arrangement of atoms which

the other at 2/3 1/3 1/2 as shown in Fig. 1.54. Many metals such as Mg, Zn, Cd, Ti, Ni, etc. haye
hcp structure.

Face Centered Cubic Structure
r\\(—/\ ¢

There is another way in which successive close >
packed planes of the type shown in Fig. 1.52 3 o
can be stacked. The first two layers remain in ;
positions A and B as before, but the third layer '
instead of reverting to the A positions as in hcp
arrangement, can be placed on the C positions.
The fourth layer is then put on the A positions
which are immediately above the atoms in the

Fig. 1.54 The hexagonal primitive cell. The two

lowest plane. This gives a stacking of the type
ABC ABC . . ., with the pattern repeating at
every third layer and is called the face centred
cubic structure (Fig. 1.55a).

atoms of one basis are shown as solid in

the figure. One atom of the basis is at the
21

origin, 000; the other atom is at 33 %‘

which means at T:%a+é—b+%c

At first sight there seems to be nothing cubic
in it. This is because the close packed layers
which have been discussed above do not correspond to the ordinary faces of a cube. A face
f:enu:ed cubic unit cell drawn with conventional cube axes is shown in Fig. 1.55b. As its name
implies the structure is the same as the ordinary simple cubic (Fig. 1.50) with the addition of an
extra atom at the centre of each cube face. The close packed layers are the body diagonal planes
of the cube and one of these is shown in Fig. 1.55¢. The fcc structure has in all fouar equivalent
closcf packed planes as compared to hcp which has only one (basal plane). However, the actual
fraction o'f space filled in fcc and hcp is the same (detail calculation js given in chaptér 3). Table
1.11 provides a simple comparison between the two close packed arrangements @

Face centred cubic structures are typical of many metallic elements e, g, Cu, Ag, Au, Al, Ni,

Pd and Pt.
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Fig. 1.55 The face centred cubic structure. (a) Stacking sequence of layers ABCABCA . . . (b) Unit cell
based on a cube. (¢) Close packed planes of (a) are the body diagonal planes

Table 1.11  Comparision between two close packed arrangements

Atoms in Crvstals 45

(c)

Lattice Equivalent Efficiency # of possible Close Packed  Close Packed

Type Structure polytypes planes directions

HCP 2H 74% Theoretically {0001} <1120>
Infinite

BCC 3¢ 74% Only one (3C) (111} <110>

Other Cubic Structures

We saw above that many metallic elements solidify in one of the structures described above.
However, there are several other elements, e.g. As, Sb, Bi, S, Se, Te, I and Mn and many
compounds, e.g. InSb, GaAs and GaP which are found to have other structures. Some of these
structures are derivatives of the cubic structures and are briefly discussed in the following.

Diamond Structure

The crystal structure of diamond can be derived from the fcc lattice although the structure itself
is not a close packed one. Formally it may be described as being built up from two interpenetrating
fce lattics which are displaced with respect to one another along the body diagonal of the cube
by one quarter of the length of the diagonal (Fig. 1.56a). While this definition accurately
describes the position of the atoms, it is not very useful when one actually visualizes the

(a) :

lik, 1.56 The diamond lattice showing (a) How it is formed from two interpenetrating fcc lattices. (b)

The tetrahedral arrangement of atoms

(b)
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46 Solid State Physics
urposes is to consider each atom to be gy

structure. A more useful model for all practical p 3 e
: :th its four nearest neighbours at the four corners of that tetrahey,,
centre of a tetrahedron with its four ne n

(Fig. 1.56b). From Fig. 1.56a it can be seen that if the central atom pf the terrathT01l 1S on One
fce sublattice then the four corner atoms are all on the other sublattice. Further, since al] atomy
are equivalent, each of them can be treated as being the centre atom of the tetrahedron, althougy,

r extended diagram to show this.

it would require a rathe ; L )
| and grey tin crystallize in the fory, of

Apart from diamond (carbon), silicon, germanium,
diamond structure.

Zinc Blende Structure . i |
If the two interpenetrating lattices (as considered for the formation of diamond structure) are of

two different elements, the atoms on different sublattices are no longer equivalent. However.
they still produce a similar tetrahedral arrangement. This is then called the zinc blende (75
structure (Fig. 1.57). Thus zinc blende has equal number of zinc and sulfur ions distributed o
a diamond lattice so that each has four of the opposite kind as nearest neighbours. It is typicy
of the 3-5 semiconducting crystals such as InSb, GaAs, GaP.

Sodium Chloride Structure
Sodium chloride (NaCl) consists of equal number of sodium and chlorine ions placed at alternate

points of a simple cubic lattice (Fig. 1.58) in such a way that each ion has six of the other kind of
ions as nearest neighbours. This structure can be described as a face centred cubic lattice with 1
basis consisting of a sodium ion and a chlorine ion separated by one half the body diagonal of 3
unit cube. There are four units of NaCl in each cube, with ions in the positions:

d
: Fig. 1.58  The sodium chloride structure. Na* and
Fiil CT" are shown by small and big circles
Fig. 1.57 Crystal structure of cubic zine sulfide respectively. Big and small circles from
Interpenetrating fec lattice

Na:000 1121/20,1/2 0 1
. , A 12,0172 1/
Cl: 12 112 112,00 122, 0 112 0,120 02

- Large number of compounds includin i hali
said to have rock salt structure. & other alkali halides crystallize in this form and 4
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Cesium Chloride Structure
Like 'sod.lum chloride, cesium chloride (CsCl) also consists of equal number of cesium and
chlorine ions. However, in this case, one type l
of ions are situated at the body centred positions
(Fig. 1.59) so that each ion has eight other ions
as nearest neighbour. The translational symmetry
of this structure is the same as that of simple
cubic lattice and therefore cesium chloride
structure can be described as a simple cubic
lattice with a basis consisting of a cesium ion
at the origin (000) and a chlorine ion at the
cube centre (1/2 1/2 1/2). The cesium chloride
structure is shared by cesium bromide and
cesium iodide.

In Table 1.12, we enlist for convenience the most common crystal structures and the lattice

constants of various elements.

Fig. 1.59 The cesium chloride structure » and O
represents two different ions which form
interpenetrating simple cubic lattice

Table 1.12 Crystal structures and lattice parameters

Element Symbol Crystal Lattice Parameters
structure a (A) c [fk}
fec 5.31
fce 4.05
hex
rhomb.
fce 5.31
rhomb.
bce 5.02
hep 2.27 3.59
rhomb.
rhomb.
complex
fee 5.58
diamond 3.567
fec 5.16
bee 6.045
complex
bee 2.88
hcp 2‘51 4.07
fee 3.61
(Contd.)
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or
h_N2 _08165 |
or a ﬁ 3
c_nh _08165xn m
so that, a a ()

1 i al rdtlo, f ; I

int::grgl tr:;l lct:f)}lz (;)Etc(:]ki:gé 5\‘~c know the layers...ABC... ar€ stacked along [111] directiop o
ncu »

diagonal) of the unit cell. Therefore, the body di?gonal of t.he cublj_;mn cel}];‘ln;h.i‘hc equal
If the side of the cube is dc then the body diagonal will bc_ 3a. ( w ic .lh cquui‘ to 3
Therefore, a. = J3h = J2a from eq. 9, where a = ZR. = the d1ameterﬁ of the sphere. Thus, he
Jattice parameter of an fcc unit cell is J2 times the diameter of the sphere.

h
Lo N

3.6 VOIDS IN CLOSE PACKING

Classification of Voids . o

There are two kinds of voids that occur in close packing. If the triangular void in a close packeg
layer has a sphere directly above it, the resulting void will have four spheres around it as shown
in Fig. 3.11a. These spheres are arranged on the corners of a regular tetrahedron (Fig. 3.11b),
such a void is called tetrahedral void. On the other hand, if a triangular void pointing up in one
close packed layer is covered by a triangular void pointing down in the next layer, the resulting
void will be surrounded by six spheres (Fig. 3.12a). These spheres are arranged on the corners
of an octahedron, such a void is known as an octahedral void and is shown in Fig. 3.12b. Thus

in three dimensions, where the possible close packed sequences are theoretically infinite, there
are two kinds of possible voids.

@ (b)

Fig. 3.11 (a) A tetrahedral void : . ogjon Of
centre of spheres (b) Projection of Fig. 3.12 (a) An octahedral void (b) Project”"”

centre of spheres

The number of these voids in a { ! e
three B voids and three C voids (Flgjthges dlmeﬂslonal close packing of Sphe re 18 surrou nd-..d )}

R % : - e thiee
voids of one kind are occupied and the lt:::leﬂl;[?: next layer is placed on the top of (' “f;

are not. Thl.ls first three become tetrah®
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Joids and_ the qther three become octahedra] voids. Similar]

A layer gives rise to three FetFahedral and three octahedralr ‘y -t; © close packed layer below the

also covers z: ;r}l,aggullar Ygld In layer above it and another ino:hzlljunher‘ lhelreference -t

0 morz t; -1; 3e_r2 vt:ih s.dEach s-phcre is therefore surrounded b};e; bfl;)w it. There are thus

votd§ and 1— octahe: .ral voids. Since the total number of q'hh s :'8 tt_atrahedral
acking 18 ve.ry arge and.dlfﬁcult to calculate. However, it is sl e _vmds et

e Bl o6 each kind belonging to o sphere ) possible to find the average

As we kng“l; thzft eachdoctahedral void is surrounded by six spheres and each sphere i
is surrounde y six voids, therefore, the number of octahedral voids belongi ot e
s 8t io, s belonging to a sphere is

Number of octahedral voids around a sphere ¢

Number of spheres around an octahedral void ~ 6 .

S’imilarly, each tetrz-lhedral void is surrounded by four spheres and each sphere is surrounded by
eight tetrahedral voids. Therefore, the number of tetrahedral voids belonging to a sphere is given

by the ratio,

Number of tetrahedral voids around a sphere g
Number of spheres around a tetrahedral void -4

=2

This follows that:

(i) There are as many octahedral voids as there are spheres, and (ii) There are twice as many
tetrahedral voids as there are spheres.

37 SIZE AND COORDINATION OF THE VOIDS

In Two Dimensions
Referring to the close packed arrangement of equal spheres in a plane as shown in Fig. 3.7, we
find that one particular void (B or C type) 1s
surrounded by three spheres and hence its
coordination number is 3. The size of the planar
void can be determined simply by measuring
the radius of the sphere that would just fit into
the void. Consider one such arrangement s
~ shown in Fig. 3.13. Let r be the radius of the
 central sphere which just fits into the void and
"R be the radius of the coordinating spheres.
m the simple construction in Fig. 3.13, we Fig. 3.13 A planar void

IM _ R _os30°
10  R+7r

—

2 =1.155R-R
- Rl e B K= 2
r'=cos 30° V3

-

(11)
. r=0.155R
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Fig. 323 An exploded view of a hexagonal close

3 ic
Fig. 3.22 An octahedral representation of cubl packing

close packing

¢ shown above. This kind of representation was first employed by P auling, who showeg

Scher dra. These rules are called Pauling’s ryle

that definite rules govern the packing of such polyhe
and are discussed below.

311 PAULING’S RULE

In section 3.9, we discussed the effect of radius ratio on coordination numbers and vice-versa
In fact, a definite relationship between the ionic sizes and the coordination numbers of 1ons have
been found to hold in many compounds occurTing in nature. Thus certain cation-anion combinations
always form similar arrangements which persist with little change from one compound to another
Therefore, one can think of many such compounds as being composed of coordination polyhedra
of anions surrounding a cation at their centres. For example, the largest single group of naturally
occurring compounds are silicates, having structures that are based on packing arrangements of
Si0, polyhedra. Based on the observation of such packing arrangements, Pauling postulated @
set of rules that determine the nature of possible arrangements. Although these rules apply

strictly to ionic compounds only, they can be applied to other compounds also with slight

rfn?l(hﬁcations. Notable exceptions are metals and organic compounds. Pauling’s rules are a
ollows: “

1. ;‘:;g?;s;ﬁ:::lgl; prt);yhedra (;t;h anion is formed about each cation. The cation-anion distance
y the sum of the respective radii, and the coordinati i determined
by the radius ratio. rdination number is determi
In a stab
table structure, the total strength of the valency bonds that reach an anion in 2

coordinati ; ;
dination polyhedron, from all neighbouring cations, is equal to the total charge

anion. of the

The polyhedra in a structure tend not t
0 share edges, and in parti aces, commor
to two polyhedra. If edges are shared, the shared edges arepsh(;:::lr?;(;l gt

J
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decre 1 "
inati umb e Stability of a structure, cations with
each other.

5. The number of essentially different kinds of atoms in a
so called rule of parsimony.

R[mClure tend to be small. Thlb is
The polyhedra which result from connectin

2 the centres of ani - i
cation are called an?on _polyhedra. or in the m%)re gener;{l%cz:eﬁ;i jrtl(;([l?: {bilrllzoflzdut?g' ; ?en'l[;‘ﬂ
called simply coordination polyhedra. The limiting case, i.e.. the close aekiﬁ E:df 0 10n§)‘ i
(equal size atoms) has been discussed in the previous section. The cozrdinuﬁoon Lg?atll ‘ghei“
hep and fec arrall'lgementjs are sh.own in Fig. 3.24. The coordination polyhedronpfoi beoilha bt]r
packing and cubic coorcz’nmanon 1s simply a cube. However it should be remembered that b:
convention, the description, bec is reserved when al atoms are of equal size o

HCP

‘v

Twinned Cubo-Octahedron

Cubo-Octahedron

Fig. 3.24 Coordination polyhedra for hep and fec packing

3.12 APPLICATION OF PAULING’S RULE TO ACTUAL
STRUCTURES

Let us apply the above rules to ionic structures. It is possible to gauge the ionic nature of a
structure by the extent to which Pauling’s rules are satisfied. Rule | is simply a concise statement
of the radius ratio effect already discussed. Rule 2 can be equivalently stated as: In a stable
structure, Jocal charge' neutrality must be maintained. In ionic crystals, we observe that the
anions are surrounded by the cations and vice-versa. In this situation, it 1s necessary to estimate
the amount of positive charge that is effectively associated with each cation-anion bond. For a

cation M™+ surrounded by n anions, X", the electrostatic bond strength (e.b.s.) of the cation-
anion bond is defined as

k. r:\-.’, -

ce the negative charge on the anion, i.e.

(18)
gL
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Semicrystalline (Polycrystalline) Solids
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p(,h.-morphism

Two possible polymorphs of ZnS shown in Figs. 3.31 and 3.32 have been found to occur in
nature. The hexagonal p()ly'morph 1s the mineral wurtzite, and the cubic one is called the sphalarite
or zinc blende. Polymorphism is exhibited by a number of substances.

(a) (b)

Fig. 3.31 Packing of zinc tetrahedra in @- Fig.3.32 Packing of zinc tetrahedra in f-ZnS (sphalerite).
ZnS (wurtzite) (a) [111] vertical (b) [001] vertical

Any substance in general, can exist in the solid, liquid, or the gaseous state, depending on the
conditions of temperature and pressure. Similarly, a chemical substance grown from solution,
melt or vapour can crystallize in more than one possible structural modifications, depending on
the conditions of temperature and pressure prevailing at the time of growth. This phenomenon
of the same chemical substance crystallizing in more than one structure (crystallographic
modifications) is known as polymorphism. The different modifications are called the polymorphs
or polymorphic modifications of that substance. They can be obtained from solid state phase
transformations also. Polymorphism therefore includes every possible difference in the crystalline
structures of a substance of constant chemical composition, except homogeneous deformations.

~ Since the different modifications have the same chemical composition they have similar
chemical properties; but their physical properties, like density, specific heat, conductivity, melting
int, and optical behaviour, which depend on the arrangement of atoms in the structure may be

t‘ﬁfferent.

is known to be an ionic compound, the ionic radii of Cd and I'being 0.97A and
ely. The structure consists of a close packing of the I ions with the Cd ions
s the voids. The radius ratio rcd/r = 0.45 permits the Cd ions to occupy the

mmposx ion then requires a6 : 3 coordination of Cd and I ions. Smcg there
' Cd ions as I ions in the structure, only one-half of the total voids are
form close packed layers, occupying alternate layers of octahedral voids
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