
MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI

PG DEPARTMENT OF COMPUTER APPLICATIONS

Subject Name : PYTHON PROGRAMMING

CLASS : I-MCA

SUBJECT CODE : 23PCA13

Unit V

Django: Installing Django Building an Application Project Creation Designing the Data

Schema - Creating an administration site for models - Working with QuerySets and

Managers Retrieving Objects Building List and Detail Views.

Django

Django Tutorial provides basic and advanced concepts of Django. Our Django Tutorial is

designed for beginners and professionals both.

Django is a Web Application Framework which is used to develop web applications.

Our Django Tutorial includes all topics of Django such as introduction, features, installation,

environment setup, admin interface, cookie, form validation, Model, Template Engine,

Migration, MVT etc. All the topics are explained in detail so that reader can get enought

knowledge of Django.

What is Django

Django is a web application framework written in Python programming language. It is based on

MVT (Model View Template) design pattern. The Django is very demanding due to its rapid

development feature. It takes less time to build application after collecting client requirement.

This framework uses a famous tag line:The web framework for perfectionists with deadlines.

By using Django, we can build web applications in very less time. Django is designed in such a

manner that it handles much of configure things automatically, so we can focus on application

development only.

History

Django was design and developed by Lawrence journal world in 2003 and publicly released

under BSD license in July 2005. Currently, DSF (Django Software Foundation) maintains its

development and release cycle.

Django was released on 21, July 2005. Its current stable version is 2.0.3 which was released on 6

March, 2018.

Django Version History

Version Date Description

0.90 16 Nov

2005

0.91 11 Jan 2006 magic removal

0.96 23 Mar

2007

newforms, testing tools

1.0 3 Sep 2008 API stability, decoupled admin, unicode

1.1 29 Jul 2009 Aggregates, transaction based tests

1.2 17 May

2010

Multiple db connections, CSRF, model validation

1.3 23 Mar

2011

Timezones, in browser testing, app templates.

1.5 26 Feb

2013

Python 3 Support, configurable user model

1.6 6 Nov 2013 Dedicated to Malcolm Tredinnick, db transaction management,

connection pooling.

1.7 2 Sep 2014 Migrations, application loading and configuration.

1.8 LTS 2 Sep 2014 Migrations, application loading and configuration.

1.8 LTS 1 Apr 2015 Native support for multiple template engines.Supported until at least

April 2018

1.9 1 Dec 2015 Automatic password validation. New styling for admin interface.

1.10 1 Aug 2016 Full text search for PostgreSQL. New-style middleware.

1.11 LTS 1.11 LTS Last version to support Python 2.7.Supported until at least April 2020

2.0 Dec 2017 First Python 3-only release, Simplified URL routing syntax, Mobile

friendly admin.

Popularity

Django is widely accepted and used by various well-known sites such as:

o Instagram

o Mozilla

o Disqus

o Pinterest

o Bitbucket

o The Washington Times

Features of Django

o Rapid Development

o Secure

o Scalable

o Fully loaded

o Versatile

o Open Source

o Vast and Supported Community

Rapid Development

Django was designed with the intention to make a framework which takes less time to build web

application. The project implementation phase is a very time taken but Django creates it rapidly.

Secure

Django takes security seriously and helps developers to avoid many common security mistakes,

such as SQL injection, cross-site scripting, cross-site request forgery etc. Its user authentication

system provides a secure way to manage user accounts and passwords.

Scalable

Django is scalable in nature and has ability to quickly and flexibly switch from small to large

scale application project.

Fully loaded

Django includes various helping task modules and libraries which can be used to handle common

Web development tasks. Django takes care of user authentication, content administration, site

maps, RSS feeds etc.

Versatile

Django is versatile in nature which allows it to build applications for different-different domains.

Now a days, Companies are using Django to build various types of applications like: content

management systems, social networks sites or scientific computing platforms etc.

Open Source

Django is an open source web application framework. It is publicly available without cost. It can

be downloaded with source code from the public repository. Open source reduces the total cost

of the application development.

Vast and Supported Community

Django is an one of the most popular web framework. It has widely supportive community and

channels to share and connect.

Django Installation

To install Django, first visit to django official site (https://www.djangoproject.com) and

download django by clicking on the download section. Here, we will see various options to

download The Django.

Django requires pip to start installation. Pip is a package manager system which is used to install

and manage packages written in python. For Python 3.4 and higher versions pip3 is used to

manage packages.

we are installing Django in Ubuntu operating system.

The complete installation process is described below. Before installing make sure pip is

installed in local system.

Here, we are installing Django using pip3, the installation command is given below.

1. $ pip3 install django==2.0.3

Verify Django Installation

After installing Django, we need to varify the installation. Open terminal and write python3 and

press enter. It will display python shell where we can verify django installation.

Look at the Django version displayed by the print method of the python. Well, Django is

installed successfuly. Now, we can build Django web applications.

create a Django project

Dive into the world of web development with Python by exploring the versatile Django

framework. Django is a go-to for many developers due to its popularity, open-source license,

and robust security features. It enables fast and efficient project development. In this tutorial,

we will guide you through the process of installing Django on a Windows machine using pip,

verifying the installation, creating a new project, and launching a Django development server.

Get ready to enhance your web development skills and experience the power of Django.

Create a Project in Django

Before you begin, you will need to have the following:

 Windows 10 or later

 Python 3.6 or later

 Python pip

Step 1: Opening PowerShell

The first step is to open PowerShell. To do this, press the Windows key and type PowerShell.

Right-click on the PowerShell icon and select Run as Administrator.

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/django-tutorial/
https://www.geeksforgeeks.org/python-pip/

PowerShell

Step 2: Verifying Python Installation

Once PowerShell is open, you can verify that Python is installed by typing python –version.

This will display the version of Python that is installed.

Terminal command:

python --version

Python is installed

Step 3: Upgrading PIP

Next, you will need to upgrade pip. To do this, type python -m pip install –upgrade pip. This

will ensure that you have the latest version of pip installed.

upgrade pip

Step 4: Creating a Project Directory

Now, you will need to create a project directory. To do this, type mkdir myproject. This will

create a directory called myproject.

(i) Create the directory by utilizing the mkdir command. This command is a powerful tool that

allows you to quickly and easily create a directory in your system. With this command, you

can create a directory in seconds, making it a great time-saver for any user.

mkdir django_project

Create the directory

(ii) Navigate to the Django_Project directory using the `cd` command. Here, you’ll find all the

necessary components to get your project up and running.

cd django_project

Django_Project directory

Step 5: Creating the Virtual Environment

Next, you will need to create a virtual environment. To create a virtual environment

called myproject.

To do this, type in terminal

python -m venv myproject

python -m venv myproject and ls

Step 6: Activating the Virtual Environment

Now, you will need to activate the virtual environment. To do this, type

Step 6: Activating the Virtual Environment

Now, you will need to activate the virtual environment. To do this, type

0 seconds of 15 secondsVolume 0%

venv\Scripts\activate

activate the virtual environment

Step 7: Installing Django

This section will teach you how to install Django on your system using pip. To do this, run the

following command:

pip install Django

This will install the latest version of Django, allowing you to start building powerful web

applications easily.

Installing Django

If you wish to install a different version of Django, you can easily specify the version you

desire by following these steps:

pip install django

version of Django

Once the installation is complete, you must verify that Django has been successfully installed.

To do this, enter the following command:

django-admin --version

Django version

Step 8: Create the Django Project

Now it’s time to create a project. According to the Django documentation, a project is a Python

package – i.e. a directory of code – that contains all the settings for an instance of Django. This

includes database configuration, Django-specific options, and application-specific settings.

To create the project, use the command-line utility django-admin that comes with Django. This

command will generate files where you can configure the settings for your database, add third-

party packages, and more.

Create the project using the following command:

django-admin startproject test_project

Change into the test_project directory:

cd test_project

Type the following command to see the contents in the project directory:

ls test_project

Output:

output

The directory test_project contains Django configuration files. The manage.py file is especially

useful when starting a development server, which is what you will do in the next step.

Step 9: Running the Development Server

Now that the project has been created, it’s time to start the Django development server.Start

the development server using the manage.py runserver command:

Note: Make sure sure you are in the same directory as manage.py file after to run manage.py

runserver

python manage.py runserver

Start

Step 10: Create app in django

Now as we created the project in django and our django server is up and running and if now

to create app in django project we can achieve it b by using django inbuit command which will

initiate the django app for us.

Note: Make sure before running the command we must inside our project directory if not then

run the below command

cd test_project

now we are inside the test_project and we are ready to create django app

django-admin startapp test_app

Now this command will create app inside our project and we ready to go with the django

project and to know more about django app you can refer to the article – How to create app in

django.

Django QuerySet

Designing the blog data schema

You will start designing your blog data schema by defining the data models for your blog. A

model is a Python class that subclasses django.db.models.Model in which each attribute

represents a database field. Django will create a table for each model defined in

the models.py file. When you create a model, Django will provide you with a practical API to

query objects in the database easily.

First, you need to define a Post model. Add the following lines to the models.py file of

the blog application:

from django.db import models

from django.utils import timezone

from django.contrib.auth.models import User

class Post(models.Model):

 STATUS_CHOICES = (

 ('draft', 'Draft'),

https://www.geeksforgeeks.org/how-to-create-an-app-in-django/
https://www.geeksforgeeks.org/how-to-create-an-app-in-django/
https://www.geeksforgeeks.org/how-to-create-an-app-in-django/

 ('published', 'Published'),

)

 title = models.CharField(max_length=250)

 slug = models.SlugField(max_length=250,

 unique_for_date='publish')

 author = models.ForeignKey(User,

 on_delete=models.CASCADE,

 related_name='blog_posts')

 body = models.TextField()

 publish = models.DateTimeField(default=timezone.now)

 created = models.DateTimeField(auto_now_add=True)

 updated = models.DateTimeField(auto_now=True)

 status = models.CharField(max_length=10,

 choices=STATUS_CHOICES,

 default='draft')

 class Meta:

 ordering = ('-publish',)

 def __str__(self):

 return self.title

Copy

This is your data model for blog posts. Let's take a look at the fields you just defined for this

model:

 title: This is the field for the post title. This field is CharField, which translates into

a VARCHAR column in the SQL database.

 slug: This is a field intended to be used in URLs. A slug is a short label that contains only

letters, numbers, underscores, or hyphens. You will use the slug field to build beautiful,

SEO-friendly URLs for your blog posts. You have added the unique_for_date parameter

to this field so that you can build URLs for posts using their publish date and slug.

Django will prevent multiple posts from having the same slug for a given date.

 author: This field defines a many-to-one relationship, meaning that each post is

written by a user, and a user can write any number of posts. For this field, Django will

create a foreign key in the database using the primary key of the related model. In this

case, you are relying on the User model of the Django authentication system.

The on_delete parameter specifies the behavior to adopt when the referenced object is

deleted. This is not specific to Django; it is an SQL standard. Using CASCADE, you

specify that when the referenced user is deleted, the database will also delete all related

blog posts. You can take a look at all the possible options

at https://docs.djangoproject.com/en/3.0/ref/models/fields/#django.db.models.ForeignKe

y.on_delete. You specify the name of the reverse relationship, from User to Post, with

the related_name attribute. This will allow you to access related objects easily. You will

learn more about this later.

 body: This is the body of the post. This field is a text field that translates

into a TEXT column in the SQL database.

 publish: This datetime indicates when the post was published. You use Django's

timezone now method as the default value. This returns the current datetime in a

timezone-aware format. You can think of it as a timezone-aware version of the standard

Python datetime.now method.

 created: This datetime indicates when the post was created. Since you are

using auto_now_add here, the date will be saved automatically when creating an object.

 updated: This datetime indicates the last time the post was updated. Since you are

using auto_now here, the date will be updated automatically when saving an object.

 status: This field shows the status of a post. You use a choices parameter, so the value of

this field can only be set to one of the given choices.

Django comes with different types of fields that you can use to define your models. You can

find all field types at https://docs.djangoproject.com/en/3.0/ref/models/fields/.

The Meta class inside the model contains metadata. You tell Django to sort results by

the publish field in descending order by default when you query the database. You specify the

descending order using the negative prefix. By doing this, posts published recently will appear

first.

https://docs.djangoproject.com/en/3.0/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/3.0/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/3.0/ref/models/fields/

The __str__() method is the default human-readable representation of the object. Django will use

it in many places, such as the administration site.

If you are coming from using Python 2.x, note that in Python 3, all strings are natively

considered Unicode; therefore, we only use the __str__() method and the __unicode__() method

is obsolete.

Activating the application

In order for Django to keep track of your application and be able to create database tables for its

models, you have to activate it. To do this, edit the settings.py file and

add blog.apps.BlogConfig to the INSTALLED_APPS setting. It should look like this:

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'blog.apps.BlogConfig',

]

Copy

The BlogConfig class is your application configuration. Now Django knows that your

application is active for this project and will be able to load its models.

Creating and applying migrations

Now that you have a data model for your blog posts, you will need a database table for it.

Django comes with a migration system that tracks the changes made to models and enables them

to propagate into the database. As mentioned, the migrate command applies migrations for all

applications listed in INSTALLED_APPS; it synchronizes the database with the current models

and existig migrations.

First, you will need to create an initial migration for your Post model. In the root directory of

your project, run the following command:

python manage.py makemigrations blog

Copy

You should get the following output:

Migrations for 'blog':

 blog/migrations/0001_initial.py

 - Create model Post

Copy

Django just created the 0001_initial.py file inside the migrations directory of

the blog application. You can open that file to see how a migration appears. A migration

specifies dependencies on other migrations and operations to perform in the database to

synchronize it with model changes.

Let's take a look at the SQL code that Django will execute in the database to create the table for

your model. The sqlmigrate command takes the migration names and returns their SQL without

executing it. Run the following command to inspect the SQL output of your first migration:

python manage.py sqlmigrate blog 0001

Copy

The output should look as follows:

BEGIN;

--

-- Create model Post

--

CREATE TABLE "blog_post" ("id" integer NOT NULL PRIMARY KEY

AUTOINCREMENT, "title" varchar(250) NOT NULL, "slug" varchar(250) NOT NULL,

"body" text NOT NULL, "publish" datetime NOT NULL, "created" datetime NOT NULL,

"updated" datetime NOT NULL, "status" varchar(10) NOT NULL, "author_id" integer NOT

NULL REFERENCES "auth_user" ("id") DEFERRABLE INITIALLY DEFERRED);

CREATE INDEX "blog_post_slug_b95473f2" ON "blog_post" ("slug");

CREATE INDEX "blog_post_author_id_dd7a8485" ON "blog_post" ("author_id");

COMMIT;

Copy

The exact output depends on the database you are using. The preceding output is generated for

SQLite. As you can see in the output, Django generates the table names by combining the

application name and the lowercase name of the model (blog_post), but you can also specify a

custom database name for your model in the Meta class of the model using the db_table attribute.

Django creates a primary key automatically for each model, but you can also override this by

specifying primary_key=True in one of your model fields. The default primary key is

an id column, which consists of an integer that is incremented automatically. This column

corresponds to the id field that is automatically added to your models.

Let's sync your database with the new model. Run the following command to apply existing

migrations:

python manage.py migrate

Copy

You will get an output that ends with the following line:

Applying blog.0001_initial... OK

Copy

You just applied migrations for the applications listed in INSTALLED_APPS, including

your blog application. After applying the migrations, the database reflects the current status of

your models.

If you edit the models.py file in order to add, remove, or change the fields of existing models, or

if you add new models, you will have to create a new migration using

the makemigrations command. The migration will allow Django to keep track of model changes.

Then, you will have to apply it with the migrate command to keep the database in sync with your

models.

Django Admin With Python

The Django framework comes with a powerful administrative tool called admin. You can

use it out of the box to quickly add, delete, or edit any database model from a web

interface. But with a little extra code, you can customize the Django admin to take your

admin capabilities to the next level.

 Add attribute columns in the model object list

 Link between model objects

 Add filters to the model object list

 Make model object lists searchable

 Modify the object edit forms

 Override Django admin templates

Prerequisites

To get the most out of this tutorial, you’ll need some familiarity with Django, particularly model

objects. As Django isn’t part of the standard Python library, it’s best if you also have some

knowledge of pip and pyenv (or an equivalent virtual environment tool). To learn more about

these topics, check out the following resources:

 Get Started With Django Part 1: Build a Portfolio App

 What is Pip? A Guide for New Pythonistas

 Managing Multiple Python Versions With pyenv

 What Virtual Environments Are Good For

You may also be interested in one of the many available Django tutorials.

The code snippets in this tutorial were tested against Django 3.0.7. All the concepts predate

Django 2.0, so they should work in whatever version you’re using, but minor differences may

exist.

https://www.djangoproject.com/
https://docs.djangoproject.com/en/3.0/ref/contrib/admin/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/get-started-with-django-1/
https://realpython.com/what-is-pip/
https://realpython.com/intro-to-pyenv/
https://realpython.com/lessons/what-virtual-environments-are-good-for/
https://realpython.com/tutorials/django/

Setting Up the Django Admin

The Django admin provides a web-based interface for creating and managing database model

objects. To see it in action, you’ll first need a Django project and some object models. Install

Django inside a clean virtual environment:

$ python -m pip install django

$ django-admin startproject School

$ cd School

$./manage.py startapp core

$./manage.py migrate

$./manage.py createsuperuser

Username: admin

Email address: admin@example.com

Password:

Password (again):

You first create a new Django project named School with an app called core. Then you migrate

the authentication tables and create an administrator. Access to the Django admin screens is

restricted to users with staff or superuser flags, so you use the createsuperuser management

command to create a superuser.

You also need to modify School/settings.py to include the new app named core:

School/settings.py

...

INSTALLED_APPS = [

 "django.contrib.admin",

 "django.contrib.auth",

 "django.contrib.contenttypes",

 "django.contrib.sessions",

 "django.contrib.messages",

 "django.contrib.staticfiles",

https://realpython.com/django-setup/

 "core", # Add this line

]

The core app directory will start with the following files inside:

core/

│

├── migrations/

│ └── __init__.py

│

├── __init__.py

├── admin.py

├── apps.py

├── models.py

├── tests.py

└── views.py

You’re interested in two of these files:

1. models.py defines your database models.

2. admin.py registers your models with the Django admin.

To demonstrate the outcome when you customize the Django admin, you’ll need some models.

Edit core/models.py:

from django.core.validators import MinValueValidator, MaxValueValidator

from django.db import models

class Person(models.Model):

 last_name = models.TextField()

 first_name = models.TextField()

 courses = models.ManyToManyField("Course", blank=True)

 class Meta:

 verbose_name_plural = "People"

class Course(models.Model):

 name = models.TextField()

 year = models.IntegerField()

 class Meta:

 unique_together = ("name", "year",)

class Grade(models.Model):

 person = models.ForeignKey(Person, on_delete=models.CASCADE)

 grade = models.PositiveSmallIntegerField(

 validators=[MinValueValidator(0), MaxValueValidator(100)])

 course = models.ForeignKey(Course, on_delete=models.CASCADE)

These models represent students taking courses at a school. A Course has a name and a year in

which it was offered. A Person has a first and last name and can take zero or more courses.

A Grade contains a percentage score that a Person received on a Course.

Here’s a model diagram showing the relationships between the objects:

https://files.realpython.com/media/customize-django-admin-db.ba7ba1f27a98.png

The underlying table names in the database are slightly different from this, but they’re related to

the models shown above.

Each model that you want Django to represent in the admin interface needs to be registered. You

do this in the admin.py file. Models from core/models.py are registered in the

corresponding core/admin.py file:

from django.contrib import admin

from core.models import Person, Course, Grade

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 pass

@admin.register(Course)

class CourseAdmin(admin.ModelAdmin):

 pass

@admin.register(Grade)

class GradeAdmin(admin.ModelAdmin):

 pass

You’re almost ready to go. Once you’ve migrated your database models, you can run the Django

development server and see the results:

$./manage.py makemigrations

$./manage.py migrate

Operations to perform:

 Apply all migrations: admin, auth, contenttypes, core, sessions

Running migrations:

 Applying contenttypes.0001_initial... OK

 Applying auth.0001_initial... OK

 Applying admin.0001_initial... OK

 ...

 Applying core.0001_initial... OK

 Applying core.0002_auto_20200609_2120... OK

 Applying sessions.0001_initial... OK

$./manage.py runserver

Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

Django version 3.0.7, using settings 'School.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

Now visit http://127.0.0.1:8000/admin to see your admin interface. You’ll be prompted to log in.

Use the credentials you created with the createsuperuser management command.

The admin home screen lists all the registered database models:

You can now use the interface to create objects in your database. Clicking a model name will

show you a screen listing all the objects in the database for that model. Here’s the Person list:

https://files.realpython.com/media/customize-django-admin-core.f29840db4348.png

The list starts out empty, like your database. Clicking ADD PERSON allows you to create a

person in the database. Once you save, you’ll be returned to the list of Person objects:

https://realpython.com/python-lists-tuples/
https://files.realpython.com/media/customize-django-admin-empty-person.132d2d3c6b75.png
https://files.realpython.com/media/customize-django-admin-new-person.a6af5c041147.png

The good news is you’ve got an object. The bad news is Person object (1) tells you the id of the

object and nothing else. By default, the Django admin displays each object by calling str() on it.

You can make this screen a little more helpful by adding a .__str__() method to the Person class

in core/models.py:

class Person(models.Model):

 last_name = models.TextField()

 first_name = models.TextField()

 courses = models.ManyToManyField("Course", blank=True)

 def __str__(self):

 return f"{self.last_name}, {self.first_name}"

Adding Person.__str__() changes the display to include the first and last name of the Person in

the interface. You can refresh the screen to see the change:

That’s a little better! Now you can see some information about the Person object. It’s a good idea

to add similar methods to both the Course and the Grade objects:

class Course(models.Model):

 # ...

https://files.realpython.com/media/customize-django-admin-person-str.cb626cb94d38.png

 def __str__(self):

 return f"{self.name}, {self.year}"

class Grade(models.Model):

 # ...

 def __str__(self):

 return f"{self.grade}, {self.person}, {self.course}"

You’ll want to have some data in your database to see the full effect of your customizations. You

can have some fun and create your own data now, or you can skip the work and use a fixture.

Expand the box below to learn how to load data using a fixture.

Loading Fixtures in DjangoShow/Hide

Now that you have some data to work with, you’re ready to start customizing Django’s admin

interface.

Customizing the Django Admin

The smart folks who created the Django framework not only built the admin, but they did it in

such a way that you can customize it for your projects. When you registered

the PersonAdmin object earlier, it inherited from admin.ModelAdmin. Most of the customization

you can do with the Django admin is done by modifying ModelAdmin, and you sure can modify

it!

ModelAdmin has over thirty attributes and almost fifty methods. You can use each one of these

to fine-tune the admin’s presentation and control your objects’ interfaces. Every one of these

options is described in detail in the documentation.

To top it all off, the admin is built using Django’s templating interface. The Django template

mechanism allows you to override existing templates, and because the admin is just another set

of templates, this means you can completely change its HTML.

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/

Although it’s beyond the scope of this tutorial, you can even create multiple admin sites. That

might seem like overkill, but it allows you to get fancy and define different sites for users

with different permissions.

The Django admin is split into three major areas:

1. App index

2. Change lists

3. Change forms

The app index lists your registered models. A change list is automatically created for each

registered model and lists the objects for that model. When you add or edit one of those objects,

you do so with a change form.

In the earlier example, the app index showed the Person, Course, and Grade objects.

Clicking People shows the change lists for Person objects. On the Person change list page,

clicking the Buffy Summers object takes you to the change form to edit Buffy’s details.

Modifying a Change List Using list_display

Implementing .__str__() is a quick way to change the representation of a Person object from a

meaningless string to understandable data. Since this representation will also show up in drop-

downs and multi-selects, you definitely want to make it as easy to understand as possible.

You can customize change list pages in far more ways than just modifying an object’s string

representation. The list_display attribute of an admin.ModelAdmin object specifies what

columns are shown in the change list. This value is a tuple of attributes of the object being

modeled. For example, in core/admin.py, modify PersonAdmin as follows:

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 list_display = ("last_name", "first_name")

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#multiple-admin-sites-in-the-same-urlconf
https://realpython.com/manage-users-in-django-admin/
https://realpython.com/python-strings/

The code above modifies your Person change list to display

the last_name and first_name attributes for each Person object. Each attribute is shown in a

column on the page:

The two columns are clickable, allowing you to sort the page by the column data. The admin also

respects the ordering attribute of a Meta section:

class Person(models.Model):

 # ...

 class Meta:

 ordering = ("last_name", "first_name")

 # ...

https://files.realpython.com/media/customize-django-admin-fname.d7ad0aafad94.png

Adding the ordering attribute will default all queries on Person to be ordered

by last_name then first_name. Django will respect this default order both in the admin and when

fetching objects.

The list_display tuple can reference any attribute of the object being listed. It can also reference a

method in the admin.ModelAdmin itself. Modify PersonAdmin again:

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 list_display = ("last_name", "first_name", "show_average")

 def show_average(self, obj):

 from django.db.models import Avg

 result = Grade.objects.filter(person=obj).aggregate(Avg("grade"))

 return result["grade__avg"]

In the above code, you add a column to the admin that displays each student’s grade

average. show_average() is called once for each object displayed in the list.

The obj parameter is the object for the row being displayed. In this case, you use it to query the

corresponding Grade objects for the student, with the response averaged over Grade.grade. You

can see the results here:

Keep in mind that the average grade should really be calculated in the Person model object.

You’ll likely want the data elsewhere, not just in the Django admin. If you had such a method,

you could add it to the list_display attribute. The example here shows what you can do in

a ModelAdmin object, but it probably isn’t the best choice for your code.

By default, only those columns that are object attributes are sortable. show_average() is not. This

is because sorting is performed by an underlying QuerySet, not on the displayed results. There

are ways of sorting these columns in some cases, but that’s beyond the scope of this tutorial.

The title for the column is based on the name of the method. You can alter the title by adding an

attribute to the method:

def show_average(self, obj):

 result = Grade.objects.filter(person=obj).aggregate(Avg("grade"))

 return result["grade__avg"]

show_average.short_description = "Average Grade"

By default, Django protects you from HTML in strings in case the string is from user input. To

have the display include HTML, you must use format_html():

def show_average(self, obj):

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.sortable_by
https://files.realpython.com/media/customize-django-admin-avg.3788bff8b9e3.png

 from django.utils.html import format_html

 result = Grade.objects.filter(person=obj).aggregate(Avg("grade"))

 return format_html("<i>{}</i>", result["grade__avg"])

show_average.short_description = "Average"

show_average() now has a custom title, "Average", and is formatted to be in italics:

Unfortunately, Django hasn’t yet added f-string support for format_html(), so you’re stuck

with str.format() syntax.

Providing Links to Other Object Pages

It’s quite common for objects to reference other objects through the use of foreign keys. You

can point list_display at a method that returns an HTML link. Inside core/admin.py, modify

the CourseAdmin class as follows:

from django.urls import reverse

from django.utils.http import urlencode

https://realpython.com/python-f-strings/
https://files.realpython.com/media/customize-django-admin-fancy.2e5f9cdf6707.png

@admin.register(Course)

class CourseAdmin(admin.ModelAdmin):

 list_display = ("name", "year", "view_students_link")

 def view_students_link(self, obj):

 count = obj.person_set.count()

 url = (

 reverse("admin:core_person_changelist")

 + "?"

 + urlencode({"courses__id": f"{obj.id}"})

)

 return format_html('{} Students', url, count)

 view_students_link.short_description = "Students"

This code causes the Course change list to have three columns:

1. The course name

2. The year in which the course was offered

3. A link displaying the number of students in the course

You can see the resulting change in the following screenshot:

When you click 2 Students, it takes you to the Person change list page with a filter applied. The

filtered page shows only those students in Psych 101, Buffy and Willow. Xander didn’t make it

to university.

The example code uses reverse() to look up a URL in the Django admin. You can look up any

admin page using the following naming convention:

"admin:%(app)s_%(model)s_%(page)"

This name structure breaks down as follows:

 admin: is the namespace.

 app is the name of the app.

 model is the model object.

 page is the Django admin page type.

For the view_students_link() example above, you use admin:core_person_changelist to get a

reference to the change list page of the Person object in the core app.

Here are the available URL names:

https://www.imdb.com/title/tt0533498/?ref_=ttep_ep1
https://www.imdb.com/title/tt0533498/?ref_=ttep_ep1
https://docs.djangoproject.com/en/3.0/ref/urlresolvers/
https://files.realpython.com/media/customize-django-admin-student-link.2ff3a05ec623.png

Page URL Name Purpose

Change list %(app)s_%(model)s_changelist Model object page list

Add %(app)s_%(model)s_add Object creation page

History %(app)s_%(model)s_history Object change history page

Takes an object_id as a parameter

Delete %(app)s_%(model)s_delete Object delete page

Takes an object_id as a parameter

Change %(app)s_%(model)s_change Object edit page

Takes an object_id as a parameter

You can filter the change list page by adding a query string to the URL. This query string

modifies the QuerySet used to populate the page. In the example above, the query

string "?courses__id={obj.id}" filters the Person list to only those objects that have a matching

value in Person.course.

These filters support QuerySet field lookups using double underscores (__). You can access

attributes of related objects as well as use filter modifiers like __exact and __startswith.

You can find the full details on what you can accomplish with the list_display attribute in the

Django admin documentation.

Adding Filters to the List Screen

In addition to filtering data on the change list through the calling URL, you can also filter with a

built-in widget. Add the list_filter attribute to the CourseAdmin object in core/admin.py:

@admin.register(Course)

class CourseAdmin(admin.ModelAdmin):

 list_display = ("name", "year", "view_students_link")

 list_filter = ("year",)

...

https://docs.djangoproject.com/en/3.0/topics/db/queries/#field-lookups
https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

The list_filter will display a new section on the page with a list of links. In this case, the links

filter the page by year. The filter list is automatically populated with the year values used by

the Course objects in the database:

Clicking a year on the right-hand side will change the list to include only Course objects with

that year value. You can also filter based on the attributes of related objects using the __ field

lookup syntax. For example, you could filter GradeAdmin objects by course__year, showing

the Grade objects for only a certain year of courses.

If you’re looking for more control over your filtering, then you can even create filter objects that

specify the lookup attributes and the corresponding QuerySet.

Adding Search to the List Screen

Filters aren’t the only way to reduce the amount of data on the screen. Django admin also

supports searching through the search_fields option, which adds a search box to the screen. You

set it with a tuple containing the names of fields to be used for constructing a search query in the

database.

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter
https://files.realpython.com/media/customize-django-admin-course-filter.8b2b5fa45ff7.png

Anything the user types in the search box is used in an OR clause of the fields filtering

the QuerySet. By default, each search parameter is surrounded by % signs, meaning if you search

for r, then any word with an r inside will appear in the results. You can be more precise by

specifying a __ modifier on the search field.

Edit the PersonAdmin in core/admin.py as follows:

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 search_fields = ("last_name__startswith",)

In the above code, searching is based on last name. The __startswith modifier restricts the search

to last names that begin with the search parameter. Searching on R provides the following

results:

Whenever a search is performed on a change list page, the Django admin calls

your admin.ModelAdmin object’s get_search_results() method. It returns a QuerySet with the

search results. You can fine-tune searches by overloading the method and changing

the QuerySet. More details can be found in the documentation.

https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.get_search_results
https://files.realpython.com/media/customize-django-admin-search.38ff1f1bb765.png

Changing How Models Are Edited

You can customize more than just the change list page. The screens used to add or change an

object are based on a ModelForm. Django automatically generates the form based on the model

being edited.

You can control which fields are included, as well as their order, by editing the fields option.

Modify your PersonAdmin object, adding a fields attribute:

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 fields = ("first_name", "last_name", "courses")

...

The Add and Change pages for Person now put the first_name attribute before

the last_name attribute even though the model itself specifies the other way around:

ModelAdmin.get_form() is responsible for creating the ModelForm for your object. You can

override this method to change the form. Add the following method to PersonAdmin:

https://docs.djangoproject.com/en/3.0/topics/forms/modelforms/
https://files.realpython.com/media/customize-django-admin-add-fields.b79a4e061ce0.png

def get_form(self, request, obj=None, **kwargs):

 form = super().get_form(request, obj, **kwargs)

 form.base_fields["first_name"].label = "First Name (Humans only!):"

 return form

Now, when the Add or Change page is displayed, the label of the first_name field will be

customized.

Changing the label might not be sufficient to prevent vampires from registering as students. If

you don’t like the ModelForm that the Django admin created for you, then you can use

the form attribute to register a custom form. Make the following additions and changes

to core/admin.py:

from django import forms

class PersonAdminForm(forms.ModelForm):

 class Meta:

 model = Person

 fields = "__all__"

 def clean_first_name(self):

 if self.cleaned_data["first_name"] == "Spike":

 raise forms.ValidationError("No Vampires")

 return self.cleaned_data["first_name"]

@admin.register(Person)

class PersonAdmin(admin.ModelAdmin):

 form = PersonAdminForm

...

The above code enforces additional validation on the Person Add and Change

pages. ModelForm objects have a rich validation mechanism. In this case, the first_name field is

https://docs.djangoproject.com/en/3.0/topics/forms/modelforms/

being checked against the name "Spike". A ValidationError prevents students with this name

from registering:

By changing or replacing the ModelForm object, you can fully control the appearance and

validation of the pages you use to add or change object pages.

Overriding Django Admin Templates

The Django developers implemented the admin using the Django template mechanism. This

made their job a little bit easier, but it also benefits you by allowing you to override the

templates. You can fully customize the admin by changing the templates used to render pages.

You can see all the templates used in the admin by looking inside the Django package in your

virtual environment:

.../site-packages/django/contrib/admin/templates/

│

├── admin/

│ │

│ ├── auth/

https://docs.djangoproject.com/en/3.0/topics/templates/
https://files.realpython.com/media/customize-django-admin-no-vampires.04edbbfe2d9a.png

│ │ └── user/

│ │ ├── add_form.html

│ │ └── change_password.html

│ │

│ ├── edit_inline/

│ │ ├── stacked.html

│ │ └── tabular.html

│ │

│ ├── includes/

│ │ ├── fieldset.html

│ │ └── object_delete_summary.html

│ │

│ ├── widgets/

│ │ ├── clearable_file_input.html

│ │ ├── foreign_key_raw_id.html

│ │ ├── many_to_many_raw_id.html

│ │ ├── radio.html

│ │ ├── related_widget_wrapper.html

│ │ ├── split_datetime.html

│ │ └── url.html

│ │

│ ├── 404.html

│ ├── 500.html

│ ├── actions.html

│ ├── app_index.html

│ ├── base.html

│ ├── base_site.html

│ ├── change_form.html

│ ├── change_form_object_tools.html

│ ├── change_list.html

│ ├── change_list_object_tools.html

│ ├── change_list_results.html

│ ├── date_hierarchy.html

│ ├── delete_confirmation.html

│ ├── delete_selected_confirmation.html

│ ├── filter.html

│ ├── index.html

│ ├── invalid_setup.html

│ ├── login.html

│ ├── object_history.html

│ ├── pagination.html

│ ├── popup_response.html

│ ├── prepopulated_fields_js.html

│ ├── search_form.html

│ └── submit_line.html

│

└── registration/

 ├── logged_out.html

 ├── password_change_done.html

 ├── password_change_form.html

 ├── password_reset_complete.html

 ├── password_reset_confirm.html

 ├── password_reset_done.html

 ├── password_reset_email.html

 └── password_reset_form.html

The Django template engine has a defined order for loading templates. When it loads a template,

it uses the first template that matches the name. You can override admin templates by using the

same directory structure and file names.

The admin templates come in two directories:

1. admin is for the model object pages.

2. registration is for password changes and logging in and out.

To customize the logout page, you need to override the right file. The relative path leading to the

file has to be the same as the one being overridden. The file you’re interested in

is registration/logged_out.html. Start by creating the directory in the School project:

$ mkdir -p templates/registration

Now tell Django about your new template directory inside your School/settings.py file. Look for

the TEMPLATES directive and add the folder to the DIR list:

School/settings.py

...

TEMPLATES = [

 {

 "BACKEND": "django.template.backends.django.DjangoTemplates",

 # Add the templates directory to the DIR option:

 "DIRS": [os.path.join(BASE_DIR, "templates"),],

 "APP_DIRS": True,

 "OPTIONS": {

 "context_processors": [

 "django.template.context_processors.debug",

 "django.template.context_processors.request",

 "django.contrib.auth.context_processors.auth",

 "django.contrib.messages.context_processors.messages",

],

 },

 },

]

The template engine searches directories in the DIR option before the application directories, so

anything with the same name as an admin template will be loaded instead. To see this in action,

copy the logged_out.html file into your templates/registration directory, then modify it:

{% extends "admin/base_site.html" %}

{% load i18n %}

{% block breadcrumbs %}<div class="breadcrumbs">{%

trans 'Home' %}</div>{% endblock %}

{% block content %}

<p>You are now leaving Sunnydale</p>

<p>{% trans 'Log in again' %}</p>

{% endblock %}

You’ve now customized the logout page. If you click LOG OUT, then you’ll see the customized

message:

https://files.realpython.com/media/customize-django-admin-leaving-sunnydale.eb84fcca550e.png

Django admin templates are deeply nested and not very intuitive, but you have full control over

their presentation if you need it. Some packages, including Grappelli and Django Admin

Bootstrap, have fully replaced the Django admin templates to change their appearance.

Django Admin Bootstrap is not yet compatible with Django 3, and Grappelli only recently added

support, so it may still have some issues. That being said, if you want to see the power of

overriding admin templates, then check out those projects!

The Django admin is a powerful built-in tool giving you the ability to create, update, and

delete objects in your database using a web interface. You can customize the Django admin to do

almost anything you want.

Django QuerySet

Django QuerySet

A QuerySet is a collection of data from a database.

A QuerySet is built up as a list of objects.

QuerySets makes it easier to get the data you actually need, by allowing you to filter and order

the data at an early stage.

In this tutorial we will be querying data from the Member table.

Member:

 id firstname lastname phone joined_date

 1 Emil Refsnes 5551234 2022-01-05

 2 Tobias Refsnes 5557777 2022-04-01

 3 Linus Refsnes 5554321 2021-12-24

https://grappelliproject.com/
https://github.com/douglasmiranda/django-admin-bootstrap
https://github.com/douglasmiranda/django-admin-bootstrap

 4 Lene Refsnes 5551234 2021-05-01

 5 Stalikken Refsnes 5559876 2022-09-29

Querying Data

In views.py, we have a view for testing called testing where we will test different queries.

In the example below we use the .all() method to get all the records and fields of

the Member model:

ViewGet your own Django Server

views.py:

from django.http import HttpResponse

from django.template import loader

from .models import Member

def testing(request):

 mydata = Member.objects.all()

 template = loader.get_template('template.html')

 context = {

 'mymembers': mydata,

 }

https://www.w3schools.com/spaces/

 return HttpResponse(template.render(context, request))

The object is placed in a variable called mydata, and is sent to the template via the context object

as mymembers, and looks like this:

<QuerySet [

 <Member: Member object (1)>,

 <Member: Member object (2)>,

 <Member: Member object (3)>,

 <Member: Member object (4)>,

 <Member: Member object (5)>

]>

As you can see, our Member model contains 5 records, and are listed inside the QuerySet as 5

objects.

In the template you can use the mymembers object to generate content:

Template

templates/template.html:

<table border='1'>

 <tr>

 <th>ID</th>

 <th>Firstname</th>

 <th>Lastname</th>

 </tr>

 {% for x in mymembers %}

 <tr>

 <td>{{ x.id }}</td>

 <td>{{ x.firstname }}</td>

 <td>{{ x.lastname }}</td>

 </tr>

 {% endfor %}

</table>

ID Firstname Lastname

1 Emil Refsnes

2 Tobias Refsnes

3 Linus Refsnes

4 Lene Refsnes

5 Stalikken Refsnes

In views.py you can see how to import and fetch members from the database.

Building list and detail views

Now that you have knowledge of how to use the ORM, you are ready to build the views of

the blog application. A Django view is just a Python function that receives a web request and

returns a web response. All the logic to return the desired response goes inside the view.

First, you will create your application views, then you will define a URL pattern for each view,

and finally, you will create HTML templates to render the data generated by the views. Each

view will render a template, passing variables to it, and will return an HTTP response with the

rendered output.

Creating list and detail views

Let's start by creating a view to display the list of posts. Edit the views.py file of

your blog application and make it look like this:

from django.shortcuts import render, get_object_or_404

from .models import Post

def post_list(request):

 posts = Post.published.all()

 return render(request,

 'blog/post/list.html',

 {'posts': posts})

Copy

You just created your first Django view. The post_list view takes the request object as the only

parameter. This parameter is required by all views. In this view, you retrieve all the posts with

the published status using the published manager that you created previously.

Finally, you use the render() shortcut provided by Django to render the list of posts with the

given template. This function takes the request object, the template path, and the context

variables to render the given template. It returns an HttpResponse object with the rendered text

(normally HTML code). The render() shortcut takes the request context into account, so any

variable set by the template context processors is accessible by the given template. Template

context processors are just callables that set variables into the context. You will learn how to use

them in Chapter 3, Extending Your Blog Application.

Let's create a second view to display a single post. Add the following function to

the views.py file:

def post_detail(request, year, month, day, post):

 post = get_object_or_404(Post, slug=post,

 status='published',

 publish__year=year,

 publish__month=month,

 publish__day=day)

 return render(request,

 'blog/post/detail.html',

 {'post': post})

Copy

This is the post detail view. This view takes the year, month, day, and post arguments to

retrieve a published post with the given slug and date. Note that when you created

the Post model, you added the unique_for_date parameter to the slug field. This ensures that

there will be only one post with a slug for a given date, and thus, you can retrieve single posts

using the date and slug. In the detail view, you use the get_object_or_404() shortcut to retrieve

the desired post. This function retrieves the object that matches the given parameters or an HTTP

404 (not found) exception if no object is found. Finally, you use the render() shortcut to render

the retrieved post using a template.

Adding URL patterns for your views

URL patterns allow you to map URLs to views. A URL pattern is composed of a string pattern, a

view, and, optionally, a name that allows you to name the URL project-wide. Django

runs through each URL pattern and stops at the first one that matches the requested URL. Then,

Django imports the view of the matching URL pattern and executes it, passing an instance of

the HttpRequest class and the keyword or positional arguments.

Create a urls.py file in the directory of the blog application and add the following lines to it:

from django.urls import path

from . import views

app_name = 'blog'

urlpatterns = [

 # post views

 path('', views.post_list, name='post_list'),

 path('<int:year>/<int:month>/<int:day>/<slug:post>/',

 views.post_detail,

 name='post_detail'),

]

Copy

In the preceding code, you define an application namespace with the app_name variable. This

allows you to organize URLs by application and use the name when referring to them. You

define two different patterns using the path() function. The first URL pattern doesn't take any

arguments and is mapped to the post_list view. The second pattern takes the following four

arguments and is mapped to the post_detail view:

 year: Requires an integer

 month: Requires an integer

 day: Requires an integer

 post: Can be composed of words and hyphens

You use angle brackets to capture the values from the URL. Any value specified in the URL

pattern as <parameter> is captured as a string. You use path converters, such as <int:year>, to

specifically match and return an integer and <slug:post> to specifically match a slug. You

can see all path converters provided by Django

at https://docs.djangoproject.com/en/3.0/topics/http/urls/#path-converters.

If using path() and converters isn't sufficient for you, you can use re_path() instead to define

complex URL patterns with Python regular expressions. You can learn more about defining URL

patterns with regular expressions

at https://docs.djangoproject.com/en/3.0/ref/urls/#django.urls.re_path. If you haven't

worked with regular expressions before, you might want to take a look at the Regular Expression

HOWTO located at https://docs.python.org/3/howto/regex.html first.

Creating a urls.py file for each application is the best way to make your applications reusable by

other projects.

Next, you have to include the URL patterns of the blog application in the main URL patterns of

the project.

Edit the urls.py file located in the mysite directory of your project and make it look like the

following:

from django.urls import path, include

from django.contrib import admin

https://docs.djangoproject.com/en/3.0/topics/http/urls/#path-converters
https://docs.djangoproject.com/en/3.0/ref/urls/#django.urls.re_path
https://docs.python.org/3/howto/regex.html

urlpatterns = [

 path('admin/', admin.site.urls),

 path('blog/', include('blog.urls', namespace='blog')),

]

Copy

The new URL pattern defined with include refers to the URL patterns defined in

the blog application so that they are included under the blog/ path. You include these patterns

under the namespace blog. Namespaces have to be unique across your entire project. Later, you

will refer to your blog URLs easily by using the namespace followed by a colon and the URL

name, for example, blog:post_list and blog:post_detail. You can learn more about URL

namespaces at https://docs.djangoproject.com/en/3.0/topics/http/urls/#url-namespaces.

Canonical URLs for models

A canonical URL is the preferred URL for a resource. You may have different pages in your site

where you display posts, but there is a single URL that you use as the main URL for a blog post.

The convention in Django is to add a get_absolute_url() method to the model that returns the

canonical URL for the object.

You can use the post_detail URL that you have defined in the preceding section to build the

canonical URL for Post objects. For this method, you will use the reverse() method, which

allows you to build URLs by their name and pass optional parameters. You can learn more about

the URLs utility functions at https://docs.djangoproject.com/en/3.0/ref/urlresolvers/.

Edit the models.py file of the blog application and add the following code:

from django.urls import reverse

https://docs.djangoproject.com/en/3.0/topics/http/urls/#url-namespaces
https://docs.djangoproject.com/en/3.0/ref/urlresolvers/

class Post(models.Model):

 # ...

 def get_absolute_url(self):

 return reverse('blog:post_detail',

 args=[self.publish.year,

 self.publish.month,

 self.publish.day, self.slug])

Copy

You will use the get_absolute_url() method in your templates to link to specific posts.

	SUBJECT CODE : 23PCA13
	Django
	What is Django
	History
	Popularity
	Features of Django
	Rapid Development
	Secure
	Scalable
	Fully loaded
	Versatile
	Open Source
	Vast and Supported Community

	Django Installation
	Verify Django Installation

	create a Django project
	Create a Project in Django
	Step 1: Opening PowerShell
	Step 2: Verifying Python Installation
	Step 3: Upgrading PIP
	Step 4: Creating a Project Directory
	Step 5: Creating the Virtual Environment
	Step 6: Activating the Virtual Environment
	Step 6: Activating the Virtual Environment (1)
	Step 7: Installing Django
	Step 8: Create the Django Project
	Output:

	Step 9: Running the Development Server
	Step 10: Create app in django

	Designing the blog data schema
	Activating the application
	Creating and applying migrations

	Django Admin With Python
	The Django framework comes with a powerful administrative tool called admin. You can use it out of the box to quickly add, delete, or edit any database model from a web interface. But with a little extra code, you can customize the Django admin to tak...
	Prerequisites
	Setting Up the Django Admin
	Customizing the Django Admin
	Modifying a Change List Using list_display
	Providing Links to Other Object Pages
	Adding Filters to the List Screen
	Adding Search to the List Screen
	Changing How Models Are Edited
	Overriding Django Admin Templates

	Django QuerySet
	Django QuerySet
	Querying Data
	ViewGet your own Django Server
	Template

	Building list and detail views
	Creating list and detail views
	Adding URL patterns for your views
	Canonical URLs for models

