
MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI

PG DEPARTMENT OF COMPUTER APPLICATIONS

Subject Name : PYTHON PROGRAMMING

CLASS : I-MCA

SUBJECT CODE : 23PCA13

Unit III

Design with Classes: Getting inside Objects and Classes Data-Modeling Examples Building

a New Data Structure The Two Dimensional Grid - Structuring Classes with Inheritance

and Polymorphism - GraphicalUser Interfaces - The Behavior of terminal-Based programs

and GUI-Based programs - Coding Simple GUI-Based programs - Windows and Window

Components - Command Buttons and responding to events.

Python Classes and Objects

A class is a user-defined blueprint or prototype from which objects are created. Classes provide

a means of bundling data and functionality together. Creating a new class creates a new type of

object, allowing new instances of that type to be made. Each class instance can have attributes

attached to it for maintaining its state. Class instances can also have methods (defined by their

class) for modifying their state.

Syntax: Class Definition

class ClassName:

 # Statement

Syntax: Object Definition

obj = ClassName()

print(obj.atrr)

The class creates a user-defined data structure, which holds its own data members and member

functions, which can be accessed and used by creating an instance of that class. A class is like

a blueprint for an object.

Creating a Python Class

Here, the class keyword indicates that you are creating a class followed by the name of the

class (Dog in this case).

 Python3

class Dog:

https://www.geeksforgeeks.org/data-structures/

 sound = "bark"

Object of Python Class

An Object is an instance of a Class. A class is like a blueprint while an instance is a copy of the

class with actual values. It’s not an idea anymore, it’s an actual dog, like a dog of breed pug

who’s seven years old. You can have many dogs to create many different instances, but

without the class as a guide, you would be lost, not knowing what information is required.

An object consists of:

 State: It is represented by the attributes of an object. It also reflects the properties of an

object.

 Behavior: It is represented by the methods of an object. It also reflects the response of an

object to other objects.

 Identity: It gives a unique name to an object and enables one object to interact with other

objects.

Explanation :

In this example, we are creating a Dog class and we have created two class variables attr1 and

attr2. We have created a method named fun() which returns the string “I’m a, {attr1}” and I’m

a, {attr2}. We have created an object of the Dog class and we are printing at the attr1 of the

object. Finally, we are calling the fun() function.

Self Parameter

When we call a method of this object as myobject.method(arg1, arg2), this is automatically

converted by Python into MyClass.method(myobject, arg1, arg2) – this is all the special self is

about.

 Python3

class GFG:

 def __init__(self, name, company):

 self.name = name

 self.company = company

 def show(self):

 print("Hello my name is " + self.name+" and I" +

 " work in "+self.company+".")

https://www.geeksforgeeks.org/python-functions/
https://www.geeksforgeeks.org/self-in-python-class/

obj = GFG("John", "GeeksForGeeks")

obj.show()

The Self Parameter does not call it to be Self, You can use any other name instead of it. Here

we change the self to the word someone and the output will be the same.

 Python3

class GFG:

 def __init__(somename, name, company):

 somename.name = name

 somename.company = company

 def show(somename):

 print("Hello my name is " + somename.name +

 " and I work in "+somename.company+".")

obj = GFG("John", "GeeksForGeeks")

https://www.geeksforgeeks.org/self-in-python-class/

obj.show()

Output: Output for both of the codes will be the same.

Hello my name is John and I work in GeeksForGeeks.

Explanation:

In this example, we are creating a GFG class and we have created the name, and

company instance variables in the constructor. We have created a method

named say_hi() which returns the string “Hello my name is ” + {name} +” and I work in

“+{company}+”.”.We have created a person class object and we passing the name John and

Company GeeksForGeeks to the instance variable. Finally, we are calling the show() of the

class.

Pass Statement

The program’s execution is unaffected by the pass statement’s inaction. It merely permits the

program to skip past that section of the code without doing anything. It is frequently employed

when the syntactic constraints of Python demand a valid statement but no useful code must be

executed.

 Python3

class MyClass:

 pass

__init__() method

The __init__ method is similar to constructors in C++ and Java. Constructors are used to

initializing the object’s state. Like methods, a constructor also contains a collection of

statements(i.e. instructions) that are executed at the time of Object creation. It runs as soon as

https://www.geeksforgeeks.org/python-pass-statement/
https://www.geeksforgeeks.org/__init__-in-python/
https://www.geeksforgeeks.org/cpp-tutorial/
https://www.geeksforgeeks.org/java-tutorial/

an object of a class is instantiated. The method is useful to do any initialization you want to do

with your object.

 Python3

Sample class with init method

class Person:

 # init method or constructor

 def __init__(self, name):

 self.name = name

 # Sample Method

 def say_hi(self):

 print('Hello, my name is', self.name)

p = Person('Nikhil')

p.say_hi()

Output:

Hello, my name is Nikhil

Explanation:

In this example, we are creating a Person class and we have created a name instance variable

in the constructor. We have created a method named as say_hi() which returns the string

“Hello, my name is {name}”.We have created a person class object and we pass the name

Nikhil to the instance variable. Finally, we are calling the say_hi() of the class.

__str__() method

Python has a particular method called __str__(). that is used to define how a class object

should be represented as a string. It is often used to give an object a human-readable textual

representation, which is helpful for logging, debugging, or showing users object information.

When a class object is used to create a string using the built-in functions print() and str(),

the __str__() function is automatically used. You can alter how objects of a class are

represented in strings by defining the __str__() method.

 Python3

class GFG:

 def __init__(self, name, company):

 self.name = name

 self.company = company

 def __str__(self):

 return f"My name is {self.name} and I work in {self.company}."

my_obj = GFG("John", "GeeksForGeeks")

print(my_obj)

Output:

My name is John and I work in GeeksForGeeks.

Explanation:

In this example, We are creating a class named GFG.In the class, we are creating two instance

variables name and company. In the __str__() method we are returning the name instance

variable and company instance variable. Finally, we are creating the object of GFG class and

we are calling the __str__() method.

Class and Instance Variables

Instance variables are for data, unique to each instance and class variables are for attributes and

methods shared by all instances of the class. Instance variables are variables whose value is

assigned inside a constructor or method with self whereas class variables are variables whose

value is assigned in the class.

Defining instance variables using a constructor.

 Python3

Python3 program to show that the variables with a value

https://www.geeksforgeeks.org/difference-between-instance-variable-and-class-variable/

assigned in the class declaration, are class variables and

variables inside methods and constructors are instance

variables.

Class for Dog

class Dog:

 # Class Variable

 animal = 'dog'

 # The init method or constructor

 def __init__(self, breed, color):

 # Instance Variable

 self.breed = breed

 self.color = color

Objects of Dog class

Rodger = Dog("Pug", "brown")

Buzo = Dog("Bulldog", "black")

print('Rodger details:')

print('Rodger is a', Rodger.animal)

print('Breed: ', Rodger.breed)

print('Color: ', Rodger.color)

print('\nBuzo details:')

print('Buzo is a', Buzo.animal)

print('Breed: ', Buzo.breed)

print('Color: ', Buzo.color)

Class variables can be accessed using class

name also

print("\nAccessing class variable using class name")

print(Dog.animal)

Output:

Rodger details:

Rodger is a dog

Breed: Pug

Color: brown

Buzo details:

Buzo is a dog

Breed: Bulldog

Color: black

Accessing class variable using class name

dog

Explanation:

A class named Dog is defined with a class variable animal set to the string “dog”. Class

variables are shared by all objects of a class and can be accessed using the class name. Dog

class has two instance variables breed and color. Later we are creating two objects of

the Dog class and we are printing the value of both objects with a class variable named animal.

Defining instance variables using the normal method:

 Python3

Python3 program to show that we can create

instance variables inside methods

Class for Dog

class Dog:

 # Class Variable

 animal = 'dog'

https://www.geeksforgeeks.org/g-fact-34-class-or-static-variables-in-python/

 # The init method or constructor

 def __init__(self, breed):

 # Instance Variable

 self.breed = breed

 # Adds an instance variable

 def setColor(self, color):

 self.color = color

 # Retrieves instance variable

 def getColor(self):

 return self.color

Driver Code

Rodger = Dog("pug")

Rodger.setColor("brown")

print(Rodger.getColor())

Output:

brown

Explanation:

In this example, We have defined a class named Dog and we have created a class

variable animal. We have created an instance variable breed in the constructor. The class Dog

consists of two methods setColor and getColor, they are used for creating and initializing an

instance variable and retrieving the value of the instance variable. We have made an object of

the Dog class and we have set the instance variable value to brown and we are printing the

value in the terminal.

Python | Using 2D arrays/lists

Python provides powerful data structures called lists, which can store and manipulate

collections of elements. Also provides many ways to create 2-dimensional lists/arrays.

However one must know the differences between these ways because they can create

complications in code that can be very difficult to trace out. In this article, we will explore the

right way to use 2D arrays/lists in Python.

Using 2D arrays/lists the right way

Using 2D arrays/lists the right way involves understanding the structure, accessing elements,

and efficiently manipulating data in a two-dimensional grid. When working with structured

data or grids, 2D arrays or lists can be useful. A 2D array is essentially a list of lists, which

represents a table-like structure with rows and columns.

https://www.geeksforgeeks.org/g-fact-34-class-or-static-variables-in-python/
https://www.geeksforgeeks.org/g-fact-34-class-or-static-variables-in-python/
https://www.geeksforgeeks.org/python-programming-language/

Creating a 1-D list

In Python, Initializing a collection of elements in a linear sequence requires creating a 1D

array, which is a fundamental process. Although Python does not have a built-in data structure

called a ‘1D array’, we can use a list that can achieve the same functionality. Python lists are

dynamic and versatile, making them an excellent choice for representing 1D arrays. Let’s start

by looking at common ways of creating a 1d array of size N initialized with 0s.

Creating 1D List using Naive Methods

Manually initializing and populating a list without using any advanced features or constructs in

Python is known as creating a 1D list using “Naive Methods”.

Declaring Claas Objects (Also called instantiating a class)

When an object of a class is created, the class is said to be instantiated. All the instances share

the attributes and the behavior of the class. But the values of those attributes, i.e. the state are

unique for each object. A single class may have any number of instances.

Example:

N = 5

ar = [0]*N

print(ar)

Output

[0, 0, 0, 0, 0]

Creating 1D List using List Comprehension

Here we are multiplying the number of rows by the empty list and hence the entire list is

created with every element zero.

 Python3

N = 5

arr = [0 for i in range(N)]

print(arr)

Output

[0, 0, 0, 0, 0]

Creating a 2-D list

Using 2D arrays/lists the right way involves understanding the structure, accessing elements,

and efficiently manipulating data in a two-dimensional grid. By mastering the use of 2D

arrays, you can significantly improve your ability to handle complex data and efficiently

perform various operations.

Creating 2D List using Naive Method

Here we are multiplying the number of columns and hence we are getting the 1-D list of size

equal to the number of columns and then multiplying it with the number of rows which results

in the creation of a 2-D list.

 Python3

rows, cols = (5, 5)

arr = [[0]*cols]*rows

print(arr)

Output

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

Note: Using this method can sometimes cause unexpected behaviors. In this method, each row

will be referencing the same column. This means, even if we update only one element of the

array, it will update the same column in our array.

 Python

rows, cols = (5, 5)

arr = [[0]*cols]*rows

print(arr, "before")

arr[0][0] = 1 # update only one element

print(arr, "after")

Output

([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 'before')

([[1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 0, 0, 0, 0]], 'after')

Creating 1D List using List Comprehension

Here we are basically using the concept of list comprehension and applying a loop for a list

inside a list and hence creating a 2-D list.

 Python3

rows, cols = (5, 5)

arr = [[0 for i in range(cols)] for j in range(rows)]

print(arr)

Output

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

Creating 1D List using Empty List

Here we are appending zeros as elements for a number of columns times and then appending

this 1-D list into the empty row list and hence creating the 2-D list.

 Python3

arr=[]

rows, cols=5,5

for i in range(rows):

 col = []

 for j in range(cols):

 col.append(0)

 arr.append(col)

print(arr)

Output

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

Initializing 2D Array

The provided code demonstrates two different approaches to initializing a 2D array in Python.

First, the array arr is initialized using a 2D list comprehension, where each row is created as [0,

0, 0, 0, 0]. The entire array is created as a list of references to the same inner list, resulting in

aliasing. Any change made to an element in one row will be reflected in all rows. The code

then shows another approach using a nested list comprehension to create the 2D array arr. This

method avoids aliasing by creating a new list for each row, resulting in a proper 2D array.

 Python3

Python 3 program to demonstrate working

of method 1 and method 2.

rows, cols = (5, 5)

method 2 1st approach

arr = [[0]*cols]*rows

lets change the first element of the

first row to 1 and print the array

https://www.geeksforgeeks.org/python-programming-language/

arr[0][0] = 1

for row in arr:

 print(row)

method 2 2nd approach

arr = [[0 for i in range(cols)] for j in range(rows)]

again in this new array lets change

the first element of the first row

to 1 and print the array

arr[0][0] = 1

for row in arr:

 print(row)

Output

[1, 0, 0, 0, 0]

[1, 0, 0, 0, 0]

[1, 0, 0, 0, 0]

[1, 0, 0, 0, 0]

[1, 0, 0, 0, 0]

[1, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

[0, 0, 0, 0, 0]

Explanation:

We expect only the first element of the first row to change to 1 but the first element of every

row gets changed to 1 in method 2a. This peculiar functioning is because Python uses shallow

lists which we will try to understand.

In method 1a, Python doesn’t create 5 integer objects but creates only one integer object, and

all the indices of the array arr point to the same int object as shown.

If we assign the 0th index to another integer say 1, then a new integer object is created with the

value of 1 and then the 0th index now points to this new int object as shown below

Similarly, when we create a 2d array as “arr = [[0]*cols]*rows” we are essentially extending

the above analogy.

1. Only one integer object is created.

2. A single 1d list is created and all its indices point to the same int object in point 1.

3. Now, arr[0], arr[1], arr[2] …. arr[n-1] all point to the same list object above in point 2.

The above setup can be visualized in the image below.

Now lets change the first element in first row of “arr” as arr[0][0] = 1

 arr[0] points to the single list object we created we above.(Remember arr[1], arr[2] …arr[n-

1] all point to the same list object too).

 The assignment of arr[0][0] will create a new int object with the value 1 and arr[0][0] will

now point to this new int object.(and so will arr[1][0], arr[2][0] … arr[n-1][0])

This can be clearly seen in the below image.

So when 2d arrays are created like this, changing values at a certain row will affect all the rows

since there is essentially only one integer object and only one list object being referenced by

the all the rows of the array.

As you would expect, tracing out errors caused by such usage of shallow lists is difficult.

Hence the better way to declare a 2d array is

 Python3

rows, cols = (5, 5)

print([[0 for i in range(cols)] for j in range(rows)])

Output

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

This method creates 5 separate list objects, unlike method 2a. One way to check this is by

using the ‘is’ operator which checks if the two operands refer to the same object.

 Python3

rows, cols = (5, 5)

method 2 2nd approach

arr = [[0 for i in range(cols)] for j in range(rows)]

check if arr[0] and arr[1] refer to

the same object

print(arr[0] is arr[1]) # prints False

method 2 1st approach

arr = [[0]*cols]*rows

check if arr[0] and arr[1] refer to the same object prints True because there is only one

#list object being created.

print(arr[0] is arr[1])

Output

False

True

Example of Python Class and object

Creating an object in Python involves instantiating a class to create a new instance of that

class. This process is also referred to as object instantiation.

 Python3

Python3 program to

demonstrate instantiating

a class

class Dog:

 # A simple class

 # attribute

 attr1 = "mammal"

 attr2 = "dog"

 # A sample method

 def fun(self):

 print("I'm a", self.attr1)

 print("I'm a", self.attr2)

Driver code

Object instantiation

Rodger = Dog()

Accessing class attributes

and method through objects

print(Rodger.attr1)

Rodger.fun()

Output:

mammal

I'm a mammal

I'm a dog

In the above example, an object is created which is basically a dog named Rodger. This class

only has two class attributes that tell us that Rodger is a dog and a mammal.

Polymorphism in Python

What is polymorphism? Polymorphism refers to having multiple forms. Polymorphism is a

programming term that refers to the use of the same function name, but with different signatures,

for multiple types.

Example of in-built polymorphic functions:

1. # Python program for demonstrating the in-built poly-morphic functions

2.

3. # len() function is used for a string

4. print (len("Javatpoint"))

5.

6. # len() function is used for a list

7. print (len([110, 210, 130, 321]))

Output:

10

4

Examples of user-defined polymorphic functions:

1. # here, is a simple Python function

2. # for demonstrating the Polymorphism

3.

4. def add(p, q, r = 0):

5. return p + q + r

6.

7. # Driver code

8. print (add(6, 23))

9. print (add(22, 31, 544))

Output:

29

597

Polymorphism with Class Methods

Below is an example of how Python can use different types of classes in the same way. For loops

that iterate through multiple objects are created. Next, call the methods without caring about

what class each object belongs to. These methods are assumed to exist in every class.

Example:

1. class xyz():

2. def websites(self):

3. print("Javatpoint is a website out of many availabe on net.")

4.

5. def topic(self):

6. print("Python is out of many topics about technology on Javatpoint.")

7.

8. def type(self):

9. print("Javatpoint is an developed website.")

10.

11. class PQR():

12. def websites(self):

13. print("Pinkvilla is a website out of many availabe on net. .")

14.

15. def topic(self):

16. print("Celebrities is out of many topics.")

17.

18. def type(self):

19. print("pinkvilla is a developing website.")

20.

21. obj_jtp = xyz()

22. obj_pvl = PQR()

23. for domain in (obj_jtp, obj_pvl):

24. domain.websites()

25. domain.topic()

26. domain.type()

Output:

Javatpoint is a website out of many availabe on net.

Python is out of many topics about technology on Javatpoint.

Javatpoint is an developed website.

Pinkvilla is a website out of many availabe on net.

Celebrities is out of many topics.

pinkvilla is a developing website.

Polymorphism with Inheritance:

Polymorphism allows us to define methods in Python that are the same as methods in the parent

classes. In inheritance, the methods of the parent class are passed to the child class. It is possible

to change a method that a child class has inherited from its parent class. This is especially useful

when the method that was inherited from the parent doesn't fit the child's class. We re-implement

such methods in the child classes. This is Method Overriding.

Example:

1. class Birds:

2. def intro1(self):

3. print("There are multiple types of birds in the world.")

4. def flight1(self):

5. print("Many of these birds can fly but some cannot.")

6.

7. class sparrow1(Birds):

8. def flight1(self):

9. print("Sparrows are the bird which can fly.")

10.

11. class ostrich1(Birds):

12. def flight1(self):

13. print("Ostriches are the birds which cannot fly.")

14.

15. obj_birds = Birds()

16. obj_spr1 = sparrow1()

17. obj_ost1 = ostrich1()

18.

19. obj_birds.intro1()

20. obj_birds.flight1()

21.

22. obj_spr1.intro1()

23. obj_spr1.flight1()

24.

25. obj_ost1.intro1()

26. obj_ost1.flight1()

Output:

There are multiple types of birds in the world.

Many of these birds can fly but some cannot.

There are multiple types of birds in the world.

Sparrows are the bird which can fly.

There are multiple types of birds in the world.

Ostriches are the birds which cannot fly.

Polymorphism with a Function and Objects

We can also create functions that can take any object. This allows for polymorphism. Let's take

the following example: let's make a function called "func()", which will take an object we will

call "obj". Even though we use the name "obj", any object that is instantiated will be able to call

into this function. Let's next to give the function something it can do with the 'obj object passed

to it. Let's call these three methods websites(), topic(), and type(). Each of them is defined in the

classes' xyz' and 'PQR'. If we don't already have instantiations of the 'xyz" and 'PQR classes, let

us create them. We can then call their actions using the same function func().

Example:

1. def func(obj):

2. obj.websites()

3. obj.topic()

4. obj.type()

5.

6. obj_jtp = xyz()

7. obj_pvl = PQR()

8.

9. func(obj_jtp)

10. func(obj_pvl)

Output:

Javatpoint is a website out of many availabe on net.

Python is out of many topics about technology on Javatpoint.

Javatpoint is a developed website.

Pinkvilla is a website out of many availabe on net. .

Celebrities is out of many topics.

pinkvilla is a developing website.

Code: Implementing Polymorphism with a Function

1. class xyz():

2. def websites(self):

3. print("Javatpoint is a website out of many availabe on net.")

4.

5. def topic(self):

6. print("Python is out of many topics about technology on Javatpoint.")

7.

8. def type(self):

9. print("Javatpoint is an developed website.")

10.

11. class PQR():

12. def websites(self):

13. print("Pinkvilla is a website out of many availabe on net. .")

14.

15. def topic(self):

16. print("Celebrities is out of many topics.")

17.

18. def type(self):

19. print("pinkvilla is an developing website.")

20.

21. def func(obj):

22. obj.websites()

23. obj.topic()

24. obj.type()

25.

26. obj_jtp = xyz()

27. obj_pvl = PQR()

28.

29. func(obj_jtp)

30. func(obj_pvl)

Output:

Javatpoint is a website out of many availabe on net.

Python is out of many topics about technology on Javatpoint.

Javatpoint is a developed website.

Pinkvilla is a website out of many availabe on net. .

Celebrities is out of many topics.

pinkvilla is a developing website.

GraphicalUser Interfaces

Python GUI (Graphical User Interface) alludes to the visual elements and intelligent parts that

permit users to collaborate with a software application. A GUI gives a natural and user -

accommodating method for getting to an application's usefulness, and it ordinarily incorporates

windows, buttons, menus, text boxes, and other visual elements. Python gives a scope of tools

and frameworks for building GUI applications, each with its own assets and shortcomings.

Probably the most famous Python GUI tools incorporate Tkinter, PyQt, PySide, Kivy, wxPython,

PyGTK, PySimpleGUI, PyForms, PyQTGraph, and PyVista.

These GUI tools offer a scope of features, including support for numerous platforms, cross-

platform similarity, high level gadget libraries, support for mixed media, 3D designs, and more.

Developers can pick a GUI instrument in light of their task's particular necessities, programming

abilities, and favoured programming style.

Let's take a more thorough look at the list that has been carefully picked below, explaining what

it can accomplish to wow users with the applications made using such frameworks.

Most Popular GUI Tools:

1. Tkinter

Tkinter is a standard Python library that gives a toolkit to building GUIs. It is a lightweight and

simple to-utilize library that permits developers to make basic or complex interfaces. It provides

a library of essential GUI Widgets that can be used to construct an open-source, straightforward

Graphical User Interface. Some of the GUI Widgets with varying degrees of customizability

include:

1. Buttons: which can be used to receive user input.

2. Check buttons: which can be used to combine selections like colours, monochrome

images, border size.

3. File dialogues: which upload and download files from and to the app.

4. Labels: which display textual information.

5. Canvas: which gives developers space to draw and paint plots and graphs.

For constructing desktop or Python GUI apps, all we must do now is engage with the TKinter

documentation more and get to know many of its GUI components.

2. Kivy

In essence, Kivy is a mixture of Python and Cython. Using its open-source framework and the

more than 20 Widgets in its toolkit, developers may create simple user interfaces with multi-

touch capabilities. figuring out whether Kivy supports the Natural User Interface (NUI) By using

this, a user can innately get familiar with many of the interactions enabled by this open-source

Python GUI Framework that are generally hidden.. Ingeniously, Kivy is fantastic news for

interface designers as well because they will just need to write codes once and then apply them

across many platforms while properly utilising potent design and graphics strategies. Still

curious as to what Kivy is used for the most frequently! Our iOS and Android apps, as well as

any Windows, Mac OS, Raspberry Pi, and Linux user interface, all clearly demonstrate this. To

begin using this incredibly adaptable GUI framework, we should right away add it to our Python

environment by following the installation instructions listed on its official website.

3. PyGTK

PyGTK is a Python restricting for the GTK+ toolbox, a famous library for building graphical

user interfaces. GTK+ is an open-source cross-platform tool stash that gives a scope of gadgets

and tools for building desktop applications. PyGTK permits developers to make GTK+

applications utilizing the Python programming language. It gives a scope of features, including

support for gadget customization, occasion handling, and gadget pressing. PyGTK additionally

incorporates support for internationalization, making it simple to make applications that can be

utilized by individuals communicating in various dialects.

PyGTK is much of the time used to fabricate desktop applications for Linux-based frameworks,

despite the fact that it can likewise be utilized on different platforms like Windows and macOS.

PyGTK applications can be composed utilizing any Python proof-reader, and developers can

utilize Dell, a GUI manufacturer, to outwardly make the application's interface.

PyGTK's primary benefit is its joining with the GTK+ tool stash, which gives a scope of strong

and adaptable gadgets for making perplexing and adjustable user interfaces. It likewise offers

help for theming, permitting developers to redo the presence of the application without

composing any code.

4. Pyside2

Pyside 2 is a solution for boosting any Python apps we already have that were created and

developed by programmers and developers. Pyside 2 is also known as Qt for Python in the

market. Additionally, we can look at the community that strongly supports the sharing of

knowledge and insights among 1M Plus Python or other software developers to create Qt

programmes in an enjoyable manner.

This GUI framework, known as the cross-platform Python Module for the time being, allows Py

(i.e., Python) developers to easily access its set of modules and tools to design stunning and

dynamic User Interfaces quickly and easily. Concerned about the documentation section's

complexity! We should feel at ease because the process has been greatly simplified with video

tutorials, examples, tutorials, and supplemental API Docs.

5. PyQt5

Another straightforward yet enticing cross-platform GUI framework for Python developers is

PyQt5. We can quickly develop programmes that work with Mac OS X, Linux, Windows,

Android, and Raspberry Pi. By combining various GUI widgets, such as sliders, list boxes,

buttons, etc., and arranging them within the window, PyQt5 makes it possible to personalise

themes and produce visually pleasing graphical designs that customers enjoy a lot.

This enables developers to create User Interfaces by directly manipulating data while

maintaining consistency and overall code reuse. Additionally, PyQt5 has gradually introduced

the modularity of the Python language through its extensions so that programmers can easily and

robustly design both small-scale and large-scale applications. I really like PyQt5's features!

Then, with the command, we can begin making stunning UIs.

6. PySimpleGUI

In the year 2018, Mike B created PySimpleGUI, which has made Python development incredibly

versatile and straightforward for beginners trying their luck harder to gain recognition in GUI

Development. We don't need to spend much time learning the intricate details of the complex

GUI development possibilities that have been made available for developers and other aspiring

Python Programmers thanks to this hassle-free framework.

Unquestionably, this framework's efficient utilisation of the advantages of four GUIs?TKinter,

Remi, Qt, and WxPython?has commendably decreased the difficulty level of boilerplate code

implementation and helped beginners create User-Interfaces by making diverse visual elements

easily accessible.

7. wxPython

For Python programmers and developers at all skill levels, wxPython is a good GUI framework.

Its cross-platform capabilities will work in the same way whether we run it on Mac OS or

different Unix systems, with no additional or zero overheads. ComboBox, ToggleButton,

StatusBar, StaticLine, and many other multi-purpose pythonic widgets are wrapped in wxPython,

which enables novice or intermediate developers to construct native UIs for their Python projects

with little to no adjustments.

Most significantly, this GUI framework is free for anybody to use, and because of this amazing

feature, it is more likely that code problems will be rectified or upgraded with better code

readability. As a result, the expense of creating a high-quality Python application need not be a

major concern for developers because wxPython is open-source and allows for code changes at

any time. As a result, we need try pip instal wxPython now to instal this appropriate GUI

framework.

8. PyForms

PyForms is a Python GUI toolkit that permits developers to make rich and complex desktop

applications rapidly and without any problem. It gives a scope of features that work on the

improvement interaction, including a visual manager, a simplified structure manufacturer, and

backing for different platforms.

PyForms is based on top of PyQt, a Python restricting for the famous Qt structure, and it gives an

article situated Programming interface that permits developers to make custom gadgets and

designs. It likewise incorporates a scope of pre-fabricated gadgets, including buttons, marks, text

boxes, and more.

PyForms likewise incorporates support for cutting edge features like media playback, 3D

designs, and backing for web advancements like HTML and JavaScript. It gives a scope of

format chiefs, occasion handlers, and information restricting tools that improve on the

advancement cycle and decrease how much standard code required.

9. PyQTGraph

PyQTGraph is a Python library for making quick and intuitive graphical plots and visualizations.

It is based on top of PyQt, a Python restricting for the famous Qt structure, and it gives a scope

of cutting-edge features that settle on it a well-known decision for logical and designing

applications.

One of PyQTGraph's fundamental benefits is its speed. It utilizes equipment sped up designs to

make plots and visualizations rapidly and effectively, causing it ideal for applications that to

demand constant information handling and visualization. It likewise incorporates support for live

information streaming, making it simple to make ongoing information visualization applications.

PyQTGraph gives a scope of cutting-edge plotting tools, including line plots, dissipate plots, bar

outlines, and 2D and 3D surface plots. It likewise incorporates support for cutting edge features,

for example, multi-hub plots, logarithmic tomahawks, and information separating and

smoothing.

10. PyVista

PyVista is a Python library for 3D visualization and analysis of logical data. It is based on top of

the VTK library, a well-known C++ library for visualizing and investigating logical data, and it

gives a scope of cutting-edge features for making intelligent 3D visualizations.

One of PyVista's primary benefits is its convenience. It gives a Pythonic interface that permits

developers to make 3D visualizations rapidly and effectively, without composing any C++ code.

It likewise incorporates support for cutting edge features, for example, volume delivering,

shaping, and cutting, making it an incredible asset for visualizing and investigating logical data.

What is terminal based program in Python?

They are applications that run in the terminal, and you can write your own apps in Python. If you

are on Linux, try the following: Open a terminal and enter top . You will see a bunch of

processes that are running on your system, sorted by which ones are using the most resources.

 They are applications that run in the terminal, and you can write your own apps in Python. If

you are on Linux, try the following: Open a terminal and enter top . You will see a bunch of

processes that are running on your system, sorted by which ones are using the most resources.

What are terminal apps?

A terminal application is simply an application that runs inside the terminal. By now, you have

seen that most of the output from your programs is printed to the terminal. By learning a few

more techniques such as clearing the terminal screen and "pickling" data, you can create full-

fledged standalone applications that run in the terminal.

A terminal app starts just like any other program, but it finishes when the user selects an action

that causes the program to quit. In terminal applications, this often means something like

entering 'q' or 'quit'.

If you are on a linux system, you can run some terminal apps right now. Many of these are not

written in Python, but that doesn't matter. They are applications that run in the terminal, and you

can write your own apps in Python. If you are on Linux, try the following:

 Open a terminal and enter top.

 You will see a bunch of processes that are running on your system, sorted by

which ones are using the most resources.

 You can press 'q' to quit this application.

 Open a terminal and enter nano test_file.txt.

 This is a text editor that runs in the terminal. It is useful for quick edits.

 If you are editing files on a remote server, you need a terminal-based editor.

Nano is one of the simplest.

 Press Ctrl-x to exit. If you have typed anything, you will be given the option

to save your file.

 Open a terminal and enter vi.

 This is another text editor. It is much less intuitive than nano at first, but

once you learn how to use it you can edit files extremely quickly.

 Enter :q to exit.

There are quite a few other terminal apps. Let's figure out how to write some of our own.

Why write terminal apps?

Unless you see people working in technical fields on a regular basis, it's quite possible you have

not seen many people using terminal applications. Even so, there are a number of reasons to

consider writing a few terminal apps of your own.

 They can be much more fun and satisfying to write than simpler programs.

 Applications, by their nature, solve interesting problems. When you write an

application, you are creating an environment in which people work and play.

That's pretty satisfying.

 Terminal apps let you play with complex code, without layers of abstraction

between you and the user.

 When you write more complex graphical applications, there are layers of

abstraction between you and the user. To get input in a terminal, you issue

the command input("Please tell me some information: "). When you want

some information in a graphical program, you have to build text boxes and

buttons for submitting information. That has gotten pretty simple these days,

but it is still more complicated than what you will do when writing terminal

applications. Terminal applications let you focus on getting the logic right,

rather than building a graphical interface.

 You will learn about user interaction issues.

 Terminal apps do have users, even if that is just you, and maybe your friends

or family. If you see people using your applications at an early stage, you

will write better code. There is nothing like watching people use your

programs to make you code more defensively. You know to enter a string in

some places, but what keeps your users from entering numbers? Influencing

your users to give you the right information the first time, and being prepared

to deal with the wrong kind of data are good skills as a programmer. Having

real users at an early stage in your programming career is a good thing.

top

Greeter - A simple terminal app

Let's define a simple terminal app that we can make in this notebook. Greeter will:

 Always display a title bar at the top of the screen, showing the name of the app that is

running.

 Offer you three choices:

 Enter a name.

o If the program knows that name, it will print a message saying

something like "Hello, old friend."

o If the program does not know that name, it will print a message

saying something like, "It's nice to meet you. I will remember

you."

o The next time the program hears this name, it will greet

the person as an old friend.

 See a list of everyone that is known.

 Quit.

 The program will remember people, even after it closes.

 The program may list the number of known people in the title bar.

Now we will go over a few things we need to know in order to build this app, and then we will

build it.

top

Clearing the screen

You may have noticed that your programs which produce a lot of output scroll down the

terminal. This keeps your program from looking like a running application. It's fairly easy to

clear the terminal screen any time you want to, though.

http://introtopython.org/terminal_apps.html
http://introtopython.org/terminal_apps.html

Let's make a really simple program to show this:

Show a simple message.

print("I like climbing mountains.")

show output

Now we will modify the program so that the screen is cleared right after the message is

displayed:

import os

Show a simple message.

print("I like climbing mountains.")

Clear the screen.

os.system('clear')

There is no output to show here, because as soon as the message is displayed the screen is

cleared. Run the program on your computer to see this.

The first line imports the module "os". This is a set of functions that let you interact with your

operating system's commands. The line os.system('clear') tells Python to talk to the operating

system, and ask the system to run the clear command. You can see this same thing by

typing clear in any open terminal window.

On a technical note, the screen is not actually erased when you enter the clear command. Instead,

the terminal is scrolled down one vertical window length. If you scroll the terminal window up,

you can see the old output. This is fine, and it can actually be good to be able to scroll back up

and look at some output you might have missed.

On Windows: The command to clear the terminal screen is different on Windows. The

command os.system('cls') should work.

Exercises

Simple Clear

 Print one line to the screen.

 Run your program to make sure the line actually prints.

 Add a call to your system's "clear" command.

 Run your program and make sure the line disappears.

 If it didn't work, make sure you have the line import os at the top of your file.

top

A Persistent Title Bar

Let's consider how to make a title bar that stays at the top of the screen. We can't make this yet,

because as our program creates more and more output, any title bar we print will disappear up

the top of the screen.

Now that we know how to clear the screen, we can rebuild the screen that our user sees any time

we want. Let's start out by printing a title bar for Greeter. If you want to follow along, type out

the following code and save it as greeter.py:

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

Display a title bar.

print("\t**")

print("\t*** Greeter - Hello old and new friends! ***")

print("\t**")

show output

Everything is fine so far. Let's look at what happens when we have a bunch of output below the

title bar. Copy the following code onto your machine and run it.

Greeter is a terminal application that greets old friends warmly,

http://introtopython.org/terminal_apps.html

and remembers new friends.

Display a title bar.

print("\t**")

print("\t*** Greeter - Hello old and new friends! ***")

print("\t**")

Display a bunch of output, representing a long-running program.

for x in range(0,51):

 print("\nWe have done %d fun and interesting things together!" % x)

I won't include the output here. All you should see are a number of lines about doing fun and

interesting things together, with the title bar far up your terminal window, well above the visible

portion.

The sleep() function

Sometimes it is helpful to be able to pause a program for a moment. This can slow things down,

and it can let us show output in intervals. Run this code on your own machine, and see if you can

understand how it works:

Import the sleep function.

from time import sleep

print("I'm going to sleep now.")

Sleep for 3 seconds.

sleep(3)

print("I woke up!")

show output

If you ran this code, you should have seen the message "I'm going to sleep now." Then you

should have seen nothing happen for 3 seconds, and then you should have seen the message "I

woke up."

The first line imports the sleep() function from the module time. You will be seeing more and

more import statements. Basically, we are importing a function from Python's standard library of

functions.

The sleep function can accept decimal inputs as well, so you can pause for as short or as long in

your programs as you want.

A slowly disappearing title bar

This time we are going to print out the title bar, but then we are going to print enough output that

we start to lose the title bar. Run this code on your own machine to see the full effect:

from time import sleep

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

Display a title bar.

print("\t**")

print("\t*** Greeter - Hello old and new friends! ***")

print("\t**")

Print a bunch of information, in short intervals

names = ['aaron', 'brenda', 'cyrene', 'david', 'eric']

Print each name 5 times.

for name in names:

 # Pause for 1 second between batches, and then skip two lines.

 sleep(1)

 print("\n\n")

 for x in range(0,5):

 print(name.title())

You should have seen the title bar appear, and then groups of names appear every second for a

while. At some point, the title bar probably disappeared. Now we are going to modify the code

so that the screen is cleared each time through the loop.

from time import sleep

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

Display a title bar.

print("\t**")

print("\t*** Greeter - Hello old and new friends! ***")

print("\t**")

Print a bunch of information, in short intervals

names = ['aaron', 'brenda', 'cyrene', 'david', 'eric']

Print each name 5 times.

for name in names:

 # Clear the screen before listing names.

 os.system('clear')

 # Display the title bar.

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

 print("\n\n")

 for x in range(0,5):

 print(name.title())

 # Pause for 1 second between batches.

 sleep(1)

This time you should see the same output, but you should see a steady title bar, and the new

information takes the place of the old information instead of being listed below the old output.

We have a "running" application!

Reducing repeated code

If you understood the section Introducing Functions, you may have noticed that we have some

repeated code in the last program listing. Any time you see a significant amount of repetition,

you can probably introduce a function.

The repeated code in this example involves displaying the title bar. Let's write a function to show

the title bar.

from time import sleep

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

http://introtopython.org/introducing_functions

Print a bunch of information, in short intervals

names = ['aaron', 'brenda', 'cyrene', 'david', 'eric']

Print each name 5 times.

for name in names:

 display_title_bar()

 print("\n\n")

 for x in range(0,5):

 print(name.title())

 # Pause for 1 second between batches.

 sleep(1)

Again, you really need to copy this code onto your own machine and run it locally to see this in

action. You should see the same behavior as before.

It's interesting to note that having good comments makes writing functions easier. The comment

just before the code for displaying the title bar was "Display the title bar." This practically gives

us a name for the function that will take over this job: display_title_bar. If we use short,

descriptive function names that tell us exactly what the function does, it becomes much easier to

follow what is happening in the program. We can see that we don't even need a comment when

the function is called, because the function name itself is so informative. The

name display_title_bar is much better than something like title, although you don't want to go

overboard with a name such as clear_screen_and_display_title_bar.

This code gets a bit hard to read overall though, because we have several sections of code. You

can use comments to visually break up your programs. Here's what that can look like in our

current program:

from time import sleep

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

MAIN PROGRAM ###

Print a bunch of information, in short intervals

names = ['aaron', 'brenda', 'cyrene', 'david', 'eric']

Print each name 5 times.

for name in names:

 display_title_bar()

 print("\n\n")

 for x in range(0,5):

 print(name.title())

 # Pause for 1 second between batches.

 sleep(1)

If this is more appealing visually to you, feel free to use these kind of "section header" comments

in your longer programs.

top

Building Greeter

Let's continue building Greeter. There are a couple more things we will introduce, but you

should be able to follow everything we do.

We will start with the previous part where we have a persistent title bar, but we will remove the

sleep functions. We will begin by offering users the choice to see a list of names, or enter a new

name.

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

choice = ''

while choice != 'q':

http://introtopython.org/terminal_apps.html

 display_title_bar()

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 choice = input("What would you like to do? ")

 # Respond to the user's choice.

 if choice == '1':

 print("\nHere are the people I know.\n")

 elif choice == '2':

 print("\nI can't wait to meet this person!\n")

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

If you run this code, you will see that it doesn't quite work. There are no Python errors, but the

logic is a little off. We can enter choices, but the call to display_title_bar() at the beginning of the

loop clears the screen as soon as the output is printed.

We can fix this by moving the call to display_title_bar(), and putting it in two places. We

call display_title_bar() once just before we enter the loop, when the program starts running. But

we also call it right after the user makes a choice, and before we respond to that choice:

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

choice = ''

display_title_bar()

while choice != 'q':

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 choice = input("What would you like to do? ")

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 print("\nHere are the people I know.\n")

 elif choice == '2':

 print("\nI can't wait to meet this person!\n")

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

This works, so let's put the menu into a function:

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

def get_user_choice():

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 return input("What would you like to do? ")

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

choice = ''

display_title_bar()

while choice != 'q':

 choice = get_user_choice()

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 print("\nHere are the people I know.\n")

 elif choice == '2':

 print("\nI can't wait to meet this person!\n")

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

Now, let's make it so that the program actually does something.

 We will make an empty list to store names.

 We will print names from this list in choice 1.

 We will get a new name in choice 2.

 We will store that new name in the list of names.

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

def get_user_choice():

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 return input("What would you like to do? ")

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

names = []

choice = ''

display_title_bar()

while choice != 'q':

 choice = get_user_choice()

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 print("\nHere are the people I know.\n")

 for name in names:

 print(name.title())

 elif choice == '2':

 new_name = input("\nPlease tell me this person's name: ")

 names.append(new_name)

 print("\nI'm so happy to know %s!\n" % new_name.title())

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

If you run this program, you will see that it works mostly as its supposed to. But the code in lines

37-50, where we are responding to the user's choice, is starting to get crowded. Let's move the

code for choice 1 and choice 2 into separate functions:

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

def get_user_choice():

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 return input("What would you like to do? ")

def show_names():

 # Shows the names of everyone who is already in the list.

 print("\nHere are the people I know.\n")

 for name in names:

 print(name.title())

def get_new_name():

 # Asks the user for a new name, and stores the name.

 new_name = input("\nPlease tell me this person's name: ")

 names.append(new_name)

 print("\nI'm so happy to know %s!\n" % new_name.title())

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

names = []

choice = ''

display_title_bar()

while choice != 'q':

 choice = get_user_choice()

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 show_names()

 elif choice == '2':

 get_new_name()

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

This code doesn't behave any differently, but the main program itself is much easier to read.

Lines 48-57 are a clean series of if-elif-else statements, each of which has a clear action.

Putting each action into its own function also lets us focus on improving that action. If you look

at the function get_new_name(), you might notice that we are storing the name without checking

anything about it. Let's put in a simple check to make sure we don't already know about this

person.

import os

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

def get_user_choice():

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 return input("What would you like to do? ")

def show_names():

 # Shows the names of everyone who is already in the list.

 print("\nHere are the people I know.\n")

 for name in names:

 print(name.title())

def get_new_name():

 # Asks the user for a new name, and stores the name if we don't already

 # know about this person.

 new_name = input("\nPlease tell me this person's name: ")

 if new_name in names:

 print("\n%s is an old friend! Thank you, though." % new_name.title())

 else:

 names.append(new_name)

 print("\nI'm so happy to know %s!\n" % new_name.title())

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

names = []

choice = ''

display_title_bar()

while choice != 'q':

 choice = get_user_choice()

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 show_names()

 elif choice == '2':

 get_new_name()

 elif choice == 'q':

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

This works well. Now the program only stores new names, and names that are already in the list

are greeted as old friends.

It's interesting to note that you can run this program through python tutor, and step through each

line of the code. It's pretty enlightening to see exactly how the Python interpreter steps through a

program like this. You can see all of the jumps from the main program to each of the functions,

and the change in flow when the user makes a particular choice. It's informative to see which

lines are skipped when certain if tests pass or fail.

There is one last thing we'd like Greeter to do, to consider it a basic terminal app. Let's make it

remember the list of names after the program closes. To do this, let's learn about pickling using a

simpler example.

top

Basic Pickling

When we "pickle" something in the physical world, we soak it in salt and vinegar so it won't rot.

"Pickling" an object in Python packages it up and stores it on disk in a way that we can get it

http://pythontutor.com/visualize.html#mode=edit
http://introtopython.org/terminal_apps.html

back in its original form later. You don't want to use pickle for imporant data, but it's a good way

to get started with storing data after your program closes.

Here is a simple program that asks the user for some input, and then stores the input in a list. The

program dumps the list to a file using pickle, and the next time the program runs it loads that data

back in. Run this program on your computer, and see if it works for you.

import pickle

This program asks the user for some animals, and stores them.

Make an empty list to store new animals in.

animals = []

Create a loop that lets users store new animals.

new_animal = ''

while new_animal != 'quit':

 print("\nPlease tell me a new animal to remember.")

 new_animal = input("Enter 'quit' to quit: ")

 if new_animal != 'quit':

 animals.append(new_animal)

Try to save the animals to the file 'animals.pydata'.

try:

 file_object = open('animals.pydata', 'wb')

 pickle.dump(animals, file_object)

 file_object.close()

 print("\nI will remember the following animals: ")

 for animal in animals:

 print(animal)

except Exception as e:

 print(e)

 print("\nI couldn't figure out how to store the animals. Sorry.")

This program uses three new things:

 A try-except block.

 A try-except block is used when you think a section of code might create an

error. If an error occurs in a try block, the program does not end. Instead,

program execution drops into the except block.

 In this case, we try to open a file to write out a list of animals.

 If the file can not be opened for some reason, for example because the

program doesn't have permission to create a new file, then the program drops

to the except block.

o In this case, we print the actual error message and a friendlier

message of our own.

 Opening and closing files.

 Line 33 tries to open the file 'animals.pydata'.

o Line 33 tells Python to open the file for writing. The 'b' argument

tells Python to write the file in bytes.

o If successful, the open file can be used through

the file_object variable.

o If the file does not yet exist, this line creates the file, in the same

directory as the program.

 Line 35 closes the file once we are finished working with it.

 A call to pickle.dump().

 Line 34 'dumps' the list animals into the file that was opened. (It is not

dumped in a format that we can read.)

Note: This may work slightly differently in Python 2, and on Windows or Mac. This notebook

will be updated to include those specific differences.

When you run this program on your computer, look for the file animals.pydata in the same

directory as the program file. If that worked, we need to modify the program so that the next time

it runs it loads the data from animals.pydata back in.

We do that with a try-except block at the beginning of the program, which tries to open the file

and read the data back into the animals list. If that doesn't work, which will happen when the

program is run for the first time or if you delete animals.pydata, we make the same empty list we

had before.

import pickle

This program asks the user for some animals, and stores them.

It loads animals if they exist.

Try to load animals. If they don't exist, make an empty list

to store new animals in.

try:

 file_object = open('animals.pydata', 'rb')

 animals = pickle.load(file_object)

 file_object.close()

except:

 animals = []

Show the animals that are stored so far.

if len(animals) > 0:

 print("I know the following animals: ")

 for animal in animals:

 print(animal)

else:

 print("I don't know any animals yet.")

Create a loop that lets users store new animals.

new_animal = ''

while new_animal != 'quit':

 print("\nPlease tell me a new animal to remember.")

 new_animal = input("Enter 'quit' to quit: ")

 if new_animal != 'quit':

 animals.append(new_animal)

Try to save the animals to the file 'animals.pydata'.

try:

 file_object = open('animals.pydata', 'wb')

 pickle.dump(animals, file_object)

 file_object.close()

 print("\nI will remember the following animals: ")

 for animal in animals:

 print(animal)

except Exception as e:

 print(e)

 print("\nI couldn't figure out how to store the animals. Sorry.")

The new try-except block at the beginning of the file works like this:

- It tries to open a file to read in a list of animals.

- If the file exists, animals will contain the previously stored list.

- If the file does not exist, line 9 will create an error, which would normally end the

program.

- Instead, the program drops to the except block, where an empty list is created.

Now the program should just build a cumulative list of animals every time it is run. This is our

first example of persistent data, data that lasts even after our program stops running.

Now let's use these concepts to finish Greeter.

top

http://introtopython.org/terminal_apps.html

Exercises

Pickling Games

 Write a program that lets users enter a number of different games.

 Save the games to disk, using pickle, before the program closes.

 Load the games from the saved file at the beginning of your program.

top

Pickling in Greeter

We really just have a little left to do in order to finish Greeter. We need to dump the list of names

before the program ends, and we need to load that list of names when the program starts. Let's do

this by creating two new functions:

 The function load_names() will load the names from a file when the program first

starts. This function will be called before the main loop begins.

 The function quit() will dump the names into a file just before the program ends.

import os

import pickle

Greeter is a terminal application that greets old friends warmly,

and remembers new friends.

FUNCTIONS ###

def display_title_bar():

 # Clears the terminal screen, and displays a title bar.

 os.system('clear')

http://introtopython.org/terminal_apps.html

 print("\t**")

 print("\t*** Greeter - Hello old and new friends! ***")

 print("\t**")

def get_user_choice():

 # Let users know what they can do.

 print("\n[1] See a list of friends.")

 print("[2] Tell me about someone new.")

 print("[q] Quit.")

 return input("What would you like to do? ")

def show_names():

 # Shows the names of everyone who is already in the list.

 print("\nHere are the people I know.\n")

 for name in names:

 print(name.title())

def get_new_name():

 # Asks the user for a new name, and stores the name if we don't already

 # know about this person.

 new_name = input("\nPlease tell me this person's name: ")

 if new_name in names:

 print("\n%s is an old friend! Thank you, though." % new_name.title())

 else:

 names.append(new_name)

 print("\nI'm so happy to know %s!\n" % new_name.title())

def load_names():

 # This function loads names from a file, and puts them in the list 'names'.

 # If the file doesn't exist, it creates an empty list.

 try:

 file_object = open('names.pydata', 'rb')

 names = pickle.load(file_object)

 file_object.close()

 return names

 except Exception as e:

 print(e)

 return []

def quit():

 # This function dumps the names into a file, and prints a quit message.

 try:

 file_object = open('names.pydata', 'wb')

 pickle.dump(names, file_object)

 file_object.close()

 print("\nThanks for playing. I will remember these good friends.")

 except Exception as e:

 print("\nThanks for playing. I won't be able to remember these names.")

 print(e)

MAIN PROGRAM ###

Set up a loop where users can choose what they'd like to do.

names = load_names()

choice = ''

display_title_bar()

while choice != 'q':

 choice = get_user_choice()

 # Respond to the user's choice.

 display_title_bar()

 if choice == '1':

 show_names()

 elif choice == '2':

 get_new_name()

 elif choice == 'q':

 quit()

 print("\nThanks for playing. Bye.")

 else:

 print("\nI didn't understand that choice.\n")

We now have a long-running, standalone terminal application. It doesn't do a whole lot, but it

shows the basic structure for creating terminal apps of your own. If you expand the list of

choices and keep your code organized into clean, simple functions, you now know enough to

make some pretty interesting programs.

Python - GUI Programming

Python provides various options for developing graphical user interfaces (GUIs). The most

important features are listed below.

 Tkinter − Tkinter is the Python interface to the Tk GUI toolkit shipped with Python. We

would look at this option in this chapter.

 wxPython − This is an open-source Python interface for wxWidgets GUI toolkit. You

can find a complete tutorial on WxPython here.

 PyQt − This is also a Python interface for a popular cross-platform Qt GUI library.

TutorialsPoint has a very good tutorial on PyQt5 here.

 PyGTK − PyGTK is a set of wrappers written in Python and C for GTK + GUI library.

The complete PyGTK tutorial is available here.

 PySimpleGUI − PySimpleGui is an open source, cross-platform GUI library for Python.

It aims to provide a uniform API for creating desktop GUIs based on Python's Tkinter,

PySide and WxPython toolkits. For a detaile PySimpleGUI tutorial, click here.

https://www.tutorialspoint.com/wxpython/index.htm
https://www.tutorialspoint.com/pyqt/index.htm
https://www.tutorialspoint.com/pygtk/index.htm
https://www.tutorialspoint.com/python/https:/www.tutorialspoint.com/pysimplegui/index.htm

 Pygame − Pygame is a popular Python library used for developing video games. It is

free, open source and cross-platform wrapper around Simple DirectMedia Library (SDL).

For a comprehensive tutorial on Pygame, visit this link.

 Jython − Jython is a Python port for Java, which gives Python scripts seamless access to

the Java class libraries on the local machinehttp: //www.jython.org.

There are many other interfaces available, which you can find them on the net.

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter provides a

fast and easy way to create GUI applications. Tkinter provides a powerful object-oriented

interface to the Tk GUI toolkit.

The tkinter package includes following modules −

 Tkinter − Main Tkinter module.

 tkinter.colorchooser − Dialog to let the user choose a color.

 tkinter.commondialog − Base class for the dialogs defined in the other modules listed

here.

 tkinter.filedialog − Common dialogs to allow the user to specify a file to open or save.

 tkinter.font − Utilities to help work with fonts.

 tkinter.messagebox − Access to standard Tk dialog boxes.

 tkinter.scrolledtext − Text widget with a vertical scroll bar built in.

 tkinter.simpledialog − Basic dialogs and convenience functions.

 tkinter.ttk − Themed widget set introduced in Tk 8.5, providing modern alternatives for

many of the classic widgets in the main tkinter module.

Creating a GUI application using Tkinter is an easy task. All you need to do is perform the

following steps.

 Import the Tkinter module.

 Create the GUI application main window.

https://www.tutorialspoint.com/pygame/index.htm
http://www.jython.org/

 Add one or more of the above-mentioned widgets to the GUI application.

 Enter the main event loop to take action against each event triggered by the user.

Example

note that module name has changed from Tkinter in Python 2

to tkinter in Python 3

import tkinter

top = tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

This would create a following window −

When the program becomes more complex, using an object-oriented programming approach

makes the code more organized.

import tkinter as tk

class App(tk.Tk):

 def __init__(self):

 super().__init__()

app = App()

app.mainloop()

Tkinter Widgets

Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI

application. These controls are commonly called widgets.

There are currently 15 types of widgets in Tkinter. We present these widgets as well as a brief

description in the following table −

Sr.No. Operator & Description

1
Button

The Button widget is used to display the buttons in your application.

2

Canvas

The Canvas widget is used to draw shapes, such as lines, ovals, polygons

and rectangles, in your application.

3

Checkbutton

The Checkbutton widget is used to display a number of options as

checkboxes. The user can select multiple options at a time.

4

Entry

The Entry widget is used to display a single-line text field for accepting

values from a user.

5
Frame

The Frame widget is used as a container widget to organize other widgets.

https://www.tutorialspoint.com/python/tk_button.htm
https://www.tutorialspoint.com/python/tk_canvas.htm
https://www.tutorialspoint.com/python/tk_checkbutton.htm
https://www.tutorialspoint.com/python/tk_entry.htm
https://www.tutorialspoint.com/python/tk_frame.htm

6

Label

The Label widget is used to provide a single-line caption for other widgets.

It can also contain images.

7
Listbox

The Listbox widget is used to provide a list of options to a user.

8
Menubutton

The Menubutton widget is used to display menus in your application.

9

Menu

The Menu widget is used to provide various commands to a user. These

commands are contained inside Menubutton.

10

Message

The Message widget is used to display multiline text fields for accepting

values from a user.

11

Radiobutton

The Radiobutton widget is used to display a number of options as radio

buttons. The user can select only one option at a time.

12
Scale

The Scale widget is used to provide a slider widget.

13

Scrollbar

The Scrollbar widget is used to add scrolling capability to various widgets,

such as list boxes.

https://www.tutorialspoint.com/python/tk_label.htm
https://www.tutorialspoint.com/python/tk_listbox.htm
https://www.tutorialspoint.com/python/tk_menubutton.htm
https://www.tutorialspoint.com/python/tk_menu.htm
https://www.tutorialspoint.com/python/tk_message.htm
https://www.tutorialspoint.com/python/tk_radiobutton.htm
https://www.tutorialspoint.com/python/tk_scale.htm
https://www.tutorialspoint.com/python/tk_scrollbar.htm

14
Text

The Text widget is used to display text in multiple lines.

15
Toplevel

The Toplevel widget is used to provide a separate window container.

16

Spinbox

The Spinbox widget is a variant of the standard Tkinter Entry widget, which

can be used to select from a fixed number of values.

17

PanedWindow

A PanedWindow is a container widget that may contain any number of

panes, arranged horizontally or vertically.

18

LabelFrame

A labelframe is a simple container widget. Its primary purpose is to act as a

spacer or container for complex window layouts.

19
tkMessageBox

This module is used to display message boxes in your applications.

Let us study these widgets in detail.

Standard Attributes

Let us look at how some of the common attributes, such as sizes, colors and fonts are specified.

 Dimensions

 Colors

 Fonts

 Anchors

https://www.tutorialspoint.com/python/tk_text.htm
https://www.tutorialspoint.com/python/tk_toplevel.htm
https://www.tutorialspoint.com/python/tk_spinbox.htm
https://www.tutorialspoint.com/python/tk_panedwindow.htm
https://www.tutorialspoint.com/python/tk_labelframe.htm
https://www.tutorialspoint.com/python/tk_messagebox.htm
https://www.tutorialspoint.com/python/tk_dimensions.htm
https://www.tutorialspoint.com/python/tk_colors.htm
https://www.tutorialspoint.com/python/tk_fonts.htm
https://www.tutorialspoint.com/python/tk_anchors.htm

 Relief styles

 Bitmaps

 Cursors

Let us study them briefly −

Geometry Management

All Tkinter widgets have access to the specific geometry management methods, which have the

purpose of organizing widgets throughout the parent widget area. Tkinter exposes the following

geometry manager classes: pack, grid, and place.

 The pack() Method − This geometry manager organizes widgets in blocks before

placing them in the parent widget.

 The grid() Method − This geometry manager organizes widgets in a table-like structure

in the parent widget.

 The place() Method − This geometry manager organizes widgets by placing them in a

specific position in the parent widget.

Let us study the geometry management methods briefly −

SimpleDialog

The simpledialog module in tkinter package includes a dialog class and convenience functions

for accepting user input through a modal dialog. It consists of a label, an entry widget and two

buttons Ok and Cancel. These functions are −

 askfloat(title, prompt, **kw) − Accepts a floating point number.

 askinteger(title, prompt, **kw) − Accepts an integer input.

 askstring(title, prompt, **kw) − Accepts a text input from the user.

The above three functions provide dialogs that prompt the user to enter a value of the desired

type. If Ok is pressed, the input is returned, if Cancel is pressed, None is returned.

https://www.tutorialspoint.com/python/tk_relief.htm
https://www.tutorialspoint.com/python/tk_bitmaps.htm
https://www.tutorialspoint.com/python/tk_cursors.htm
https://www.tutorialspoint.com/python/tk_pack.htm
https://www.tutorialspoint.com/python/tk_grid.htm
https://www.tutorialspoint.com/python/tk_place.htm

askinteger

from tkinter.simpledialog import askinteger

from tkinter import *

from tkinter import messagebox

top = Tk()

top.geometry("100x100")

def show():

 num = askinteger("Input", "Input an Integer")

 print(num)

B = Button(top, text ="Click", command = show)

B.place(x=50,y=50)

top.mainloop()

It will produce the following output −

askfloat

from tkinter.simpledialog import askfloat

from tkinter import *

top = Tk()

top.geometry("100x100")

def show():

 num = askfloat("Input", "Input a floating point number")

 print(num)

B = Button(top, text ="Click", command = show)

B.place(x=50,y=50)

top.mainloop()

It will produce the following output −

askstring

from tkinter.simpledialog import askstring

from tkinter import *

top = Tk()

top.geometry("100x100")

def show():

 name = askstring("Input", "Enter you name")

 print(name)

B = Button(top, text ="Click", command = show)

B.place(x=50,y=50)

top.mainloop()

It will produce the following output −

The FileDialog Module

The filedialog module in Tkinter package includes a FileDialog class. It also defines convenience

functions that enable the user to perform open file, save file, and open directory activities.

 filedialog.asksaveasfilename()

 filedialog.asksaveasfile()

 filedialog.askopenfilename()

 filedialog.askopenfile()

 filedialog.askdirectory()

 filedialog.askopenfilenames()

 filedialog.askopenfiles()

askopenfile

This function lets the user choose a desired file from the filesystem. The file dialog window has

Open and Cancel buttons. The file name along with its path is returned when Ok is pressed,

None if Cancel is pressed.

from tkinter.filedialog import askopenfile

from tkinter import *

top = Tk()

top.geometry("100x100")

def show():

 filename = askopenfile()

 print(filename)

B = Button(top, text ="Click", command = show)

B.place(x=50,y=50)

top.mainloop()

It will produce the following output −

ColorChooser

The colorchooser module included in tkinter package has the feature of letting the user choose a

desired color object through the color dialog. The askcolor() function presents with the color

dialog with predefined color swatches and facility to choose custome color by setting RGB

values. The dialog returns a tuple of RGB values of chosen color as well as its hex value.

from tkinter.colorchooser import askcolor

from tkinter import *

top = Tk()

top.geometry("100x100")

def show():

 color = askcolor()

 print(color)

B = Button(top, text ="Click", command = show)

B.place(x=50,y=50)

top.mainloop()

It will produce the following output −

((0, 255, 0), '#00ff00')

ttk module

The term ttk stands from Tk Themed widgets. The ttk module was introduced with Tk 8.5

onwards. It provides additional benefits including anti-aliased font rendering under X11 and

window transparency. It provides theming and styling support for Tkinter.

The ttk module comes bundled with 18 widgets, out of which 12 are already present in Tkinter.

Importing ttk over-writes these widgets with new ones which are designed to have a better and

more modern look across all platforms.

The 6 new widgets in ttk are, the Combobox, Separator, Sizegrip, Treeview, Notebook and

ProgressBar.

To override the basic Tk widgets, the import should follow the Tk import −

from tkinter import *

from tkinter.ttk import *

The original Tk widgets are automatically replaced by tkinter.ttk widgets. They are Button,

Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton, PanedWindow, Radiobutton, Scale

and Scrollbar.

New widgets which gives a better look and feel across platforms; however, the replacement

widgets are not completely compatible. The main difference is that widget options such as "fg",

"bg" and others related to widget styling are no longer present in Ttk widgets. Instead, use the

ttk.Style class for improved styling effects.

The new widgets in ttk module are −

 Notebook − This widget manages a collection of "tabs" between which you can swap,

changing the currently displayed window.

 ProgressBar − This widget is used to show progress or the loading process through the

use of animations.

 Separator − Used to separate different widgets using a separator line.

 Treeview − This widget is used to group together items in a tree-like hierarchy. Each

item has a textual label, an optional image, and an optional list of data values.

 ComboBox − Used to create a dropdown list of options from which the user can select

one.

 Sizegrip − Creates a little handle near the bottom-right of the screen, which can be used

to resize the window.

Combobox Widget

The Python ttk Combobox presents a drop down list of options and displays them one at a time.

It is a sub class of the widget Entry. Hence it inherits many options and methods from the Entry

class.

Syntax

from tkinter import ttk

Combo = ttk.Combobox(master, values.......)

The get() function to retrieve the current value of the Combobox.

Example

from tkinter import *

from tkinter import ttk

top = Tk()

top.geometry("200x150")

frame = Frame(top)

frame.pack()

langs = ["C", "C++", "Java",

 "Python", "PHP"]

Combo = ttk.Combobox(frame, values = langs)

Combo.set("Pick an Option")

Combo.pack(padx = 5, pady = 5)

top.mainloop()

It will produce the following output −

Progressbar

The ttk ProgressBar widget, and how it can be used to create loading screens or show the

progress of a current task.

Syntax

ttk.Progressbar(parent, orient, length, mode)

Parameters

 Parent − The container in which the ProgressBar is to be placed, such as root or a

Tkinter frame.

 Orient − Defines the orientation of the ProgressBar, which can be either vertical of

horizontal.

 Length − Defines the width of the ProgressBar by taking in an integer value.

 Mode − There are two options for this parameter, determinate and indeterminate.

Example

The code given below creates a progressbar with three buttons which are linked to three different

functions.

The first function increments the "value" or "progress" in the progressbar by 20. This is done

with the step() function which takes an integer value to change progress amount. (Default is 1.0)

The second function decrements the "value" or "progress" in the progressbar by 20.

The third function prints out the current progress level in the progressbar.

import tkinter as tk

from tkinter import ttk

root = tk.Tk()

frame= ttk.Frame(root)

def increment():

 progressBar.step(20)

def decrement():

 progressBar.step(-20)

def display():

 print(progressBar["value"])

progressBar= ttk.Progressbar(frame, mode='determinate')

progressBar.pack(padx = 10, pady = 10)

button= ttk.Button(frame, text= "Increase", command= increment)

button.pack(padx = 10, pady = 10, side = tk.LEFT)

button= ttk.Button(frame, text= "Decrease", command= decrement)

button.pack(padx = 10, pady = 10, side = tk.LEFT)

button= ttk.Button(frame, text= "Display", command= display)

button.pack(padx = 10, pady = 10, side = tk.LEFT)

frame.pack(padx = 5, pady = 5)

root.mainloop()

It will produce the following output −

Notebook

Tkinter ttk module has a new useful widget called Notebook. It is a of collection of of containers

(e.g frames) which have many widgets as children inside.

Each "tab" or "window" has a tab ID associated with it, which is used to determine which tab to

swap to.

You can swap between these containers like you would on a regular text editor.

Syntax

notebook = ttk.Notebook(master, *options)

Example

In this example, add 3 windows to our Notebook widget in two different ways. The first method

involves the add() function, which simply appends a new tab to the end. The other method is the

insert() function which can be used to add a tab to a specific position.

The add() function takes one mandatory parameter which is the container widget to be added,

and the rest are optional parameters such as text (text to be displayed as tab title), image and

compound.

The insert() function requires a tab_id, which defines the location where it should be inserted.

The tab_id can be either an index value or it can be string literal like "end", which will append it

to the end.

import tkinter as tk

from tkinter import ttk

root = tk.Tk()

nb = ttk.Notebook(root)

Frame 1 and 2

frame1 = ttk.Frame(nb)

frame2 = ttk.Frame(nb)

label1 = ttk.Label(frame1, text = "This is Window One")

label1.pack(pady = 50, padx = 20)

label2 = ttk.Label(frame2, text = "This is Window Two")

label2.pack(pady = 50, padx = 20)

frame1.pack(fill= tk.BOTH, expand=True)

frame2.pack(fill= tk.BOTH, expand=True)

nb.add(frame1, text = "Window 1")

nb.add(frame2, text = "Window 2")

frame3 = ttk.Frame(nb)

label3 = ttk.Label(frame3, text = "This is Window Three")

label3.pack(pady = 50, padx = 20)

frame3.pack(fill= tk.BOTH, expand=True)

nb.insert("end", frame3, text = "Window 3")

nb.pack(padx = 5, pady = 5, expand = True)

root.mainloop()

It will produce the following output −

Treeview

The Treeview widget is used to display items in a tabular or hierarchical manner. It has support

for features like creating rows and columns for items, as well as allowing items to have children

as well, leading to a hierarchical format.

Syntax

tree = ttk.Treeview(container, **options)

Options

Sr.No. Option & Description

1 columns

A list of column names

2

displaycolumns

A list of column identifiers (either symbolic or integer indices) specifying

which data columns are displayed and the order in which they appear, or the

string "#all".

3 height

The number of rows visible.

4

padding

Specifies the internal padding for the widget. Can be either an integer or a

list of 4 values.

5

selectmode

One of "extended", "browse" or "none". If set to "extended" (default),

multiple items can be selected. If "browse", only a single item can be

selected at a time. If "none", the selection cannot be changed by the user.

6

show

A list containing zero or more of the following values, specifying which

elements of the tree to display. The default is "tree headings", i.e., show all

elements.

Example

In this example we will create a simple Treeview ttk Widget and fill in some data into it. We

have some data already stored in a list which will be reading and adding to the Treeview widget

in our read_data() function.

We first need to define a list/tuple of column names. We have left out the column "Name"

because there already exists a (default) column with a blank name.

We then assign that list/tuple to the columns option in Treeview, followed by defining the

"headings", where the column is the actual column, whereas the heading is just the title of the

column that appears when the widget is displayed. We give each a column a name. "#0" is the

name of the default column.

The tree.insert() function has the following parameters −

 Parent − which is left as an empty string if there is none.

 Position − where we want to add the new item. To append, use tk.END

 Iid − which is the item ID used to later track the item in question.

 Text − to which we will assign the first value in the list (the name).

Value we will pass the the other 2 values we obtained from the list.

The Complete Code

import tkinter as tk

import tkinter.ttk as ttk

from tkinter import simpledialog

root = tk.Tk()

data = [

 ["Bobby",26,20000],

 ["Harrish",31,23000],

 ["Jaya",18,19000],

 ["Mark",22, 20500],

]

index=0

def read_data():

 for index, line in enumerate(data):

 tree.insert('', tk.END, iid = index,

 text = line[0], values = line[1:])

columns = ("age", "salary")

tree= ttk.Treeview(root, columns=columns ,height = 20)

tree.pack(padx = 5, pady = 5)

tree.heading('#0', text='Name')

tree.heading('age', text='Age')

tree.heading('salary', text='Salary')

read_data()

root.mainloop()

It will produce the following output −

Sizegrip

The Sizegrip widget is basically a small arrow-like grip that is typically placed at the bottom-

right corner of the screen. Dragging the Sizegrip across the screen also resizes the container to

which it is attached to.

Syntax

sizegrip = ttk.Sizegrip(parent, **options)

Example

import tkinter as tk

import tkinter.ttk as ttk

root = tk.Tk()

root.geometry("100x100")

frame = ttk.Frame(root)

label = ttk.Label(root, text = "Hello World")

label.pack(padx = 5, pady = 5)

sizegrip = ttk.Sizegrip(frame)

sizegrip.pack(expand = True, fill = tk.BOTH, anchor = tk.SE)

frame.pack(padx = 10, pady = 10, expand = True, fill = tk.BOTH)

root.mainloop()

It will produce the following output −

Separator

The ttk Separator widget is a very simple widget, that has just one purpose and that is to help

"separate" widgets into groups/partitions by drawing a line between them. We can change the

orientation of this line (separator) to either horizontal or vertical, and change its length/height.

Syntax

separator = ttk.Separator(parent, **options)

The "orient", which can either be tk.VERTICAL or tk.HORIZTONAL, for a vertical and

horizontal separator respectively.

Example

Here we have created two Label widgets, and then created a Horizontal Separator between them.

import tkinter as tk

import tkinter.ttk as ttk

root = tk.Tk()

root.geometry("200x150")

frame = ttk.Frame(root)

label = ttk.Label(frame, text = "Hello World")

label.pack(padx = 5)

separator = ttk.Separator(frame,orient= tk.HORIZONTAL)

separator.pack(expand = True, fill = tk.X)

label = ttk.Label(frame, text = "Welcome To TutorialsPoint")

label.pack(padx = 5)

frame.pack(padx = 10, pady = 50, expand = True, fill = tk.BOTH)

root.mainloop()

It will produce the following output −

What is the Python window?

The Python window is an efficient and convenient location to use geoprocessing tools and

Python functionality from within ArcGIS. The Python commands run from this window can

range from single lines of code to complex blocks with logic. The Python window also provides

a place to access additional functionality using custom or third-party Python modules and

libraries.

The Python window also acts as a gateway to Python for those new to scripting, providing an

intuitive interface that makes learning Python scripting in ArcGIS as easy as possible. In

the Python window, various tool and method usage and syntax can be viewed or experimented

with, and snippets of Python code can be entered or pasted into the window to test scripting ideas

outside a stand-alone script. The Python window is a powerful mechanism for efficiently

accessing and executing geoprocessing and scripting tasks and increasing productivity by placing

Python functionality within ArcGIS Desktop applications.

Opening the Python window

The Python window can be opened within any ArcGIS Desktop application by clicking the

Python window button on the Standard toolbar.

Below shows how the Python window appears when first opened:

An overview of the Python window

Once opened, the Python window can be moved by clicking the bar at the top and dragging to

your preferred location. The window can be docked or undocked.

The window prompts for the next command with the primary prompt, three greater-than signs

(>>>), and continuation lines prompt with the secondary prompt, three dots (...).

Continuation lines are needed when entering a multiline construct. See the following example

using an if statement:

The Python window contains two sections:

 The Python section on the left. This is where commands are entered.

 The Help section on the right. This is where command usage, help, and execution

messages are viewed. This section can be hidden or placed to the right, left, top, or

bottom of the Python section.

Components of Python Language

 A Components of Python Language is the smallest element in a program that is

meaningful to the computer.

 These Components of Python Language define the structure of the language.

 It is also known as a token of python language.

The five main components (tokens) of 'Python' language are:

 The character set

 The Data types

 Constants

 Variables

 Keywords

The character set

 Any alphabet, digits, or special symbol used to represent information is denoted by

character.

 The characters in Pythons are grouped into four categories.

1 Letters A – – – Z or a – z

2 Digits 0,1,—-9

3 Special Symbols -.‟@#%'” &*() _-+ = I\{}[]:;”‘< > , . ? /.

4 White spaces blank space, horizontal tab, carriage return, new line, and form feed.

The Data types

 The power of a programming language depends, among other things, on the range of

different types of data it can handle.

 Data values passed in a program may be of different types.

Note: Each data type will be learned in each different chapter.

Find the Data Type

 type() function: using this function get the data type of any object or variable.

Example

y = 15

print(type(y))

Constants

 Constants are the fixed values that remain unchanged during the execution of a program

and are used in assignment statements.

Variables

 Variables are the data items whose values may vary during the execution of the program.

Note: Python has no command for declaring a variable.

Rules to defines Variable Names

 A variable can have a short name (like x and y) or a more descriptive name (age,

surname, total_volume). Rules for Python variables:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscores (A-z, 0-9,

and _)

 Variable names are case-sensitive (ram, Ram, and RAM are three different variables)

Example to create variable in python

a = "NIELITBHU"

a_var = "NIELITBHU"

_a_var = "NIELITBHU"

aVar = "NIELITBHU"

aVAR = "NIELITBHU"

avar2 = "NIELITBHU"

Keywords

 Keywords are the words that have been assigned specific meaning in the context of

python language programs.

 Keywords should not be used as variable names to avoid problems.

 There are 35 keywords are found in the python programming language.

and continue for lambda try

as def from nonlocal while

assert del global not with

async elif if or yield

False await else import pass

None break except in raise

True class finally is return

Python full course

What is Python

https://nielitbhu.com/what-is-python/

Component of Python Language

Python Syntax

Python Operators

Comparison Operators

Logical operators

Python Identity operators

Python Membership operators

Python Bitwise operators

Python Comments

 ‹

 1

 2

 3

 ›

Command Buttons

Command buttons give the user the opportunity to initiate an event (Figure 7.6). For example,

the familiar OK and Cancel buttons are signals from the user that details in a dialog box are

correct or that an action is to be abandoned. Buttons are also used to provide other choices for a

user and a series of buttons may be placed on a toolbar to give the user fast access to actions that

must otherwise be activated through the menu system. The class of command buttons is the base

class for derivatives such as check boxes and radio buttons.

https://nielitbhu.com/component-of-python-language/
https://nielitbhu.com/python-syntax/
https://nielitbhu.com/python-operators/
https://nielitbhu.com/comparison-operators/
https://nielitbhu.com/logical-operators/
https://nielitbhu.com/identity-operators/
https://nielitbhu.com/membership-operators/
https://nielitbhu.com/bitwise-operators/
https://nielitbhu.com/python-comments/

Command buttons

Command buttons consist of a rectangle with a caption. Usually, command buttons are created in

such a way that a mouse click temporarily changes the button picture, giving the impression of a

button being pressed, then released.

Command buttons respond to two major events: the mouse button click and double-click (though

Visual Basic restricts this to click events only). In addition, you can code for events such as the

mouse button being pressed or released, dragging the pointer over the button's "airspace," or

receiving and losing the focus.

There is a special Default property that can be applied to one (and only one) button on a dialog

box or window. This is determined by the BS_DEFPUSHBUTTON style, which identifies the

control as the default button. The default button has a thicker border, and pressing the ENTER

key has the same effect as...

	Python Classes and Objects
	Creating a Python Class
	Object of Python Class
	Self Parameter
	Pass Statement

	__init__() method
	__str__() method
	Class and Instance Variables

	Python | Using 2D arrays/lists
	Using 2D arrays/lists the right way
	Creating a 1-D list
	Creating 1D List using Naive Methods
	Declaring Claas Objects (Also called instantiating a class)
	Creating 1D List using List Comprehension

	Creating a 2-D list
	Creating 2D List using Naive Method
	Creating 1D List using List Comprehension
	Creating 1D List using Empty List
	Initializing 2D Array
	Explanation:

	Example of Python Class and object

	Polymorphism in Python
	Polymorphism with Class Methods
	Polymorphism with Inheritance:
	Polymorphism with a Function and Objects
	Most Popular GUI Tools:
	1. Tkinter
	2. Kivy
	3. PyGTK
	4. Pyside2
	5. PyQt5
	6. PySimpleGUI
	7. wxPython
	8. PyForms
	9. PyQTGraph
	10. PyVista

	What are terminal apps?
	Why write terminal apps?

	Greeter - A simple terminal app
	Clearing the screen
	Exercises
	Simple Clear

	A Persistent Title Bar
	The sleep() function
	A slowly disappearing title bar
	Reducing repeated code

	Building Greeter
	Basic Pickling
	Exercises
	Pickling Games

	Pickling in Greeter

	Python - GUI Programming
	Tkinter Programming
	Example

	Tkinter Widgets
	Standard Attributes
	Geometry Management
	SimpleDialog
	askinteger
	askfloat
	askstring

	The FileDialog Module
	askopenfile
	ColorChooser

	ttk module
	Combobox Widget
	Syntax
	Example

	Progressbar
	Syntax
	Parameters
	Example
	Notebook
	Syntax (1)
	Example (1)
	Treeview
	Syntax (2)
	Options
	Example (2)
	The Complete Code

	Sizegrip
	Syntax
	Example

	Separator
	Syntax
	Example

	What is the Python window?
	Opening the Python window
	An overview of the Python window

	Components of Python Language
	The character set
	The Data types
	Constants
	Variables
	Keywords

	Command Buttons

