

MARUDHARKESARIJAINCOLLEGEFORWOMEN,VANIYAMBADI PG

DEPARTMENT OF COMPUTER APPLICATIONS

CLASS :I MCA

SUBJECT CODE :23PCA12

SUBJECTNAME:LINUXANDSHELLPROGRAMMING

SYLLABUS

Unit-II

More Structured Commands: Looping with for statement-Iterating with

the until statement-Using the while statement-Combining loops-Redirecting

loop output. Handling User Input: Passing parameters-Tracking

parameters-Being shifty-Working with options-Standardizing options-Getting

user input. Script Control: Handling signals-Running scripts in the

background-Forbidding hang-ups -Controlling a Job-Modifying script priority-

Automating script execution.

(Book-1,Chapters:13,14,and16)

I

MoreStructuredCommands

INTHISCHAPTER

Looping with the for statement

Iterating with the until statement

Using the while statement

Combiningloops

Redirectingloopoutput

n the previous chapter, you saw how to manipulate the flow of a shell script program by check-
ing the output of commands and the values of variables. In this chapter, we continue to look at
structured commands that control the flow of your shell scripts. You’ll see how you can perform

repeating processes, commands that can loop through a set of commands until an indicated condi-
tionhas been met. This chapter discusses and demonstrates the for, while, and untilbash shell
looping commands.

TheforCommand
Iterating through a series of commands is a common programming practice. Often, you need to
repeatasetofcommandsuntilaspecificconditionhasbeenmet,suchasprocessingallthefilesin
adirectory,alltheusersonasystem,orallthelinesinatextfile.

The bash shell provides the forcommand to allow you to create a loop that iterates through a
series of values. Each iteration performs a defined set of commands using one of the values in the
series. Here’s the basic format of the bash shell forcommand:

forvarinlist

do

commands

done

You supply the series of values used in the iterations in the list parameter. You can specify the val-
ues in the list in several ways.

331

PartII:ShellScriptingBasics

332

In each iteration, the variable var contains the current value in the list. The first iteration
uses the first item in the list, the second iteration the second item, and so on until all the
items in the list have been used.

Thecommandsenteredbetweenthedoanddonestatementscanbeoneormorestandard bash
shell commands. Within the commands, the $varvariable contains the current list item
value for the iteration.

We mentioned that there are several different ways to specify the values in the list. The
following sections show the various ways to do that.

Readingvaluesinalist
The most basic use of the forcommand is to iterate through a list of values defined within
theforcommanditself:

$cattest1

#!/bin/bash

#basicforcommand

fortestinAlabamaAlaskaArizonaArkansasCaliforniaColorado do

echoThenextstateis$test done

$./test1

ThenextstateisAlabama The

next state is Alaska

ThenextstateisArizona

ThenextstateisArkansas

ThenextstateisCalifornia

ThenextstateisColorado

$

Each timetheforcommanditeratesthroughthelistofvaluesprovided,itassignsthe
$testvariable the next value in the list. The $testvariable can be used just like any other
script variable within the forcommand statements. After the last iteration, the
$testvariable remains valid throughout the remainder of the shell script. It retains the
last iteration value (unless you change its value):

$cattest1b #!/bin/bash

Ifyouprefer,youcanincludethedostatementonthesamelineastheforstatement,butyoumustseparateit

fromthelistitemsusingasemicolon:for var in list; do.

Chapter13:MoreStructuredCommands

333

#testingtheforvariableafterthelooping

fortestinAlabamaAlaskaArizonaArkansasCaliforniaColorado do

echo"Thenextstateis$test"done

echo"Thelaststatewevisitedwas$test"

test=Connecticut

echo"Wait,nowwe'revisiting$test"

$./test1b

ThenextstateisAlabama The

next state is Alaska

ThenextstateisArizona

ThenextstateisArkansas

ThenextstateisCalifornia

ThenextstateisColorado

ThelaststatewevisitedwasColorado

Wait,nowwe'revisitingConnecticut

$

The$testvariable retained its value and allowed us to change the value and use it outside of
the forcommand loop, as any other variable would.

Readingcomplexvaluesinalist
Thingsaren’talwaysaseasyastheyseemwiththeforloop.Therearetimeswhenyou run into
data that causes problems. Here’s a classic example of what can cause problems for shell
script programmers:

$catbadtest1

#!/bin/bash

#anotherexampleofhownottousetheforcommand

fortestinIdon'tknowifthis'llwork do

echo"word:$test"do

ne

$./badtest1

word:I

word:dontknowifthisll

word:work

$

Ouch, that hurts. The shell saw the single quotation marks within the list values
andattempted to use them to define a single data value, and it really messed things up in
the process.

PartII:ShellScriptingBasics

334

Youhavetwowaystosolvethisproblem:

■ Usetheescapecharacter(thebackslash)toescapethesinglequotationmark.

■ Use double quotation marks to define the values that use single quotation marks.

Neither solution is all that fantastic, but each one helps solve the problem:

$cattest2

#!/bin/bash

#anotherexampleofhownottousetheforcommand

fortestinIdon\'tknowif"this'll"work do

echo"word:$test"don

e

$./test2

word:I

word:don't

word:know

word:if

word:this'll

word:work

$

In the first problem value, you added the backslash character to escape the single quotation
mark in the don'tvalue. In the second problem value, you enclosed the this'llvalue in
double quotation marks. Both methods worked fine to distinguish the value.

Another problem you may run into is multi-word values. Remember that the forloop
assumes that each value is separated with a space. If you have data values that contain
spaces, you run into yet another problem:

$catbadtest2

#!/bin/bash

#anotherexampleofhownottousetheforcommand

fortestinNevadaNewHampshireNewMexicoNewYorkNorthCarolina do

echo"Nowgoingto$test"don

e

$./badtest1

NowgoingtoNevada

Now going to New

NowgoingtoHampshire

Now going to New

NowgoingtoMexico

Now going to New

Now going to York

Chapter13:MoreStructuredCommands

335

Now going to North

NowgoingtoCarolina

$

Oops,that’snot exactly what we wanted. The forcommand separates each value in the list
with a space. If there are spaces in the individual data values, you must accommodate them
using double quotation marks:

$cattest3

#!/bin/bash

#anexampleofhowtoproperlydefinevalues

fortestinNevada"NewHampshire""NewMexico""NewYork"do

echo"Nowgoingto$test"don

e

$./test3

NowgoingtoNevada

NowgoingtoNewHampshire

Now going to New Mexico

Now going to New York

$

Now the forcommand can properly distinguish between the different values. Also, notice
that when you use double quotation marks around a value, the shell doesn’t include the
quotation marks as part of the value.

Readingalistfromavariable
Often what happens in a shell script is that you accumulate a list of values stored in a vari-
able and then need to iterate through the list. You can do this using the forcommand as
well:

$cattest4

#!/bin/bash

#usingavariabletoholdthelist

list="AlabamaAlaskaArizonaArkansasColorado"lis

t=$list" Connecticut"

forstatein$list

do

echo"Haveyouevervisited$state?" done

$./test4

HaveyouevervisitedAlabama?

HaveyouevervisitedAlaska?

HaveyouevervisitedArizona?

PartII:ShellScriptingBasics

336

HaveyouevervisitedArkansas?

HaveyouevervisitedColorado?

HaveyouevervisitedConnecticut?

$

The $listvariable contains the standard text list of values to use for the iterations.
Notice that the code also uses another assignment statement to add (or concatenate) an
item to the existing list contained in the $listvariable. This is a common method for
addingtexttotheendofanexistingtextstringstoredinavariable.

Readingvaluesfromacommand
Another way to generate values for use in the list is to use the output of a command.
Youuse command substitution to execute any command that produces output and then use
the output of the command in the forcommand:

$cattest5

#!/bin/bash

#readingvaluesfromafile

file="states"

forstatein$(cat$file) do

echo"Visitbeautiful$state"

done

$catstates

Alabama

Alaska

Arizona

Arkansas

Colorado

Connecticut

Delaware

Florida

Georgia

$./test5

Visit beautiful Alabama

Visit beautiful Alaska

Visit beautiful Arizona

Visit beautiful Arkansas

Visit beautiful Colorado

VisitbeautifulConnecticut

Visit beautiful Delaware

Visit beautiful Florida

Visit beautiful Georgia

$

Chapter13:MoreStructuredCommands

337

Thisexampleusesthecatcommandinthecommandsubstitutiontodisplaythecontents of the file
states. Notice that the states file includes each state on a separate line, not sepa-rated by
spaces. The forcommand still iterates through the output of the

catcommandonelineatatime,assumingthateachstateisonaseparateline.However,thisdoesn’t

solve the problem of having spaces in data. If you list a state with a space in it, the for
command still takes each word as a separate value. There’s a reason for this, which we lookat
in the next section.

Changingthefieldseparator
The cause of this problem is the special environment variable IFS, called the internal field
separator. The IFS environment variable defines a list of characters the bash shell uses
as field separators. By default, the bash shell considers the following characters as field
separators:

■ Aspace

■ Atab

■ Anewline

Ifthebashshellseesanyofthesecharactersinthedata,itassumesthatyou’restarting a new data
field in the list. When working with data that can contain spaces (such as file-names), this
can be annoying, as you saw in the previous script example.

To solve this problem, you can temporarily change the IFS environment variable values in
your shell script to restrict the characters the bash shell recognizes as field separators. For
example, if you want to change the IFS value to recognize only the newline character, you
need to do this:

IFS=$'\n'

Adding this statement to your script tells the bash shell to ignore spaces and tabs in data
values. Applying this technique to the previous script yields the following:

$cattest5b #!/bin/bash

#readingvaluesfromafile

file="states"

IFS=$'\n'

Thetest5codeexampleassignedthefilenametothevariableusingjustthefilenamewithoutapath.Thisrequires that the file be

in the same directory as the script. If this isn’t the case, you need to use a full pathname (either abso-lute or relative)

to reference the file location.

PartII:ShellScriptingBasics

338

forstatein$(cat$file) do

echo"Visitbeautiful$state"

done

$./test5b

Visit beautiful Alabama

Visit beautiful Alaska

Visit beautiful Arizona

Visit beautiful Arkansas

Visit beautiful Colorado

VisitbeautifulConnecticut

Visit beautiful Delaware

Visit beautiful Florida

Visit beautiful Georgia

Visit beautiful New York

VisitbeautifulNewHampshire

VisitbeautifulNorthCarolina

$

Nowtheshellscriptcanusevaluesinthelistthatcontainspaces.

Other excellent applications of the IFS environment variable are possible. Suppose youwant
to iterate through values in a file that are separated by a colon (such as in the /etc/

passwdfile). You just need to set the IFS value to a colon:

IFS=:

If you want to specify more than one IFS character, just string them together on
theassignment line:

IFS=$'\n':;"

This assignment uses the newline, colon, semicolon, and double quotation mark characters
as field separators. There’s no limit to how you can parse your data using the IFS characters.

Whenworkingonlongscripts,it’spossibletochangetheIFSvalueinoneplace,andthenforgetaboutitandassume

thedefaultvalueelsewhereinthescript.AsafepracticetogetintoistosavetheoriginalIFSvaluebeforechangingit and then restore

it when you’re finished.

Thistechniquecanbecodedlikethis:

IFS.OLD=$IFS

IFS=$'\n'

<usethenewIFSvalueincode> IFS=$IFS.OLD

ThisensuresthattheIFSvalueisreturnedtothedefaultvalueforfutureoperationswithinthescript.

Chapter13:MoreStructuredCommands

339

Readingadirectoryusingwildcards
Finally, you can use the forcommand to automatically iterate through a directory of files.
To do this, you must use a wildcard character in the file or pathname. This forces the shellto
use file globbing. File globbing is the process of producing filenames or pathnames that
match a specified wildcard character.

This feature is great for processing files in a directory when you don’t know all the
filenames:

$cattest6

#!/bin/bash

#iteratethroughallthefilesinadirectory

forfilein/home/rich/test/* do

if[-d"$file"]

then

echo"$fileisadirectory"eli

f [-f "$file"]

then

echo"$fileisafile"

fi

done

$./test6

/home/rich/test/dir1isadirectory

/home/rich/test/myprog.cisafile

/home/rich/test/myprogisafile

/home/rich/test/myscriptisafile

/home/rich/test/newdirisadirectory

/home/rich/test/newfileisafile

/home/rich/test/newfile2isafile

/home/rich/test/testdirisadirectory

/home/rich/test/testingisafile

/home/rich/test/testprogisafile

/home/rich/test/testprog.cisafile

$

Theforcommanditeratesthroughtheresultsofthe/home/rich/test/*listing.
Thecodetestseachentryusingthetestcommand(usingthesquarebracketmethod)
toseeifit’sadirectory,usingthe-dparameter,orafile,usingthe-fparameter(See Chapter 12).

Noticeinthisexamplethatwedidsomethingdifferentintheifstatementtests:

if[-d"$file"]

PartII:ShellScriptingBasics

340

In Linux, it’s perfectly legal to have directory and filenames that contain spaces. To accom-
modate that, you should enclose the $filevariable in double quotation marks. If youdon’t,
you’ll get an error if you run into a directory or filename that contains spaces:

./test6:line6:[:toomanyarguments

./test6:line9:[:toomanyarguments

Thebash shell interprets the additional words as arguments within the testcommand,
causing an error.

Youcanalsocombineboththedirectorysearchmethodandthelistmethodinthesame

forstatementbylistingaseriesofdirectorywildcardsintheforcommand:

$cattest7

#!/bin/bash

#iteratingthroughmultipledirectories

forfilein/home/rich/.b*/home/rich/badtest do

if[-d"$file"] then

echo"$fileisadirectory"elif

[-f "$file"]

then

echo"$fileisafile"els

e

echo"$filedoesn'texist"fi

done

$./test7

/home/rich/.backup.timestampisafile

/home/rich/.bash_historyisafile

/home/rich/.bash_logoutisafile

/home/rich/.bash_profileisafile

/home/rich/.bashrcisafile

/home/rich/badtestdoesn'texist

$

The forstatement first uses file globbing to iterate through the list of files that result from
thewildcardcharacter;thenititeratesthroughthenextfileinthelist.Youcancombine any number
of wildcard entries in the list to iterate through.

Noticethatyoucanenteranythinginthelistdata.Evenifthefileordirectorydoesn’texist,theforstatement attempts to process

whatever you place in the list. This can be a problem when working with files and directories.

Youhavenowayofknowingifyou’retryingtoiteratethroughanonexistentdirectory:It’salwaysagoodideatotesteach file or

directory before trying to process it.

Chapter13:MoreStructuredCommands

341

TheC-StyleforCommand
If you’ve done any programming using the C programming language, you’re probably sur-
prisedby the way the bash shell uses the forcommand. In the C language, a forloop nor-
mally defines a variable, which it then alters automatically during each iteration. Typically,
programmers use this variable as a counter and either increment or decrement the counter
by one in each iteration. The bash forcommand can also provide this functionality. This

section shows you how to use a C-style forcommand in a bash shell script.

TheClanguageforcommand
The C language forcommand has a specific method for specifying a variable, a
conditionthat must remain true for the iterations to continue, and a method for altering the
variablefor each iteration. When the specified condition becomes false, the forloop stops.
The con- dition equation is defined using standard mathematical symbols. For example,
consider the following C language code:

for(i=0;i<10;i++)

{

printf("Thenextnumberis%d\n",i);

}

This code produces a simple iteration loop, where the variable iis used as a counter. The
first section assigns a default value to the variable. The middle section defines the condi-
tion under which the loop will iterate. When the defined condition becomes false, the for
loopstopsiterations.Thelastsectiondefinestheiterationprocess.Aftereachiteration, the
expression defined in the last section is executed. In this example, the ivariable
isincremented by one after each iteration.

Thebash shell also supports a version of the forloop that looks similar to the C-style for
loop, although it does have some subtle differences, including a couple of things that will
confuse shell script programmers. Here’s the basic format of the C-style bash forloop:

for((variableassignment;condition;iterationprocess))

The format of the C-style forloop can be confusing for bash shell script programmers,
because it uses C-style variable references instead of the shell-style variable references.
Here’s what a C-style forcommand looks like:

for((a=1;a<10;a++))

Noticethatthereareacoupleofthingsthatdon’tfollowthestandardbashshellfor
method:

■ Theassignmentofthevariablevaluecancontainspaces.

■ Thevariableintheconditionisn’tprecededwithadollarsign.

■ Theequationfortheiteration process doesn’t use the exprcommand format.

PartII:ShellScriptingBasics

342

Theshelldeveloperscreatedthis format to more closely resemble the C-style forcommand.
Although this is great for C programmers, it can throw even expert shell programmers into a
tizzy. Be careful when using the C-style forloop in your scripts.

Here’sanexampleofusingtheC-styleforcommandinabashshellprogram:

$cattest8

#!/bin/bash

#testingtheC-styleforloop

for((i=1;i<=10;i++)) do

echo"Thenextnumberis$i"done

$./test8

The next number is 1

The next number is 2

The next number is 3

The next number is 4

The next number is 5

The next number is 6

The next number is 7

The next number is 8

The next number is 9

The next number is 10

$

The forloop iterates through the commands using the variable defined in the
forloop(theletteriinthisexample).Ineachiteration,the$ivariablecontainsthevalueassigned
in the forloop. After each iteration, the loop iteration process is applied to the variable,
which in this example, increments the variable by one.

Usingmultiplevariables
The C-style forcommand also allows you to use multiple variables for the iteration. The
loop handles each variable separately, allowing you to define a different iteration
processfor each variable. Although you can have multiple variables, you can define only one
condi- tion in the forloop:

$cattest9

#!/bin/bash

#multiplevariables

for((a=1,b=10;a<=10;a++,b--))

do

echo"$a-

$b"done

$./test9

Chapter13:MoreStructuredCommands

343

1-10

2-9

3-8

4-7

5-6

6-5

7-4

8-3

9-2

10-1

$

The aand bvariables are each initialized with different values, and different iteration pro-
cesses are defined. While the loop increases the avariable, it decreases the bvariable for
each iteration.

ThewhileCommand
Thewhilecommand is somewhat of a cross between the if-thenstatement and the for
loop.The whilecommand allows you to define a command to test and then loop through a
set of commands for as long as the defined test command returns a zero exit status. It tests
the testcommand at the start of each iteration. When the testcommand returns a non-
zero exit status, the whilecommand stops executing the set of commands.

Basicwhileformat
Here’sfheformatofthewhilecommand:

whiletestcommand

do

othercommands

done

Thetestcommanddefinedinthewhilecommandistheexactsameformatasinif-then
statements(seeChapter12).Asintheif-thenstatement,youcanuseanynormalbashshell
command,or you can use the testcommand to test for conditions, such as variable values.

Thekeytothewhilecommandisthattheexitstatusofthetest commandspecified must change,

based on the commands run during the loop. If the exit status never changes,the whileloop
will get stuck in an infinite loop.

Themost common use of the testcommandis to use brackets to check a value of a shell
variable that’s used in the loop commands:

$cattest10

#!/bin/bash

PartII:ShellScriptingBasics

344

#whilecommandtest

var1=10

while[$var1-gt0] do

echo$var1

var1=$[$var1-1]

done

$./test10

10

9

8

7

6

5

4

3

2

1

$

Thewhilecommanddefinesthetestconditiontocheckforeachiteration:

while[$var1-gt0]

As long as the test condition is true, the whilecommand continues to loop through the
commands defined. Within the commands, the variable used in the test condition
mustbe modified, or you’ll have an infinite loop. In this example, we use shell arithmetic
todecrease the variable value by one:

var1=$[$var1-1]

Thewhileloopstopswhenthetestconditionisnolongertrue.

Usingmultipletestcommands
Thewhilecommandallowsyoutodefinemultiple testcommandsonthewhilestatement
line.Onlytheexitstatusofthelasttestcommandisusedtodeterminewhentheloop stops. This can
cause some interesting results if you’re not careful. Here’s an example of what we mean:

$cattest11 #!/bin/bash

#testingamulticommandwhileloop var1=10

whileecho$var1

Chapter13:MoreStructuredCommands

345

[$var1-ge0]

do

echo"Thisisinsidetheloop"var1

=$[$var1 - 1]

done

$./test11

10

Thisisinsidetheloop 9

Thisisinsidetheloop 8

Thisisinsidetheloop 7

Thisisinsidetheloop 6

Thisisinsidetheloop 5

Thisisinsidetheloop 4

Thisisinsidetheloop 3

Thisisinsidetheloop 2

Thisisinsidetheloop 1

Thisisinsidetheloop 0

Thisisinsidetheloop

-1

$

Pay close attention to what happened in this example. Two test commands were defined in
thewhilestatement:

whileecho$var1

[$var1-ge0]

The first test simply displays the current value of the var1variable. The second test uses
brackets to determine the value of the var1variable. Inside the loop, an echostatement
displays a simple message, indicating that the loop was processed. Notice when you run the
example how the output ends:

Thisisinsidetheloop

-1

$

Thewhileloopexecutedtheechostatementwhenthe var1variable was equal to zero
andthendecreasedthevar1variablevalue.Next,thetestcommandswereexecutedfor

PartII:ShellScriptingBasics

346

the next iteration. The echotest command was executed, displaying the value of the var1
variable, which is now less than zero. It’s not until the shell executes the testtest com-
mand that the whileloop terminates.

This demonstrates that in a multi-command whilestatement, all the test commands are

executedineachiteration,includingthelastiterationwhenthelasttestcommandfails. Be careful
of this. Another thing to be careful of is how you specify the multiple test com-mands. Note
that each test command is on a separate line!

TheuntilCommand
The untilcommand works in exactly the opposite way from the whilecommand. The

untilcommand requires that you specify a test command that normally produces a non-
zero exit status. As long as the exit status of the test command is non-zero, the bash
shellexecutes the commands listed in the loop. When the test command returns a zero exit
sta- tus, the loop stops.

Asyouwouldexpect,theformatoftheuntilcommandis:

untiltestcommands

do

othercommands

done

Similar to the whilecommand, you can have more than one test command in the until
command statement. Only the exit status of the last command determines if the bash shell
executes the other commands defined.

Thefollowingisanexampleofusingtheuntilcommand:

$cattest12 #!/bin/bash

#usingtheuntilcommand

var1=100

until[$var1-eq0] do

echo$var1

var1=$[$var1-25] done

$./test12

100

75

50

25

$

Chapter13:MoreStructuredCommands

347

This example tests the var1variable to determine when the untilloop should stop. As
soon as the value of the variable is equal to zero, the untilcommand stops the loop. The
same caution as for the whilecommand applies when you use multiple test commands
withtheuntilcommand:

$cattest13

#!/bin/bash

#usingtheuntilcommand

var1=100

untilecho$var1

[$var1-eq0]

do

echoInsidetheloop:$var1

var1=$[$var1 - 25]

done

$./test13

100

Insidetheloop:100 75

Insidetheloop:75 50

Insidetheloop:50 25

Insidetheloop:25 0

$

The shell executes the test commands specified and stops only when the last command is
true.

NestingLoops
Aloopstatementcanuseanyothertypeofcommandwithintheloop,includingother loop
commands. This is called a nested loop. Care should be taken when using nested loops,
because you’re performing an iteration within an iteration, which multiplies the number of
times commands are being run. If you don’t pay close attention to this, it can cause prob-
lems in your scripts.

Here’sasimpleexampleofnestingaforloop insideanother forloop:

$cattest14

#!/bin/bash

PartII:ShellScriptingBasics

348

#nestingforloops

for((a=1;a<=3;a++)) do

echo"Startingloop$a:"

for((b=1;b<=3;b++)) do

echo " Insideloop:$b"

done

done

$./test14

Startingloop1:

Insideloop:1

Insideloop:2

Insideloop:3

Startingloop2:

Insideloop:1

Insideloop:2

Insideloop:3

Startingloop3:

Insideloop:1

Insideloop:2

Insideloop:3

$

The nested loop (also called the inner loop) iterates through its values for each iteration
oftheouterloop.Noticethatthere’snodifferencebetweenthedoanddonecommandsfor thetwo
loops. The bash shell knows when the first donecommand is executed that it refers to the
inner loop and not the outer loop.

Thesameapplieswhenyoumixloopcommands,suchasplacingaforloopinsideawhile
loop:

$cattest15 #!/bin/bash

#placingaforloopinsideawhileloop var1=5

while[$var1-ge0] do

echo"Outerloop:$var1"

for((var2=1;$var2<3;var2++)) do

var3=$[$var1*$var2]

echo"Innerloop:$var1*$var2=$var3"done

var1=$[$var1-1]

done

$./test15

Chapter13:MoreStructuredCommands

349

Outerloop:5

Innerloop: 5 * 1 = 5

Innerloop: 5 * 2 = 10

Outerloop:4

Innerloop: 4 * 1 = 4

Innerloop: 4 * 2 = 8

Outerloop:3

Innerloop: 3 * 1 = 3

Innerloop: 3 * 2 = 6

Outerloop:2

Innerloop: 2 * 1 = 2

Innerloop: 2 * 2 = 4

Outerloop:1

Innerloop: 1 * 1 = 1

Innerloop: 1 * 2 = 2

Outerloop:0

Innerloop: 0 * 1 = 0

Innerloop: 0 * 2 = 0

$

Again,the shell distinguished between the doand donecommands of the inner forloop
from the same commands in the outer whileloop.

Ifyoureallywanttotestyourbrain,youcanevencombineuntilandwhileloops:

$cattest16

#!/bin/bash

#usinguntilandwhileloops

var1=3

until[$var1-eq0] do

echo"Outerloop:$var1"var2=1

while[$var2-lt5] do

var3=$(echo"scale=4;$var1/$var2"|bc)

echo "

 Innerloop:$var1/$var2=$var3"var2

=$[$var2 + 1]

done

var1=$[$var1-1]

done

$./test16

Outerloop:3

Inner loop: 3 / 1 = 3.0000

Inner loop: 3 / 2 = 1.5000

Inner loop: 3 / 3 = 1.0000

Inner loop: 3 / 4 = .7500

PartII:ShellScriptingBasics

350

Outerloop:2

Innerloop: 2 / 1 = 2.0000

Innerloop: 2 / 2 = 1.0000

Innerloop: 2 / 3 = .6666

Innerloop: 2 / 4 = .5000

Outerloop:1

Innerloop:1/1=1.0000

Innerloop:1/2=.5000

Innerloop:1/3=.3333

Innerloop:1/4=.2500

$

The outer untilloop starts with a value of 3 and continues until the value equals 0. The
inner whileloop starts with a value of 1 and continues as long as the value is less than
5. Each loop must change the value used in the test condition, or the loop will get
stuckinfinitely.

LoopingonFileData
Often, you must iterate through items stored inside a file. This requires combining two of
the techniques covered:

■ Usingnestedloops

■ ChangingtheIFSenvironmentvariable

Bychanging the IFSenvironment variable, you can force the forcommand to handle each

line in the file as a separate item for processing, even if the data contains spaces.
Afteryou’ve extracted an individual line in the file, you may have to loop again to extract
datacontained within it.

Theclassic example of this is processing data in the /etc/passwdfile. This requires that
you iterate through the /etc/passwdfile line by line and then change the IFSvariable
value to a colon so you can separate the individual components in each line.

Thefollowingisanexampleofdoingjustthat:

#!/bin/bash

#changingtheIFSvalue

IFS.OLD=$IFS

IFS=$'\n'

forentryin$(cat/etc/passwd) do

echo"Valuesin$entry–"

IFS=:

forvaluein$entry

Chapter13:MoreStructuredCommands

351

do

echo" $value"

done

done

$

Thisscriptusestwo different IFSvalues to parse the data. The first IFSvalue parses the
individuallinesinthe/etc/passwdfile.TheinnerforloopnextchangestheIFSvalue to the
colon, which allows you to parse the individual values within the /etc/passwd
lines.

Whenyourunthisscript,yougetoutputsomethinglikethis:

Valuesinrich:x:501:501:RichBlum:/home/rich:/bin/bash- rich

x

501

501

RichBlum

/home/rich

/bin/bash

Valuesinkatie:x:502:502:KatieBlum:/home/katie:/bin/bash- katie

x

506

509

KatieBlum

/home/katie

/bin/bash

Theinnerloopparses each individual value in the /etc/passwdentry. This is also a great
way to process comma-separated data, a common way to import spreadsheet data.

ControllingtheLoop
You might be tempted to think that after you start a loop, you’re stuck until the loop fin-
ishes all its iterations. This is not true. A couple of commands help us control what happens
inside of a loop:

■ Thebreakcommand

■ Thecontinuecommand

Each command has a different use in how to control the operation of a loop. The following
sectionsdescribehowyoucanusethesecommandstocontroltheoperationofyourloops.

PartII:ShellScriptingBasics

352

Thebreakcommand
Thebreakcommandisasimple way to escapea loop in progress. Youcan use the break
commandtoexitanytypeofloop,includingwhileanduntilloops.

Youcan use the breakcommand in several situations. This section shows each of these
methods.

Breakingoutofasingleloop

When the shell executes a breakcommand, it attempts to break out of the loop that’s cur-
rently processing:

$cattest17 #!/bin/bash

#breakingoutofaforloop

forvar1in12345678910 do

if[$var1-eq5] then

break

fi

echo"Iterationnumber:$var1"

done

echo"Theforloopiscompleted"

$./test17

Iterationnumber:1

Iterationnumber:2

Iterationnumber:3

Iterationnumber:4

Theforloopiscompleted

$

The forloop should normally have iterated through all the values specified in the list.
However,whenthe if-thencondition was satisfied, the shell executed the breakcom-
mand, which stopped the forloop.

Thistechniquealsoworksforwhileanduntilloops:

$cattest18 #!/bin/bash

#breakingoutofawhileloop var1=1

while[$var1-lt10] do

if[$var1-eq5]

Chapter13:MoreStructuredCommands

353

then

break

fi

echo"Iteration:$var1"var1=$

[$var1 + 1]

done

echo"Thewhileloopiscompleted"

$./test18

Iteration: 1

Iteration: 2

Iteration: 3

Iteration: 4

Thewhileloopiscompleted

$

Thewhileloopterminatedwhentheif-thenconditionwasmet,executingthebreak
command.

Breakingoutofaninnerloop

Whenyou’reworkingwithmultipleloops,thebreakcommandautomaticallyterminates the
innermost loop you’re in:

$cattest19

#!/bin/bash

#breakingoutofaninnerloop

for((a=1;a<4;a++)) do

echo"Outerloop:$a"

for((b=1;b<100;b++)) do

if[$b-eq5]

then

break

fi

echo " Innerloop:$b"

done

done

$./test19

Outerloop:1

Innerloop:1

Innerloop:2

Innerloop:3

Innerloop:4

Outerloop:2

Innerloop:1

Innerloop:2

Innerloop:3

PartII:ShellScriptingBasics

354

Innerloop:4

Outerloop:3

Innerloop:1

Innerloop:2

Innerloop:3

Innerloop:4

$

The forstatement in the inner loop specifies to iterate until the bvariable is equal to 100.
However,the if-thenstatement in the inner loop specifies that when the bvariable value is
equal to 5, the breakcommand is executed. Notice that even though the inner loop is
terminated with the breakcommand, the outer loop continues working as specified.

Breakingoutofanouterloop

Theremaybetimeswhenyou’reinaninnerloopbutneedtostoptheouterloop.The
breakcommandincludesasinglecommandlineparametervalue:

breakn

where n indicates the level of the loop to break out of. By default, n is 1, indicating
tobreak out of the current loop. If you set n to a value of 2, the breakcommand stops
the next level of the outer loop:

$cattest20 #!/bin/bash

#breakingoutofanouterloop

for((a=1;a<4;a++)) do

echo"Outerloop:$a"

for((b=1;b<100;b++)) do

if[$b-gt4] then

break2

fi

echo " Innerloop:$b"

done

done

$./test20

Outerloop:1

Innerloop:1

Innerloop:2

Innerloop:3

Innerloop:4

$

Nowwhentheshellexecutesthebreakcommand,the outerloopstops.

Chapter13:MoreStructuredCommands

355

Thecontinuecommand
The continuecommand is a way to prematurely stop processing commands inside of a
loop but not terminate the loop completely. This allows you to set conditions within a loop
where the shell won’t execute commands. Here’s a simple example of using the continue
command in a forloop:

$cattest21

#!/bin/bash

#usingthecontinuecommand

for((var1=1;var1<15;var1++)) do

if[$var1-gt5]&&[$var1-lt10] then

continue

fi

echo"Iterationnumber:$var1"

done

$./test21

Iteration number: 1

Iteration number: 2

Iteration number: 3

Iteration number: 4

Iteration number: 5

Iteration number: 10

Iteration number: 11

Iteration number: 12

Iteration number: 13

Iteration number: 14

$

When the conditions of the if-thenstatement are met (the value is greater than 5 andless
than 10), the shell executes the continuecommand, which skips the rest of the com-
mands in the loop, but keeps the loop going. When the if-thencondition is no longermet,
things return to normal.

Youcanusethecontinuecommandinwhileanduntilloops,but be extremely careful
withwhat you’re doing. Remember that when the shell executes the continuecommand,
it skips the remaining commands. If you’re incrementing your test condition variable inone
of those conditions, bad things happen:

$catbadtest3

#!/bin/bash

#improperlyusingthecontinuecommandinawhileloop var1=0

whileecho"whileiteration:$var1"

PartII:ShellScriptingBasics

356

[$var1-lt15]

do

if[$var1-gt5]&&[$var1-lt10] then

continue

fi

echo "

 Insideiterationnumber:$var1"va

r1=$[$var1 + 1]

done

$./badtest3|more

whileiteration:0

Insideiterationnumber:0

while iteration: 1

Insideiterationnumber:1

while iteration: 2

Insideiterationnumber:2

while iteration: 3

Insideiterationnumber:3

while iteration: 4

Insideiterationnumber:4

while iteration: 5

Insideiterationnumber:5

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

while iteration: 6

$

You’llwantto make sure you redirect the output of this script to the morecommand so you
can stop things. Everything seems to be going just fine until the if-thencondition is met,
and the shell executes the continuecommand. When the shell executes the continue
command,it skips the remaining commands in the whileloop. Unfortunately, that’s where
the$var1countervariablethatistestedinthewhiletestcommandisincremented.That means
that the variable isn’t incremented, as you can see from the continually displaying output.

Aswiththe breakcommand, the continuecommand allows you to specify what level of
loop to continue with a command line parameter:

continuen

Chapter13:MoreStructuredCommands

357

wherendefinestheloopleveltocontinue.Here’sanexampleofcontinuinganouterfor
loop:

$cattest22

#!/bin/bash

#continuinganouterloop

for((a=1;a<=5;a++)) do

echo"Iteration$a:"

for((b=1;b<3;b++)) do

if[$a-gt2]&&[$a-lt4] then

continue2

fi

var3=$[$a*$b]

echo " Theresultof$a*$bis$var3"done

done

$./test22

Iteration1:

It

Iteration3:

Iteration4:

It

$

Theif-thenstatement:

if[$a-gt2]&&[$a-lt4] then

continue2

fi

uses the continuecommand to stop processing the commands inside the loop but con-
tinue the outer loop. Notice in the script output that the iteration for the value 3
doesn’tprocessanyinnerloopstatements,becausethecontinuecommandstoppedtheprocess
- ing, but it continues with the outer loop processing.

Theresult of 1 * 1 is 1

Theresult of 1 * 2 is 2

eration2:

Theresultof2*1is2

Theresult of 2 * 2 is 4

Theresult of 4 * 1 is 4

Theresult of 4 * 2 is 8

eration5:

Theresultof5*1is5

Theresult of 5 * 2 is 10

PartII:ShellScriptingBasics

358

ProcessingtheOutputofaLoop
Finally, you can either pipe or redirect the output of a loop within your shell script. You do
this by adding the processing command to the end of the donecommand:

forfilein/home/rich/* do

if[-d"$file"] then

echo"$fileisadirectory" elif

echo"$fileisafile"

fi

done>output.txt

Insteadofdisplayingtheresultsonthemonitor,theshellredirectstheresultsofthefor
commandtothefileoutput.txt.

Considerthefollowingexampleofredirectingtheoutputofaforcommandtoafile:

$cattest23 #!/bin/bash

#redirectingtheforoutputtoafile

for((a=1;a<10;a++)) do

echo"Thenumberis$a"don

e > test23.txt

echo"Thecommandisfinished."

$./test23

Thecommandisfinished.

$cattest23.txt

Thenumberis1

Thenumberis2

Thenumberis3

Thenumberis4

Thenumberis5

Thenumberis6

Thenumberis7

Thenumberis8

Thenumberis9

$

Theshellcreatesthe file test23.txtand redirects the output of the forcommand only
tothefile.Theshelldisplaystheechostatementaftertheforcommandjustasnormal.

Thissametechniquealsoworksforpipingtheoutputofalooptoanothercommand:

$cattest24 #!/bin/bash

Chapter13:MoreStructuredCommands

359

#pipingalooptoanothercommand

forstatein"NorthDakota"ConnecticutIllinoisAlabamaTennessee do

echo"$stateisthenextplacetogo"done |

sort

echo"Thiscompletesourtravels"

$./test24

Alabamaisthenextplacetogo

Connecticutisthenextplacetogo

Illinoisisthenextplacetogo

NorthDakotaisthenextplacetogo

Tennesseeisthenextplacetogo

Thiscompletesourtravels

$

The state values aren’t listed in any particular order in the forcommand list. The
outputofthe forcommand is piped to the sortcommand, which changes the order of the
for command output. Running the script indeed shows that the output was properly
sorted within the script.

PracticalExamples
Nowthatyou’veseenhowtousethedifferentwaystocreateloopsinshellscripts,let’s look at some
practical examples of how to use them. Looping is a common way to iterate
throughdataonthesystem,whetherit’sfilesinfoldersordatacontainedinafile.Hereare a couple of
examples that demonstrate using simple loops to work with data.

Findingexecutablefiles
When you run a program from the command line, the Linux system searches a series of
folders looking for that file. Those folders are defined in the PATHenvironment variable. If
you want to find out just what executable files are available on your system for you to use,
just scan all the folders in the PATHenvironment variable. That may take some time to do
manually, but it’s a breeze working out a small shell script to do that.

Thefirst step is to create a forloop to iterate through the folders stored in the PATHenvi-
ronment variable. When you do that, don’t forget to set the IFSseparator character:

IFS=:

forfolderin$PATH

do

Nowthatyouhavetheindividualfoldersinthe$foldervariable,youcanuseanother
forlooptoiteratethroughallthefilesinsidethatparticularfolder:

forfilein$folder/* do

PartII:ShellScriptingBasics

360

The last step is to check whether the individual files have the executable permission set,
which you can do using the if-thentest feature:

if[-x$file] then

echo" $file"

fi

Andthereyouhaveit!Puttingallthepiecestogetherintoascriptlookslikethis:

$cattest25

#!/bin/bash

#findingfilesinthePATH

IFS=:

forfolderin$PATH do

echo"$folder:"

forfilein$folder/* do

if[-x$file] then

echo" $file"

fi

done

done

$

When you run the code, you get a listing of the executable files that you can use from
thecommand line:

$./test25|more

/usr/local/bin:

/usr/bin:

/usr/bin/Mail

/usr/bin/Thunar

/usr/bin/X

/usr/bin/Xorg

/usr/bin/[

/usr/bin/a2p

/usr/bin/abiword

/usr/bin/ac

/usr/bin/activation-client

/usr/bin/addr2line

...

The output shows all the executable files found in all the folders defined in the PATHenvi-
ronment variable, which is quite a few!

Chapter13:MoreStructuredCommands

361

Creatingmultipleuseraccounts
The goal of shell scripts is to make life easier for the system administrator. If you happen to
work in an environment with lots of users, one of the most boring tasks can be creating new
user accounts. Fortunately, you can use the whileloop to make your job a little easier!

Instead of having to manually enter useraddcommands for every new user account you
need to create, you can place the new user accounts in a text file and create a simple shell
scripttodothatworkforyou.Theformatofthetextfilethatwe’lluselookslikethis:

userid,username

The first entry is the userid you want to use for the new user account. The second entry is
the full name of the user. The two values are separated by a comma, making this a comma-
separated file format, or .csv. This is a very common file format used in spreadsheets,
soyou can easily create the user account list in a spreadsheet program and save it in .csv
for- mat for your shell script to read and process.

To read the file data, we’re going to use a little shell scripting trick. We’ll actually set
theIFSseparatorcharacter to a comma as the test part of the whilestatement. Then to

read the individual lines, we’ll use the readcommand. That looks like this:

whileIFS=','read–ruseridname

The readcommand does the work of moving onto the next line of text in the .csv text
file,sowedon’tneedanotherlooptodothat.Thewhilecommandexitswhenthereadcommand
returns a FALSEvalue, which happens when it runs out of lines to read in the file. Tricky!

To feed the data from the file into the whilecommand, you just use a redirection symbol
at the end of the whilecommand.

Puttingeverythingtogetherresultsinthisscript:

$cattest26

#!/bin/bash

#processnewuseraccounts

input="users.csv"

whileIFS=','read-ruseridname do

echo"adding$userid"

useradd-c"$name"-m$userid

done <"$input"

$

The $inputvariablepointstothedatafileandisusedastheredirectdataforthewhile
command.Theusers.csvfilelookslikethis:

$ cat users.csv

rich,RichardBlum

PartII:ShellScriptingBasics

362

christine,ChristineBresnahan

barbara,Barbara Blum

tim,Timothy Bresnahan

$

Torunthe problem, you must be the root user account, because the useraddcommand
requires root privileges:

./test26

adding rich

addingchristine

adding barbara

adding tim

Then by taking a quick look at the /etc/passwdfile, you can see that the accounts have
been created:

#tail/etc/passwd

rich:x:1001:1001:Richard Blum:/home/rich:/bin/bash

christine:x:1002:1002:Christine Bresnahan:/home/christine:/bin/bash

barbara:x:1003:1003:Barbara Blum:/home/barbara:/bin/bash

tim:x:1004:1004:Timothy Bresnahan:/home/tim:/bin/bash

Congratulations,you’vesavedyourselflotsoftimeinaddinguseraccounts!

Summary
Looping is an integral part of programming. The bash shell provides three looping com-
mands that you can use in your scripts.

The forcommand allows you to iterate through a list of values, either supplied within the
commandline,containedinavariable,orobtainedbyusingfileglobbing,toextractfile and
directory names from a wildcard character.

The whilecommand provides a method to loop based on the condition of a command,
using either ordinary commands or the test command, which allows you to test
conditionsof variables. As long as the command (or condition) produces a zero exit status,
the while loop continues to iterate through the specified set of commands.

The untilcommand also provides a method to iterate through commands, but it bases
its iterations on a command (or condition) producing a non-zero exit status. This feature
allows you to set a condition that must be met before the iteration stops.

Chapter13:MoreStructuredCommands

363

You can combine loops in shell scripts, producing multiple layers of loops. The bash shell
providesthecontinueandbreakcommands,which allow you to alter the flow of the nor-
mal loop process based on different values within the loop.

The bash shell also allows you to use standard command redirection and piping to alter the
outputofaloop.Youcanuseredirectiontoredirecttheoutputofalooptoafileorpiping to redirect
the output of a loop to another command. This provides a wealth of featureswith which you
can control your shell script execution.

The next chapter discusses how to interact with your shell script user. Often, shell scripts
aren’t completely self-contained. They require some sort of external data that must be sup-
plied at the time you run them. The next chapter discusses different methods with whichyou
can provide real-time data to your shell scripts for processing.

S

HandlingUserInput

INTHISCHAPTER

Passing parameters

Tracking parameters

Beingshifty

Working with options

Standardizingoptions

Getting user input

o far you’ve seen how to write scripts that interact with data, variables, and files on theLinux
system. Sometimes, you need to write a script that has to interact with the person running
the script. The bash shell provides a few different methods for retrieving data from

people, including command line parameters (data values added after the command), command line
options (single-letter values that modify the behavior of the command), and the capability to read
input directly from the keyboard. This chapter discusses how to incorporate these different meth-
ods into your bash shell scripts to obtain data from the person running your script.

PassingParameters
The most basic method of passing data to your shell script is to use command line parameters.
Command line parameters allow you to add data values to the command line when you execute
the script:

$./addem1030

This example passes two command line parameters (10and 30) to the script addem. The script
handles the command line parameters using special variables. The following sections describe how
to use command line parameters in your bash shell scripts.

PartII:ShellScriptingBasics

Readingparameters
The bash shell assigns special variables, called positional parameters, to all of the command
line parameters entered. This includes the name of the script the shell is executing. The
positional parameter variables are standard numbers, with $0being the script’s name, $1

being the first parameter, $2being the second parameter, and so on, up to $9for the ninth
parameter.

Here’sasimpleexampleofusingonecommandlineparameterinashellscript:

$cattest1.sh

#!/bin/bash

#usingonecommandlineparameter #

factorial=1

for((number=1;number<=$1;number++)) do

factorial=$[$factorial*$number] done

echoThefactorialof$1is$factorial

$

$./test1.sh5

Thefactorialof5is120

$

You can use the $1variable just like any other variable in the shell script. The shell script
automatically assigns the value from the command line parameter to the variable; you don’t
need to do anything with it.

If you need to enter more command line parameters, each parameter must be separated by a
space on the command line:

$cattest2.sh

#!/bin/bash

#testingtwocommandlineparameters #

total=$[$1*$2]

echoThefirstparameteris$1.

echoThesecondparameteris$2.

echoThetotalvalueis$total.

$

$./test2.sh25

Thefirstparameteris2.

Thesecondparameteris5.

The total value is 10.

$

Theshell assigns each parameter to the appropriate variable.

Chapter14:HandlingUserInput

In the preceding example, the command line parameters used were both numerical values.
You can also use text strings in the command line:

$cattest3.sh

#!/bin/bash

#testingstringparameters #

echoHello$1,gladtomeetyou.

$

$./test3.shRich

HelloRich,gladtomeetyou.

$

The shell passes the string value entered into the command line to the script. However,
you’llhaveaproblemifyoutrytodothiswithatextstringthatcontainsspaces:

$./test3.shRichBlum

HelloRich,gladtomeetyou.

$

Remember that each of the parameters is separated by a space, so the shell interpreted the
space as just separating the two values. To include a space as a parameter value, you must
use quotation marks (either single or double quotation marks):

$./test3.sh'RichBlum'

HelloRichBlum,gladtomeetyou.

$

$./test3.sh"RichBlum"

HelloRichBlum,gladtomeetyou.

$

If your script needs more than nine command line parameters, you can continue, but the
variable names change slightly. After the ninth variable, you must use braces around the

variable number, such as ${10}. Here’s an example of doing that:

$cattest4.sh

#!/bin/bash

#handlinglotsofparameters #

total=$[${10}*${11}]

echoThetenthparameteris${10}

echoTheeleventhparameteris${11} echo

The total is $total

Thequotationmarksusedwhenyoupasstextstringsasparametersarenotpartofthedata.Theyjustdelineatethe

beginningandtheendofthedata.

PartII:ShellScriptingBasics

$

$./test4.sh123456789101112

The tenth parameter is 10

Theeleventhparameteris11 The

total is 110

$

This technique allows you to add as many command line parameters to your scripts as you
could possibly need.

Readingthescriptname
You can use the $0parameter to determine the script name the shell started from the
command line. This can come in handy if you’re writing a utility that can have
multiplefunctions.

$cattest5.sh

#!/bin/bash

#Testingthe$0parameter #

echoThezeroparameterissetto:$0 #

$

$bashtest5.sh

Thezeroparameterissetto:test5.sh

$

However, there is a potential problem. When using a different command to run the shell
script, the command becomes entangled with the script name in the $0parameter:

$./test5.sh

Thezeroparameterissetto:./test5.sh

$

There is another potential problem. When the actual string passed is the full script path,
andnotjustthescript’sname,the$0variablegetssettothefullscriptpathandname:

$bash/home/Christine/test5.sh

Thezeroparameterissetto:/home/Christine/test5.sh

$

If you want to write a script that performs different functions based on just the script’sname,
you’ll have to do a little work. You need to be able to strip off whatever path is used to run
the script. Also, you need to be able to remove any entangled commands from the script.

Fortunately,there’sahandylittlecommandavailablethatdoesjustthat.Thebasename
commandreturnsjustthescript’snamewithoutthepath:

$cattest5b.sh

#!/bin/bash

Chapter14:HandlingUserInput

#Usingbasenamewiththe$0parameter #

name=$(basename$0)

echo

echoThescriptnameis:$name #

$bash/home/Christine/test5b.sh

Thescriptnameis:test5b.sh

$

$./test5b.sh

Thescriptnameis:test5b.sh

$

Now that’s much better. You can use this technique to write scripts that perform different
functions based on the script name used. Here’s a simple example:

$cattest6.sh

#!/bin/bash

#TestingaMulti-functionscript #

name=$(basename$0)

if[$name="addem"]

then

total=$[$1+$2]

elif[$name="multem"] then

total=$[$1*$2]

fi

echo

echoThecalculatedvalueis$total #

$

$cptest6.shaddem

$chmodu+xaddem

$

$ln-stest6.shmultem

$

$ls-l*em

-rwxrw-r--.1ChristineChristine224Jun3023:50addem

lrwxrwxrwx.1ChristineChristine 8Jun3023:50multem->test6.sh

$

$./addem25

Thecalculatedvalueis7

PartII:ShellScriptingBasics

$

$./multem25

Thecalculatedvalueis10

$

Theexamplecreates two separate filenames from the test6.shscript, one by just copying
the file to a new script (addem) and the other by using a symbolic link (see Chapter 3) to
create the new script (multem). In both cases, the script determines the script’s base name
and performs the appropriate function based on that value.

Testingparameters
Be careful when using command line parameters in your shell scripts. If the script is run
without the parameters, bad things can happen:

$./addem2

./addem:line8:2+:syntaxerror:operandexpected(error token is

"")

Thecalculatedvalueis

$

Whenthescriptassumesthereisdatainaparametervariable,andnodataispresent, most likely
you’ll get an error message from your script. This is a poor way to write scripts. Always
check your parameters to make sure the data is there before using it:

$cattest7.sh

#!/bin/bash

#testingparametersbeforeuse #

if[-n"$1"] then

echoHello$1,gladtomeetyou. else

echo"Sorry,youdidnotidentifyyourself."

fi

$

$./test7.shRich

HelloRich,gladtomeetyou.

$

$./test7.sh

Sorry,youdidnotidentifyyourself.

$

In this example, the -ntest evaluation was used to check for data in the $1command
line parameter. In the next section, you’ll learn another way to check command line
parameters.

Chapter14:HandlingUserInput

UsingSpecialParameterVariables
A few special bash shell variables track command line parameters. This section describes
what they are and how to use them.

Countingparameters
As you saw in the last section, you should verify command line parameters before using
them in your script. For scripts that use multiple command line parameters, this checking
can get tedious.

Instead of testing each parameter, you can count how many parameters were entered on
the command line. The bash shell provides a special variable for this purpose.

The special $#variable contains the number of command line parameters included
whenthe script was run. You can use this special variable anywhere in the script, just like
a nor-mal variable:

$cattest8.sh

#!/bin/bash

#gettingthenumberofparameters #

echoTherewere$#parameterssupplied.

$

$./test8.sh

Therewere0parameterssupplied.

$

$./test8.sh12345

Therewere5parameterssupplied.

$

$./test8.sh12345678910

Therewere10parameterssupplied.

$

Therewere1parameterssupplied.

$

Now you have the ability to test the number of parameters present before trying to
use them:

$cattest9.sh

#!/bin/bash

#Testingparameters

if[$#-ne2] then

echo

$./test8.sh"RichBlum"

PartII:ShellScriptingBasics

echoUsage:test9.shab

echo

else

total=$[$1+$2]

echo

echoThetotalis$total

echo

fi

$

$bashtest9.sh

Usage:test9.shab

$bashtest9.sh10

Usage:test9.shab

$bashtest9.sh1015

Thetotalis25

$

Theif-thenstatementusesthe -neevaluation to perform a numeric test of the command
line parameters supplied. If the correct number of parameters isn’t present, an error mes-
sage displays showing the correct usage of the script.

This variable also provides a cool way of grabbing the last parameter on the command line
without having to know how many parameters were used. However, you need to use a little
trick to get there.

Ifyouthinkthisthrough,youmightthinkthatbecausethe$#variablecontainsthevalue of the
number of parameters, using the variable ${$#}would represent the last command line
parameter variable. Try that and see what happens:

$catbadtest1.sh

#!/bin/bash

#testinggrabbinglastparameter #

echoThelastparameterwas${$#}

$

$./badtest1.sh10

Thelastparameterwas15354

$

Wow, what happened? Obviously, something went wrong. It turns out that you can’t use the
dollar sign within the braces. Instead, you must replace the dollar sign with an exclamation
mark. Odd, but it works:

Chapter14:HandlingUserInput

$cattest10.sh

#!/bin/bash

#Grabbingthelastparameter #

params=$#

echo

echoThelastparameteris$params

echoThelastparameteris${!#} echo

$

$bashtest10.sh12345

Thelastparameteris5

Thelastparameteris5

$

$bashtest10.sh

Thelastparameteris0

Thelastparameteristest10.sh

$

Perfect.Thisscriptalsoassignedthe$#variablevaluetothevariableparamsandthen used that
variable within the special command line parameter variable format as well. Both versions
worked. It’s also important to notice that, when there weren’t any parameters
onthecommandline,the$#valuewaszero,whichiswhatappearsintheparamsvariable, but the

${!#}variable returns the script name used on the command line.

Grabbingallthedata
In some situations you want to grab all the parameters provided on the command line.
Insteadof having to mess with using the $#variable to determine how many parameters
are on the command line and having to loop through all of them, you can use a couple of
other special variables.

The$*and$@variables provide easy access to all your parameters. Both of these variables
include all the command line parameters within a single variable.

The$*variable takes all the parameters supplied on the command line as a single word.
The word contains each of the values as they appear on the command line. Basically,
instead of treating the parameters as multiple objects, the $*variable treats them all as
one parameter.

The$@variable, on the other hand, takes all the parameters supplied on the command lineas
separate words in the same string. It allows you to iterate through the values, separating out
each parameter supplied. This is most often accomplished using the forcommand.

PartII:ShellScriptingBasics

It can easily get confusing to figure out how these two variables operate. Let’s look at the
difference between the two:

$cattest11.sh

#!/bin/bash

#testing$*and$@ #

echo

echo"Usingthe\$*method:$*"echo

echo"Usingthe\$@method:$@"

$

$./test11.shrichbarbarakatiejessica

Usingthe$*method:richbarbarakatiejessica

Usingthe$@method:richbarbarakatiejessica

$

Notice that on the surface, both variables produce the same output, showing all the com-
mand line parameters provided at once.

Thefollowingexampledemonstrateswherethedifferencesare:

$cattest12.sh

#!/bin/bash

#testing$*and$@ #

echo

count=1

forparamin"$*"do

echo"\$*Parameter#$count=$param"count=$[

$count + 1]

done

echo

count=1

forparamin"$@"do

echo"\$@Parameter#$count=$param"count=$[

$count + 1]

done

$

$./test12.shrichbarbarakatiejessica

$*Parameter#1=richbarbarakatiejessica

$@Parameter#1=rich

Chapter14:HandlingUserInput

$@Parameter#2=barbara

$@Parameter#3=katie

$@Parameter#4=jessica

$

Now we’re getting somewhere. By using the forcommand to iterate through the special
variables, you can see how they each treat the command line parameters differently. The
$*variable treated all the parameters as a single parameter, while the $@variable treated
each parameter separately. This is a great way to iterate through command line parameters.

BeingShifty
Anothertool you have in your bash shell tool belt is the shiftcommand. The bash shell
provides the shiftcommand to help you manipulate command line parameters. The
shiftcommandliterallyshiftsthecommandlineparametersintheirrelativepositions.

When you use the shiftcommand, it moves each parameter variable one position to the
left by default. Thus, the value for variable $3is moved to $2, the value for variable $2is
moved to $1, and the value for variable $1is discarded (note that the value for variable
$0,theprogramname,remainsunchanged).

This is another great way to iterate through command line parameters, especially if youdon’t
know how many parameters are available. You can just operate on the first parameter, shift
the parameters over, and then operate on the first parameter again.

Here’sa short demonstration ofhow this works:

$cattest13.sh

#!/bin/bash

#demonstratingtheshiftcommand

echo

count=1

while[-n"$1"] do

echo"Parameter#$count=$1"count

=$[$count + 1]

shift

done

$

$./test13.shrichbarbarakatiejessica

Parameter #1 = rich

Parameter#2=barbara

Parameter #3 = katie

Parameter#4=jessica

$

PartII:ShellScriptingBasics

Thescript performs a whileloop, testing the length of the first parameter’s value. When
the first parameter’s length is zero, the loop ends. After testing the first parameter,
theshiftcommand is used to shift all the parameters one position.

Alternatively,youcanperformamultiplelocationshiftbyprovidingaparametertothe
shiftcommand.Justprovidethenumberofplacesyouwanttoshift:

$cattest14.sh

#!/bin/bash

#demonstratingamulti-positionshift #

echo

echo"Theoriginalparameters:$*"shift

2

echo"Here'sthenewfirstparameter:$1"

$

$./test14.sh12345

Theoriginalparameters:12345

Here'sthenewfirstparameter:3

$

Byusing values in the shiftcommand, you can easily skip over parameters you
don’t need.

WorkingwithOptions
If you’ve been following along in the book, you’ve seen several bash commands that provide
both parameters and options. Options are single letters preceded by a dash that alter the
behavior of a command. This section shows three methods for working with options in your
shell scripts.

Findingyouroptions
On the surface, there’s nothing all that special about command line options. They
appearon the command line immediately after the script name, just the same as command
line parameters. In fact, if you want, you can process command line options the same way
you process command line parameters.

Becarefulwhenworkingwiththeshiftcommand.Whenaparameterisshiftedout,itsvalueislostandcan’tbe recovered.

Chapter14:HandlingUserInput

Processingsimpleoptions

In the test13.shscript earlier, you saw how to use the shiftcommand to work your way
down the command line parameters provided with the script program. You can use this same
technique to process command line options.

Asyou extract each individual parameter, use the casestatement (see Chapter 12) to
determine when a parameter is formatted as an option:

$cattest15.sh

#!/bin/bash

#extractingcommandlineoptionsasparameters #

echo

while[-n"$1"] do

case"$1"in

-a)echo"Foundthe-aoption";;

-b)echo"Foundthe-boption";;

-c)echo"Foundthe-coption";;

*)echo"$1isnotanoption";; esac

shift

done

$

$./test15.sh-a-b-c-d

Foundthe-aoption

Foundthe-boption

Foundthe-coption

-disnotanoption

$

Thecasestatement checks each parameter for valid options. When one is found, the
appropriate commands are run in the casestatement.

This method works, no matter in what order the options are presented on the command
line:

$./test15.sh-d-c-a

-disnotanoption

Foundthe-coption

Foundthe-aoption

$

Thecasestatementprocesses each option as it finds it in the command line parameters. If
any other parameters are included on the command line, you can include commands in the
catch-all part of the casestatement to process them.

PartII:ShellScriptingBasics

Separatingoptionsfromparameters

Oftenyou’llrunintosituationswhereyou’llwanttousebothoptionsandparametersforashell
script.ThestandardwaytodothisinLinuxistoseparatethetwowithaspecialcharactercode
thattellsthescriptwhentheoptionsarefinishedandwhenthenormalparametersstart.

For Linux, this special character is the double dash (--). The shell uses the double dash to
indicate the end of the option list. After seeing the double dash, your script can safely pro-
cess the remaining command line parameters as parameters and not options.

Tocheckforthedoubledash,simplyaddanotherentryinthecasestatement:

$cattest16.sh

#!/bin/bash

#extractingoptionsandparameters

echo

while[-n"$1"] do

case"$1"in

-a)echo"Foundthe-aoption";;

-b)echo"Foundthe-boption";;

-c)echo"Foundthe-coption";;

--)shift

break;;

*)echo"$1isnotanoption";; esac

shift

done

count=1

forparamin$@ do

echo"Parameter#$count:$param"co

unt=$[$count + 1]

done

$

This script uses the breakcommand to break out of the whileloop when it encounters the
double dash. Because we’re breaking out prematurely, we need to ensure that we stick in
another shiftcommand to get the double dash out of the parameter variables.

Forthefirsttest,tryrunningthescriptusinganormalsetofoptionsandparameters:

$./test16.sh-c-a-btest1test2test3

Found the -c option

Found the -a option

Found the -b option

test1isnotanoption

Chapter14:HandlingUserInput

test2isnotanoption

test3isnotanoption

$

The results show that the script assumed that all the command line parameters were
options when it processed them. Next, try the same thing, only this time using the
doubledash to separate the options from the parameters on the command line:

$./test16.sh-c-a-b--test1test2test3

Foundthe-coption

Foundthe-aoption

Foundthe-boption

Parameter#1:test1

Parameter#2:test2

Parameter#3:test3

$

When the script reaches the double dash, it stops processing options and assumes that any
remaining parameters are command line parameters.

Processingoptionswithvalues

Some options require an additional parameter value. In these situations, the command line
looks something like this:

$./testing.sh-atest1-b-c-dtest2

Your script must be able to detect when your command line option requires an additional
parameter and be able to process it appropriately. Here’s an example of how to do that:

$cattest17.sh

#!/bin/bash

#extractingcommandlineoptionsandvalues echo

while[-n"$1"] do

case"$1"in

-a)echo"Foundthe-aoption";;

-b)param="$2"

echo"Foundthe-boption,withparametervalue$param"shift ;;

-c)echo"Foundthe-coption";;

--)shift

break;;

*)echo"$1isnotanoption";; esac

shift

done

PartII:ShellScriptingBasics

count=1

forparamin"$@"do

echo"Parameter#$count:$param"co

unt=$[$count + 1]

done

$

$./test17.sh-a-btest1-d

Foundthe-aoption

Foundthe-boption,withparametervaluetest1

-disnotanoption

$

In this example, the casestatement defines three options that it processes. The -boption
also requires an additional parameter value. Because the parameter being processed is $1,
you know that the additional parameter value is located in $2(because all the parameters
are shifted after they are processed). Just extract the parameter value from the $2vari-able.
Of course, because we used two parameter spots for this option, you also need to set the
shiftcommand to shift one additional position.

Just as with the basic feature, this process works no matter what order you place the options
in (just remember to include the appropriate option parameter with the each option):

$./test17.sh-btest1-a-d

Foundthe-boption,withparametervaluetest1 Found

the -a option

-disnotanoption

$

Now you have the basic ability to process command line options in your shell scripts, but
there are limitations. For example, this doesn’t work if you try to combine multiple options
in one parameter:

$./test17.sh-ac

-acisnotanoption

$

It is a common practice in Linux to combine options, and if your script is going to be user-
friendly, you’ll want to offer this feature for your users as well. Fortunately, there’s another
method for processing options that can help you.

Usingthegetoptcommand
Thegetoptcommandisagreattooltohavehandywhenprocessingcommandlineoptionsand
parameters. It reorganizes the command line parameters to make parsing them in your script
easier.

Chapter14:HandlingUserInput

Lookingatthecommandformat

Thegetoptcommandcan take a list of command line options and parameters, in any form,
and automatically turn them into the proper format. It uses the following command format:

getoptoptstringparameters

The optstringis the key to the process. It defines the valid option letters that can be
used in the command line. It also defines which option letters require a parameter value.

First,listeachcommandlineoptionletteryou’regoingtouseinyourscriptinthe

optstring.Thenplaceacolonaftereachoptionletterthatrequiresaparametervalue.
Thegetoptcommandparsesthesuppliedparametersbasedontheoptstringyoudefine.

Here’sasimpleexampleofhowgetoptworks:

$getoptab:cd-a-btest1-cdtest2test3

-a-btest1-c-d--test2test3

$

The optstringdefines four valid option letters, a, b, c, and d. A colon (:) is placed behind
theletter bin order to require option bto have a parameter value. When the getoptcom-
mand runs, it examines the provided parameter list (-a-btest1-cdtest2test3) and
parses it based on the supplied optstring. Notice that it automatically separated the
-cdoptionsinto two separate options and inserted the double dash to separate the addi-
tional parameters on the line.

Ifyouspecifyaparameteroptionnotintheoptstring,bydefaultthegetoptcommand

$getoptab:cd-a-btest1-cdetest2test3

getopt:invalidoption--e

-a-btest1-c-d--test2test3

$

Ifyouprefertojustignoretheerrormessages,usegetoptwiththe-qoption:

$getopt-qab:cd-a-btest1-cdetest2test3

-a-b'test1'-c-d--'test2''test3'

$

Notethatthegetoptcommand optionsmustbelistedbeforetheoptstring.Nowyou should
be ready to use this command in your scripts to process command line options.

producesanerrormessage:

A more advanced version of the getoptcommand, called getopts(notice it is plural), is available. The getopts

command is covered later in this chapter. Because of their nearly identical spelling, it’s easy to get these two com-mands

confused. Be careful!

PartII:ShellScriptingBasics

Usinggetoptinyourscripts

Youcan use the getoptcommand in your scripts to format any command line options or
parameters entered for your script. It’s a little tricky, however, to use.

The trick is to replace the existing command line options and parameters with the for-
mattedversion produced by the getoptcommand. The way to do that is to use the set
command.

Yousawthesetcommandback in Chapter 6. The setcommand works with the different
variables in the shell.

Oneofthesetcommandoptionsis the double dash (--). The double dash instructs setto
replacethecommandline parameter variables with the values on the setcommand’s com-
mand line.

The trick then is to feed the original script command line parameters to the getoptcom-
mand and then feed the output of the getoptcommand to the setcommand to replace
the original command line parameters with the nicely formatted ones from getopt. This
looks something like this:

set--$(getopt-qab:cd"$@")

Now the values of the original command line parameter variables are replaced with the out-
put from the getoptcommand, which formats the command line parameters for us.

Using this technique, we can now write scripts that handle our command line parameters
for us:

$cattest18.sh

#!/bin/bash

#Extractcommandlineoptions&valueswithgetopt #

set--$(getopt-qab:cd"$@") #

echo

while[-n"$1"] do

case"$1"in

-a)echo"Foundthe-aoption";;

-b)param="$2"

echo"Foundthe-boption,withparametervalue$param"shift ;;

-c)echo"Foundthe-coption";;

--)shift

break;;

*)echo"$1isnotanoption";; esac

shift

Chapter14:HandlingUserInput

done

count=1

forparamin"$@"do

echo"Parameter#$count:$param"co

unt=$[$count + 1]

done

$

You’ll notice this is basically the same script as in test17.sh. The only thing that changed
is the addition of the getoptcommand to help format our command line parameters.

Nowwhenyourunthescriptwithcomplexoptions,thingsworkmuchbetter:

$./test18.sh-ac

Foundthe-aoption

Foundthe-coption

$

Andofcourse,alltheoriginalfeaturesworkjustfineaswell:

$./test18.sh-a-btest1-cdtest2test3test4

Foundthe-aoption

Foundthe-boption,withparametervalue'test1'Found

the -c option

Parameter#1:'test2'

Parameter#2:'test3'

Parameter#3:'test4'

$

Nowthingsarelookingprettyfancy.However,there’sstillonesmallbugthatlurksinthe
getoptcommand.Checkoutthisexample:

$./test18.sh-a-btest1-cd"test2test3"test4

Foundthe-aoption

Foundthe-boption,withparametervalue'test1'Found

the -c option

Parameter#1:'test2

Parameter#2:test3'

Parameter#3:'test4'

$

Thegetoptcommandisn’t good at dealing with parameter values with spaces and quota-
tion marks. It interpreted the space as the parameter separator, instead of following the

PartII:ShellScriptingBasics

double quotation marks and combining the two values into one parameter. Fortunately, this
problem has another solution.

Advancingtogetopts
The getoptscommand (notice that it is plural) is built into the bash shell. It looks much
like its getoptcousin, but has some expanded features.

Unlike getopt, which produces one output for all the processed options and parameters
foundin the command line, the getoptscommand works on the existing shell parameter
variables sequentially.

It processes the parameters it detects in the command line one at a time each time it’s
called. When it runs out of parameters, it exits with an exit status greater than zero.
Thismakes it great for using in loops to parse all the parameters on the command line.

Here’stheformatofthegetoptscommand:

getoptsoptstringvariable

Theoptstringvalueis similar to the one used in the getoptcommand. Valid option let-
ters are listed in the optstring, along with a colon if the option letter requires a param-
eter value. To suppress error messages, start the optstringwith a colon. The getopts
command places the current parameter in the variabledefined in the command line.

Thegetoptscommandusestwoenvironmentvariables.TheOPTARGenvironmentvariable
containsthe value to be used if an option requires a parameter value. The OPTINDenviron-
ment variable contains the value of the current location within the parameter list where
getoptsleft off. This allows you to continue processing other command line parameters
after finishing the options.

Let’slookatasimpleexamplethatusesthegetoptscommand:

$cattest19.sh

#!/bin/bash

#simpledemonstrationofthegetoptscommand #

echo

whilegetopts:ab:copt do

case"$opt"in

a) echo"Foundthe-aoption";;

b) echo"Foundthe-boption,withvalue$OPTARG";;
c) echo"Foundthe-coption";;

*)echo"Unknownoption:$opt";; esac

done

$

Chapter14:HandlingUserInput

$./test19.sh-abtest1-c

Foundthe-aoption

Foundthe-boption,withvaluetest1

Found the -c option

$

The whilestatement defines the getoptscommand, specifying what command line
options to look for, along with the variable name (opt) to store them in for each iteration.

You’ll notice something different about the casestatement in this example. When the
getoptscommand parses the command line options, it strips off the leading dash, so you
don’t need leading dashes in the casedefinitions.

Thegetoptscommandoffers several nice features. For starters, you can include spaces in
your parameter values:

$./test19.sh-b"test1test2"-a

Foundthe-boption,withvaluetest1test2

Found the -a option

$

Another nice feature is that you can run the option letter and the parameter value together
without a space:

$./test19.sh-abtest1

Foundthe-aoption

Foundthe-boption,withvaluetest1

$

Thegetoptscommandcorrectlyparsedthe test1value from the -boption. In addition, the
getoptscommand bundles any undefined option it finds in the command line into a single
output, the question mark:

$./test19.sh-d

Unknownoption:?

$

$./test19.sh-acde

Foundthe-aoption

Foundthe-coption

Unknown option: ?

Unknownoption:?

$

Any option letter not defined in the optstringvalue is sent to your code as a
question mark.

PartII:ShellScriptingBasics

Thegetoptscommandknows when to stop processing options and leave the parameters
foryoutoprocess.As getoptsprocesses each option, it increments the OPTINDenviron-
ment variable by one. When you’ve reached the end of the getoptsprocessing, you can
use the OPTINDvalue with the shiftcommand to move to the parameters:

$cattest20.sh

#!/bin/bash

#Processingoptions¶meterswithgetopts #

echo

whilegetopts:ab:cdopt do

case"$opt"in

a) echo"Foundthe-aoption";;

b) echo"Foundthe-boption,withvalue$OPTARG";;
c) echo"Foundthe-coption";;

d) echo"Foundthe-doption";;

*)echo"Unknownoption:$opt";; esac

done

shift$[$OPTIND-1] #

echo

count=1

forparamin"$@"do

echo"Parameter$count:$param"co

unt=$[$count + 1]

done

$

$./test20.sh-a-btest1-dtest2test3test4

Foundthe-aoption

Foundthe-boption,withvaluetest1

Found the -d option

Parameter1:test2

Parameter2:test3

Parameter3:test4

$

Now you have a full-featured command line option and parameter processing utility you
can use in all your shell scripts!

Chapter14:HandlingUserInput

StandardizingOptions
When you create your shell script, obviously you’re in control of what happens. It’s
completely up to you as to which letter options you select to use and how you select to
use them.

However,afewletteroptionshaveachievedasomewhatstandardmeaninginthe Linux world.
If you leverage these options in your shell script, your scripts will be more user-friendly.

Table14-1showssomeofthecommonmeaningsforcommandlineoptionsusedinLinux.

TABLE14-1 CommonLinuxCommandLineOptions

-a Showsallobjects

-c Producesacount

-d Specifiesadirectory

-e Expandsanobject

-f Specifiesafiletoreaddatafrom

-h Displaysahelpmessageforthecommand

-i Ignorestextcase

-l Producesalongformatversionoftheoutput

-n Usesanon-interactive(batch)mode

-o Specifiesanoutputfiletoredirectalloutputto

-q Runsinquietmode

-r Processesdirectoriesandfilesrecursively

-s Runsinsilentmode

-v Producesverboseoutput

-x Excludesanobject

-y Answersyestoallquestions

You’ll probably recognize most of these option meanings just from working with the various
bashcommandsthroughoutthebook. Using the same meaning for your options helps users
interact with your script without having to worry about manuals.

Option Description

PartII:ShellScriptingBasics

GettingUserInput
Although providing command line options and parameters is a great way to get data from
your script users, sometimes your script needs to be more interactive. Sometimes you need
to ask a question while the script is running and wait for a response from the person run-
ning your script. The bash shell provides the readcommand just for this purpose.

Readingbasics
Thereadcommandaccepts input either from standard input (such as from the keyboard)
or from another file descriptor. After receiving the input, the readcommand places the
data into a variable. Here’s the readcommand at its simplest:

$cattest21.sh

#!/bin/bash

#testingthereadcommand #

echo-n"Enteryourname:"read

name

echo"Hello$name,welcometomyprogram."#

$

$./test21.sh

Enteryourname:RichBlum

HelloRichBlum,welcometomyprogram.

$

That’s pretty simple. Notice that the echocommand that produced the prompt uses the -n
option. This suppresses the newline character at the end of the string, allowing the script
user to enter data immediately after the string, instead of on the next line. This gives
yourscripts a more form-like appearance.

Infact, the readcommand includes the -poption, which allows you to specify a prompt
directly in the readcommand line:

$cattest22.sh

#!/bin/bash

#testingtheread-poption #

read-p"Pleaseenteryourage:"age days=$[

$age * 365]

echo"Thatmakesyouover$daysdaysold!"#

$

$./test22.sh

Pleaseenteryourage:10

Thatmakesyouover3650daysold!

$

Chapter14:HandlingUserInput

You’llnotice in the first example that when a name was entered, the readcommand
assignedboththefirstnameandlastnametothesamevariable.Thereadcommand
assigns all data entered at the prompt to a single variable, or you can specify multiple vari-
ables. Each data value entered is assigned to the next variable in the list. If the list of vari-
ables runs out before the data does, the remaining data is assigned to the last variable:

$cattest23.sh

#!/bin/bash

#enteringmultiplevariables #

read-p"Enteryourname:"firstlast

echo"Checkingdatafor$last,$first…"

$

$./test23.sh

Enteryourname:RichBlum

CheckingdataforBlum,Rich...

$

Youcanalsospecify no variables on the readcommand line. If you do that, the readcom-
mand places any data it receives in the special environment variable REPLY:

$cattest24.sh

#!/bin/bash

#TestingtheREPLYEnvironmentvariable #

read-p"Enteryourname:"echo

echoHello$REPLY,welcometomyprogram. #

$

$./test24.sh

Enteryourname:Christine

HelloChristine,welcometomyprogram.

The REPLYenvironment variable contains all the data entered in the input, and it can be
used in the shell script as any other variable.

Timingout
Be careful when using the readcommand. Your script may get stuck waiting for the script
user to enter data. If the script must go on regardless of whether any data was entered, you
can use the -toption to specify a timer. The -toption specifies the number of seconds for
thereadcommand to wait for input. When the timer expires, the readcommand returns a
non-zero exit status:

$cattest25.sh

#!/bin/bash

$

PartII:ShellScriptingBasics

#timingthedataentry #

ifread-t5-p"Pleaseenteryourname:"name then

echo"Hello$name,welcometomyscript" else

echo

echo"Sorry,tooslow!"

fi

$

$./test25.sh

Pleaseenteryourname:Rich

HelloRich,welcometomyscript

$

$./test25.sh

Pleaseenteryourname:

Sorry,tooslow!

$

Because the readcommand exits with a non-zero exit status if the timer expires, it’s
easytousethe standard structured statements, such as an if-thenstatement or a
whileloop totrackwhathappened.Inthisexample,whenthetimerexpires,theifstatementfails,
and the shell executes the commands in the elsesection.

Insteadof timing the input, you can also set the readcommand to count the input charac-
ters. When a preset number of characters has been entered, it automatically exits, assigning
the entered data to the variable:

$cattest26.sh

#!/bin/bash

#gettingjustonecharacterofinput #

read-n1-p"Doyouwanttocontinue[Y/N]?"answer case

$answer in

Y|y)echo

echo"fine,continueon…";;

N|n)echo

echoOK,goodbye

exit;;

esac

echo"Thisistheendofthescript"

$

$./test26.sh

Doyouwanttocontinue[Y/N]?Y

fine,continueon…

Thisistheendofthescript

$

$./test26.sh

Chapter14:HandlingUserInput

Doyouwanttocontinue[Y/N]?n

OK,goodbye

$

This example uses the -noption with the value of 1, instructing the readcommand to
accept only a single character before exiting. As soon as you press the single character to
answer,the readcommand accepts the input and passes it to the variable. You don’t need
to press the Enter key.

Readingwithnodisplay
Sometimes you need input from the script user, but you don’t want that input to display on
the monitor. The classic example is when entering passwords, but there are plenty of other
types of data that you need to hide.

The-soptionprevents the data entered in the readcommand from being displayed on the
monitor; actually, the data is displayed, but the readcommand sets the text color to the
same as the background color. Here’s an example of using the -soption in a script:

$cattest27.sh

#!/bin/bash

#hidinginputdatafromthemonitor #

read-s-p"Enteryourpassword:"pass echo

echo"Isyourpasswordreally$pass?"

$

$./test27.sh

Enteryourpassword:

IsyourpasswordreallyT3st1ng?

$

The data typed at the input prompt doesn’t appear on the monitor but is assigned to the
variable for use in the script.

Readingfromafile
Finally, you can also use the readcommand to read data stored in a file on the Linux sys-
tem. Each call to the readcommand reads a single line of text from the file. When no more
linesareleftinthefile,thereadcommandexitswithanon-zeroexitstatus.

The tricky part is getting the data from the file to the readcommand. The most common
methodisto pipethe result of the catcommand of the file directly to a whilecommand
that contains the readcommand. Here’s an example:

$cattest28.sh

#!/bin/bash

PartII:ShellScriptingBasics

#readingdatafromafile #

count=1

cattest|whilereadline do

echo"Line$count:$line"count=$

[$count + 1]

done

echo"Finishedprocessingthefile"

$

$cattest

Thequickbrowndogjumpsoverthelazyfox.

Thisisatest,thisisonlyatest.

ORomeo,Romeo!WhereforeartthouRomeo?

$

$./test28.sh

Line1:Thequickbrowndogjumpsoverthelazyfox.

Line2:Thisisatest,thisisonlyatest.

Line3:ORomeo,Romeo!WhereforeartthouRomeo?

Finishedprocessingthefile

$

Thewhilecommandloop continues processing lines of the file with the readcommand,
until the readcommand exits with a non-zero exit status.

Summary
Thischaptershowedthreemethodsforretrievingdatafromthescriptuser.Command line
parameters allow users to enter data directly on the command line when they run the
script. The script uses positional parameters to retrieve the command line parameters and
assign them to variables.

The shiftcommand allows you to manipulate the command line parameters by rotating
them within the positional parameters. This command allows you to easily iterate through
the parameters without knowing how many parameters are available.

You can use three special variables when working with command line parameters. The shell
sets the $#variable to the number of parameters entered on the command line. The $*

variable contains all the parameters as a single string, and the $@variable contains all the
parametersasseparatewords.Thesevariablescomeinhandywhenyou’retryingtoprocess long
parameter lists.

Besides parameters, your script users can use command line options to pass information to
your script. Command line options are single letters preceded by a dash. Different options
can be assigned to alter the behavior of your script.

Chapter14:HandlingUserInput

Thebashshellprovidesthreewaystohandlecommandlineoptions.

The first way is to handle them just like command line parameters. You can iterate through
the options using the positional parameter variables, processing each option as it
appearson the command line.

Anotherway to handle command line options is with the getoptcommand. This command
converts command line options and parameters into a standard format that you can process
in your script. The getoptcommand allows you to specify which letters it recognizes as
options and which options require an additional parameter value. The getoptcommand
processes the standard command line parameters and outputs the options and parametersin
the proper order.

The final method for handling command line options is via the getoptscommand (note
that it’s plural). The getoptscommand provides more advanced processing of the com-
mand line parameters. It allows for multi-value parameters, along with identifying options
not defined by the script.

An interactive method to obtain data from your script users is the readcommand. The
readcommandallowsyourscriptstoqueryusersforinformationandwait.Thereadcom- mand
places any data entered by the script user into one or more variables, which you can use
within the script.

Severaloptions are available for the readcommand that allow you to customize the data
input into your script, such as using hidden data entry, applying timed data entry,
andrequesting a specific number of input characters.

In the next chapter, we look further into how bash shell scripts output data. So far,
you’veseen how to display data on the monitor and redirect it to a file. Next, we explore a
fewotheroptionsthatyouhaveavailablenotonlytodirectdatatospecificlocationsbutalso to
direct specific types of data to specific locations. This will help make your shell scripts look
professional!

A

ScriptControl

INTHISCHAPTER

Handlingsignals

Runningscriptsinthebackground

Forbiddinghang-ups

Controlling a Job

Modifying script priority

Automatingscriptexecution

syoustartbuildingadvancedscripts,you’llprobablywonderhowtorunandcontrolthem on your
Linux system. So far in this book, the only way we’ve run scripts is directly from the command
line interface in real-time mode. This isn’t the only way to run scripts in Linux.

Quite a few options are available for running your shell scripts. There are also options for control-
ling your scripts. Various control methods include sending signals to your script, modifying a
script’s priority, and switching the run mode while a script is running. This chapter examines the
different ways you can control your shell scripts.

HandlingSignals
Linux uses signals to communicate with processes running on the system. Chapter 4 described the
different Linux signals and how the Linux system uses these signals to stop, start, and kill pro-cesses.
You can control the operation of your shell script by programming the script to perform cer- tain
commands when it receives specific signals.

Signalingthebashshell
There are more than 30 Linux signals that can be generated by the system and applications. Table 16-1
lists the most common Linux system signals that you’ll run across in your shell script writing.

419

PartII:ShellScriptingBasics

TABLE16-1 LinuxSignals

Signal Value Description

1 SIGHUP Hangsuptheprocess

2 SIGINT Interrupts theprocess

3 SIGQUIT Stopstheprocess

9 SIGKILL Unconditionallyterminatestheprocess

15 SIGTERM Terminatestheprocessifpossible

17 SIGSTOP Unconditionallystops,butdoesn’tterminate,theprocess

18 SIGTSTP Stopsor pausestheprocess,butdoesn’tterminate

19 SIGCONT Continuesastoppedprocess

Bydefault,the bash shell ignores any SIGQUIT(3)and SIGTERM(15)signals it receives
(soaninteractiveshellcannotbeaccidentallyterminated).However,thebashshelldoes
notignoreanySIGHUP (1)andSIGINT (2)signalsitreceives.

If the bash shell receives a SIGHUPsignal, such as when you leave an interactive shell, it
exits. Before it exits, however, it passes the SIGHUPsignal to any processes started by the
shell, including any running shell scripts.

Witha SIGINTsignal, the shell is just interrupted. The Linux kernel stops giving the shell
processingtimeon the CPU. When this happens, the shell passes the SIGINTsignal to any
processes started by the shell to notify them of the situation.

As you probably have noticed, the shell passes these signals on to your shell script program
for processing. However, a shell script’s default behavior does not govern these
signals,which may have an adverse effect on the script’s operation. To avoid this situation,
you can program your script to recognize signals and perform commands to prepare the
script forthe consequences of the signal.

Generatingsignals
The bash shell allows you to generate two basic Linux signals using key combinations on
thekeyboard.Thisfeaturecomesinhandyifyouneedtostoporpausearunawayscript.

Interruptingaprocess

The Ctrl+C key combination generates a SIGINTsignal and sends it to any processes cur-
rently running in the shell. You can test this by running a command that normally takes
along time to finish and pressing the Ctrl+C key combination:

$sleep100

^C

$

TheCtrl+Ckey combination sends a SIGINTsignal, which simply stops the current process
running in the shell. The sleepcommand pauses the shell’s operation for the specified
number of seconds and returns the shell prompt. By pressing the Ctrl+C key combination
before the time passed, the sleepcommand terminated prematurely.

Pausingaprocess

Instead of terminating a process, you can pause it in the middle of whatever it’s doing.
Sometimes,thiscanbeadangerousthing(forexample,ifascripthasafilelockopenon a crucial
system file), but often it allows you to peek inside what a script is doing without actually
terminating the process.

TheCtrl+Z key combination generates a SIGTSTPsignal, stopping any processes running in
theshell.Stoppingaprocessisdifferentthanterminatingtheprocess.Stoppingtheprocess leaves
the program in memory and able to continue running from where it left off. In the
“Controlling the Job” section later in this chapter, you learn how to restart a process that’s
been stopped.

When you use the Ctrl+Z key combination, the shell informs you that the process has been
stopped:

$sleep100

^Z

[1]+Stopped sleep100

$

Thenumber in the square brackets is the jobnumberassigned by the shell. The shell refers to
each process running in the shell as a job and assigns each job a unique job number within

the current shell. It assigns the first started process job number 1, the second job number 2,
and so on.

If you have a stopped job assigned to your shell session, bash warns you if you try to exit
the shell:

$sleep100

^Z

[1]+Stopped sleep100

$exit

exit

Therearestoppedjobs.

$

Youcanviewthestoppedjobsusingthepscommand:

$sleep100

^Z

[1]+Stopped sleep100

$

$ps-l

PartII:ShellScriptingBasics

F S UID PID PPID C PRI NI ADDRSZ WCHAN TTY TIME CMD

0 S 501 2431 2430 0 80 0 -27118 wait pts/0 00:00:00 bash

0 T 501 2456 2431 0 80 0 -25227 signal pts/0 00:00:00 sleep

0 R 501 2458 2431 0 80 0 -27034 - pts/0 00:00:00 ps

$

IntheScolumn(process state), the pscommand shows the stopped job’s state as T. This
indicates the command is either being traced or is stopped.

If you really want to exit the shell with a stopped job still active, just type the exitcom-
mand again. The shell exits, terminating the stopped job. Alternately, now that you know
the PID of the stopped job, you can use the killcommand to send a SIGKILLsignal to
terminate it:

$kill-92456

$

[1]+Killed sleep100

$

When you kill the job, initially you don’t get any response. However, the next time you do
something that produces a shell prompt (such as pressing the Enter key), you’ll see a message
indicating that the job was killed. Each time the shell produces a prompt, it also displays the
status of any jobs that have changed states in the shell. After you kill a job, the next
timeyouforcetheshelltoproduceaprompt,itdisplaysamessageshowingthatthejobwaskilled
while running.

Trappingsignals
Instead of allowing your script to leave signals ungoverned, you can trap them when they
appear and perform other commands. The trapcommand allows you to specify which
Linux signals your shell script can watch for and intercept from the shell. If the script
receives a signal listed in the trapcommand, it prevents it from being processed by the
shell and instead handles it locally.

Theformatofthetrapcommandis:

trapcommands signals

On the trapcommand line, you just list the commands you want the shell to execute,
along with a space-separated list of signals you want to trap. You can specify the signals
either by their numeric value or by their Linux signal name.

Here’sasimpleexample of using the trapcommand to capture the SIGINTsignal and gov- ern
the script’s behavior when the signal is sent:

$cattest1.sh

#!/bin/bash

#Testingsignaltrapping #

trap"echo'Sorry!IhavetrappedCtrl-C'"SIGINT #

echoThisisatestscript #

count=1

while[$count-le10] do

echo"Loop#$count"s

leep 1

count=$[$count+1] done

echo"Thisistheendofthetestscript"#

The trapcommand used in this example displays a simple text message each time it
detects the SIGINTsignal. Trapping this signal makes this script impervious to the user
attempting to stop the program by using the bash shell keyboard Ctrl+C command:

$./test1.sh

Thisisatestscript

Loop #1

Loop#2

Loop#3

Loop#4

Loop#5

^CSorry!IhavetrappedCtrl-C

Loop #6

Loop#7

Loop#8

^CSorry!IhavetrappedCtrl-C

Loop #9

Loop#10

Thisistheendofthetestscript

$

Each time the Ctrl+C key combination was used, the script executed the echostatement
specified in the trapcommand instead of not managing the signal and allowing the
shellto stop the script.

Trappingascriptexit
Besides trapping signals in your shell script, you can trap them when the shell script exits.
This is a convenient way to perform commands just as the shell finishes its job.

Totraptheshellscriptexiting,justaddtheEXITsignaltothetrapcommand:

$cattest2.sh

#!/bin/bash

PartII:ShellScriptingBasics

#Trappingthescriptexit #

trap"echoGoodbye..."EXIT #

count=1

while[$count-le5] do

echo"Loop#$count"s

leep 1

count=$[$count+1] done

$

$./test2.sh

Loop#1

Loop#2

Loop#3

Loop#4

Loop #5

Goodbye...

$

When the script gets to the normal exit point, the trap is triggered, and the shell
executesthecommandyouspecifyonthe trapcommand line. The EXITtrap also works if you
pre- maturely exit the script:

$./test2.sh

Loop#1

Loop#2

Loop#3

^CGoodbye...

$

Because the SIGINTsignal isn’t listed in the trapcommand list, when the Ctrl+C key
combination is used to send that signal, the script exits. However, before the script
exits,because the EXITis trapped, the shell executes the trapcommand.

Modifyingorremovingatrap
Tohandletrapsdifferentlyinvarioussectionsofyourshellscript,yousimplyreissuethe
trapcommandwithnewoptions:

$cattest3.sh

#!/bin/bash

#Modifyingasettrap #

trap"echo'Sorry...Ctrl-Cistrapped.'"SIGINT

count=1

while[$count-le5] do

echo"Loop#$count"s

leep 1

count=$[$count+1] done

trap"echo'Imodifiedthetrap!'"SIGINT #

count=1

while[$count-le5] do

echo"SecondLoop#$count"sleep

1

count=$[$count+1] done

$

After the signal trap is modified, the script manages the signal or signals
differently.However, if a signal is received before the trap is modified, the script processes
it per the originaltrapcommand:

$./test3.sh

Loop#1

Loop#2

Loop#3

^CSorry...Ctrl-Cistrapped. Loop

#4

Loop#5

SecondLoop#1

SecondLoop#2

^CImodifiedthetrap!

Second Loop #3

SecondLoop#4

SecondLoop#5

$

Youcan also remove a set trap. Simply add two dashes after the trapcommand and a list
of the signals you want to return to default behavior:

$cattest3b.sh

#!/bin/bash

#Removingasettrap #

trap"echo'Sorry...Ctrl-Cistrapped.'"SIGINT #

PartII:ShellScriptingBasics

count=1

while[$count-le5] do

echo"Loop#$count"s

leep 1

count=$[$count+1] done

#Removethetrap

trap -- SIGINT

echo"Ijustremovedthetrap"#

count=1

while[$count-le5] do

echo"SecondLoop#$count"sleep

1

count=$[$count+1] done

$./test3b.sh

Loop#1

Loop#2

Loop#3

Loop#4

Loop#5

Ijustremovedthetrap

Second Loop #1

SecondLoop#2

SecondLoop#3

^C

$

After the signal trap is removed, the script handles the SIGINTsignal in its default man-
ner, terminating the script. However, if a signal is received before the trap is removed, the
script processes it per the original trapcommand:

$./test3b.sh

Loop#1

Loop#2

Loop#3

^CSorry...Ctrl-Cistrapped. Loop

#4

Youcanuseasingledashinsteadofadoubledashafterthetrapcommandtoreturnsignalstotheirdefaultbehav- ior. Both the

single and double dash work properly.

Loop#5

Ijustremovedthetrap

Second Loop #1

SecondLoop#2

^C

$

In this example, the first Ctrl+C key combination was used to attempt to terminate thescript
prematurely. Because the signal was received before the trap was removed, the script
executed the command specified in the trap. After the script executed the trap removal,then
Ctrl+C could prematurely terminate the script.

RunningScriptsinBackgroundMode
Sometimes, running a shell script directly from the command line interface is inconve-
nient. Some scripts can take a long time to process, and you may not want to tie up
thecommand line interface waiting. While the script is running, you can’t do anything
else inyour terminal session. Fortunately, there’s a simple solution to that problem.

When you use the pscommand, you see a whole bunch of different processes running
ontheLinuxsystem.Obviously,alltheseprocessesarenotrunningonyourterminalmoni-
tor.Thisiscalledrunningprocessesinthebackground.Inbackgroundmode,aprocessruns

without being associated with a STDIN, STDOUT, and STDERRon a terminal session (see
Chapter 15).

You can exploit this feature with your shell scripts as well, allowing them to run behind
the scenes and not lock up your terminal session. The following sections describe how to
run your scripts in background mode on your Linux system.

Runninginthebackground
Running a shell script in background mode is a fairly easy thing to do. To run a shell scriptin
background mode from the command line interface, just place an ampersand symbol (&)
after the command:

$cattest4.sh

#!/bin/bash

#Testrunninginthebackground #

count=1

while[$count-le10] do

sleep1

count=$[$count+1] done

PartII:ShellScriptingBasics

$

$./test4.sh&

[1]3231

$

When you place the ampersand symbol after a command, it separates the command from
the bash shell and runs it as a separate background process on the system. The first thing
that displays is the line:

[1]3231

The number in the square brackets is the job number assigned by the shell to the back-
ground process. The next number is the Process ID (PID) the Linux system assigns to the
process. Every process running on the Linux system must have a unique PID.

As soon as the system displays these items, a new command line interface prompt appears.
You are returned to the shell, and the command you executed runs safely in background
mode. At this point, you can enter new commands at the prompt.

Whenthebackgroundprocessfinishes,itdisplaysamessageontheterminal:

[1] Done ./test4.sh

This shows the job number and the status of the job (Done), along with the command used
to start the job.

Be aware that while the background process is running, it still uses your terminal monitor
forSTDOUTandSTDERRmessages:

$cattest5.sh

#!/bin/bash

#Testrunninginthebackgroundwithoutput #

echo"Startthetestscript"count=1

while[$count-le5] do

echo"Loop#$count"s

leep 5

count=$[$count+1] done

echo"Testscriptiscomplete"#

$

$./test5.sh&

[1]3275

$Startthetestscript

Loop #1

Loop#2

Loop#3

Loop#4

Loop#5

Testscriptiscomplete

[1] Done ./test5.sh

$

You’ll notice from the example that the output from the test5.shscript displays. The
outputintermixeswith the shell prompt, which is why Startthetestscriptappears next
to the $prompt.

Youcanstillissuecommandswhilethisoutputisoccurring:

$./test5.sh&

[1]3319

$Startthetestscript

Loop #1

Loop#2

Loop#3

lsmyprog*

myprogmyprog.c

$Loop#4

Loop#5

Testscriptiscomplete

[1]+Done ./test5.sh

$$

While the test5.shscript is running in the background, the command lsmyprog* was
entered. The script’s output, the typed command, and the command’s output all inter-
mixed with each other’s output display. This can be confusing! It is a good idea to redirect
STDOUTand STDERRfor scripts you will be running in the background (Chapter 15) to
avoid this messy output.

Runningmultiplebackgroundjobs
You can start any number of background jobs at the same time from the command line
prompt:

$./test6.sh&

[1]3568

$ThisisTestScript#1

$./test7.sh&

PartII:ShellScriptingBasics

[2]3570

$ThisisTestScript#2

$./test8.sh&

[3]3573

$And...anotherTestscript

$./test9.sh&

[4]3576

$Then...therewasonemoretestscript

$

Each time you start a new job, the Linux system assigns it a new job number and PID. You
can see that all the scripts are running using the pscommand:

$ps

PIDTTY TIMECMD

2431pts/0 00:00:00bash

3568pts/0 00:00:00test6.sh

3570pts/0 00:00:00test7.sh

3573pts/0 00:00:00test8.sh

3574pts/0 00:00:00sleep

3575pts/0 00:00:00sleep

3576pts/0 00:00:00test9.sh

3577pts/0 00:00:00sleep

3578pts/0 00:00:00sleep

3579pts/0 00:00:00ps

$

Youmustbecarefulwhenusingbackgroundprocessesfromaterminalsession.Noticeinthe output
from the pscommand that each of the background processes is tied to the terminal session
(pts/0) terminal. If the terminal session exits, the background process also exits.

If you want your script to continue running in background mode after you have logged
offthe console, there’s something else you need to do. The next section discusses that
process.

RunningScriptswithoutaHang-Up
Sometimes, you may want to start a shell script from a terminal session and let the script
run in background mode until it finishes, even if you exit the terminal session. You can
dothis by using the nohupcommand.

Earlierinthischapterwementionedthatwhenyouattempttoexitaterminalsession,awarningisissuedifthere

arestoppedprocesses.However,withbackgroundprocesses,onlysometerminalemulatorsremindyouthataback-ground job is

running, before you attempt to exit the terminal session.

Thenohupcommandrunsanother command blocking any SIGHUPsignals that are sent to
the process. This prevents the process from exiting when you exit your terminal session.

Theformatusedfor the nohupcommand isas follows:

$nohup./test1.sh&

[1]3856

$nohup:ignoringinputandappendingoutputto'nohup.out'

$

As with a normal background process, the shell assigns the command a job number, and the
Linux system assigns a PID number. The difference is that when you use the nohupcom-
mand, the script ignores any SIGHUPsignals sent by the terminal session if you close the
session.

Becausethenohupcommand disassociates the process from the terminal, the process loses
the STDOUTand STDERRoutput links. To accommodate any output generated by the com-
mand,thenohupcommandautomaticallyredirectsSTDOUTandSTDERRmessagestoafile, called
nohup.out.

The nohup.outfile contains all the output that would normally be sent to the terminal
monitor. After the process finishes running, you can view the nohup.outfile for the out-
put results:

$catnohup.out

This isatestscript

Loop 1

Loop 2

Loop 3

Loop 4

Loop 5

Loop 6

Loop 7

Loop 8

Loop 9

Loop 10

This istheendofthetestscript

$

Theoutputappearsinthenohup.outfilejustasiftheprocessranonthecommandline.

Ifyourunanothercommandusingnohup,theoutputisappendedtotheexisting nohup.outfile.Becarefulwhen running

multiple commands from the same directory, because all the output is sent to the same nohup.outfile, which can

get confusing.

PartII:ShellScriptingBasics

ControllingtheJob
Earlier in this chapter, you saw how to use the Ctrl+C key combination to stop a job run-
ningintheshell.Afteryoustopajob,theLinuxsystemletsyoueitherkillorrestartit. Youcan kill the
process by using the killcommand. Restarting a stopped process requires that you send it

a SIGCONTsignal.

The function of starting, stopping, killing, and resuming jobs is called jobcontrol.With job

control, you have full control over how processes run in your shell environment. This sec-
tion describes the commands used to view and control jobs running in your shell.

Viewingjobs
Thekeycommandforjobcontrolisthe jobscommand.Thejobscommandallowsyouto view
the current jobs being handled by the shell:

$cattest10.sh

#!/bin/bash

#Testjobcontrol #

echo"ScriptProcessID:$$"#

count=1

while[$count-le10] do

echo"Loop#$count"s

leep 10

count=$[$count+1] done

echo"Endofscript..."#

$

The script uses the $$variable to display the PID that the Linux system assigns to the
script; then it goes into a loop, sleeping for 10 seconds at a time for each iteration.

You can start the script from the command line interface and then stop it using the Ctrl+Z
key combination:

$./test10.sh

ScriptProcessID:1897

Loop #1

Loop#2

^Z

[1]+Stopped ./test10.sh

$

Using the same script, another job is started as a background process, using the ampersand
symbol. To make life a little easier, the output of that script is redirected to a file so
itdoesn’t appear on the screen:

$./test10.sh>test10.out&

[2]1917

$

Thejobscommandenablesyouto view the jobs assigned to the shell. The jobscommand
shows both the stopped and the running jobs, along with their job numbers and the com-
mands used in the jobs:

$jobs

[1]+Stopped ./test10.sh

[2]-Running ./test10.sh>test10.out&

$

Youcanviewthevarious jobs’ PIDs byadding the -lparameter(lowercase L) on thejobs
command:

$jobs-l

[1]+1897Stopped ./test10.sh

[2]-1917Running ./test10.sh>test10.out&

$

Thejobscommandusesafewdifferentcommandlineparameters,asshowninTable16-2.

TABLE16-2 ThejobsCommandParameters

-l ListsthePIDoftheprocessalongwiththejobnumber

-n Listsonlyjobsthathavechangedtheirstatussincethelastnotificationfromthe shell

-p ListsonlythePIDsofthejobs

-r Listsonlytherunningjobs

-s Listsonlystoppedjobs

You probably noticed the plus and minus signs in the jobscommand output. The job with
the plus sign is considered the default job. It would be the job referenced by any job control
commands if a job number wasn’t specified in the command line.

The job with the minus sign is the job that would become the default job when the current
default job finishes processing. There will be only one job with the plus sign and one job
withtheminussignatanytime,nomatterhowmanyjobsarerunningintheshell.

Parameter Description

PartII:ShellScriptingBasics

The following is an example showing how the next job in line takes over the default status,
when the default job is removed. Three separate processes are started in the background.
The jobscommand listing shows the three processes, their PID, and their status. Note that
the default process (the one listed with the plus sign) is the last process started, job #3.

$./test10.sh>test10a.out&

[1]1950

$./test10.sh>test10b.out&

[2]1952

$./test10.sh>test10c.out&

[3]1955

$

$jobs-l

[1] 1950Running ./test10.sh>test10a.out&

[2]-1952Running ./test10.sh>test10b.out&

[3]+1955Running ./test10.sh>test10c.out&

$

Usingthekillcommand to send a SIGHUPsignal to the default process causes the job to
terminate.Inthenextjobslisting,thejobthatpreviouslyhadtheminussignnowhas the plus sign
and is the default job:

$kill1955

$

[3]+Terminated ./test10.sh>test10c.out

$

$jobs-l

[1]-1950Running ./test10.sh>test10a.out&

[2]+1952Running ./test10.sh>test10b.out&

$

$kill1952

$

[2]+Terminated ./test10.sh>test10b.out

$

$jobs-l

[1]+1950Running ./test10.sh>test10a.out&

$

Although changing a background job to the default process is interesting, it doesn’t seem
very useful. In the next section, you learn how to use commands to interact with
thedefault process using no PID or job number.

Restartingstoppedjobs
Under bash job control, you can restart any stopped job as either a background process or a
foregroundprocess.Aforegroundprocesstakesovercontroloftheterminalyou’reworking on, so
be careful about using that feature.

Torestartajobinbackgroundmode,usethebgcommand:

$./test11.sh

^Z

[1]+Stopped ./test11.sh

$bg

[1]+./test11.sh&

$

$jobs

[1] +Running ./test11.sh&

$

Because the job was the default job, indicated by the plus sign, only the bgcommand was
needed to restart it in background mode. Notice that no PID is listed when the job is moved
into background mode.

Ifyouhaveadditionaljobs,youneedtousethejobnumberalongwiththebgcommand:

$./test11.sh

^Z

[1] +Stopped ./test11.sh

$

$./test12.sh

^Z

[2] +Stopped ./test12.sh

$

$bg2

[2]+./test12.sh&

$

$jobs

[1]+Stopped ./test11.sh

[2]-Running ./test12.sh&

$

The command bg2was used to send the second job into background mode. Notice that
when the jobscommand was used, it listed both jobs with their status, even though the
default job is not currently in background mode.

Torestartajobinforegroundmode,usethefgcommand,alongwiththejobnumber:

$fg2

./test12.sh

Thisisthescript'send...

$

Because the job is running in foreground mode, the command line interface prompt does
not appear until the job finishes.

$

PartII:ShellScriptingBasics

BeingNice
In a multitasking operating system (which Linux is), the kernel is responsible for assigning
CPU time for each process running on the system. The schedulingpriorityis the amount of

CPU time the kernel assigns to the process relative to the other processes. By default, all
processes started from the shell have the same scheduling priority on the Linux system.

The scheduling priority is an integer value, from -20 (the highest priority) to +19 (the low-
estpriority).Bydefault,thebashshellstartsallprocesseswithaschedulingpriorityof0.

Sometimes, you want to change the priority of a shell script, either lowering its priority soit
doesn’t take as much processing power away from other processes or giving it a higher
priority so it gets more processing time. You can do this by using the nicecommand.

Usingthenicecommand
Thenicecommand allows you to set the scheduling priority of a command as you start it.
To make a command run with less priority, just use the -ncommand line option for nice
to specify a new priority level:

$nice-n10./test4.sh>test4.out&

[1]4973

$

$ps-p4973-opid,ppid,ni,cmd

PIDPPIDNICMD

4973472110/bin/bash./test4.sh

$

Notice that you must use the nicecommand on the same line as the command you are
starting. The output from the pscommand confirms that the nice value (column NI) has
been set to 10.

Thenicecommand causes the script to run at a lower priority. However, if you try to
increase the priority of one of your commands, you might be in for a surprise:

$nice-n-10./test4.sh>test4.out&

[1]4985

$nice:cannotsetniceness:Permissiondenied

[1]+Done nice-n-10./test4.sh>test4.out

$

It’sconfusingtorememberthat-20,thelowestvalue,isthehighestpriorityand19,thehighestvalue,isthelow- est priority. Just

remember the phrase, “Nice guys finish last.” The “nicer” or higher you are in value, the lower your chance of getting

the CPU.

The nicecommand prevents normal system users from increasing the priority of their
commands. Notice that the job does run, even though the attempt to raise its priority with
thenicecommandfailed.

Youdon’t have to use the -noption with the nicecommand. You can simply type the pri-
ority preceded by a dash:

$nice-10./test4.sh>test4.out&

[1]4993

$

$ps-p4993-opid,ppid,ni,cmd

PIDPPIDNICMD

4993472110/bin/bash./test4.sh

$

However, this can get confusing when the priority is a negative number, because you must
have a double-dash. It’s best just to use the -noption to avoid confusion.

Usingtherenicecommand
Sometimes, you’d like to change the priority of a command that’s already running on the
system. That’s what the renicecommand is for. It allows you to specify the PID of a run-
ning process to change its priority:

$./test11.sh&

[1]5055

$

$ps-p5055-opid,ppid,ni,cmd

PIDPPIDNICMD

50554721 0/bin/bash./test11.sh

$

$renice-n10-p5055

5055:oldpriority0,newpriority10

$

$ps-p5055-opid,ppid,ni,cmd

PIDPPIDNICMD

5055472110/bin/bash./test11.sh

$

Therenicecommand automatically updates the scheduling priority of the running
process. As with the nicecommand, the renicecommand has some limitations:

■ Youcanonlyreniceprocessesthatyouown.

■ Youcanonlyreniceyourprocessestoalowerpriority.

■ Therootusercanreniceanyprocesstoanypriority.

If you want to fully control running processes, you must be logged in as the root account or
usethesudocommand.

PartII:ShellScriptingBasics

RunningLikeClockwork
When you start working with scripts, you may want to run a script at a preset time, usu-
ally at a time when you’re not there. The Linux system provides a couple of ways to run a
scriptat a preselected time: the atcommand and the crontable. Each method uses a dif-
ferent technique for scheduling when and how often to run scripts. The following sections
describe each of these methods.

Schedulingajobusingtheatcommand
The atcommand allows you to specify a time when the Linux system will run a script. The
atcommandsubmitsajobtoaqueuewithdirectionsonwhentheshellshouldrunthe job. The
atdaemon, atd, runs in the background and checks the job queue for jobs to run. Most
Linux distributions start this daemon automatically at boot time.

The atddaemon checks a special directory on the system (usually /var/spool/at) for
jobs submitted using the atcommand. By default, the atddaemon checks this directory
every 60 seconds. When a job is present, the atddaemon checks the time the job is set to
be run. If the time matches the current time, the atddaemon runs the job.

Thefollowing sections describe how to use the atcommand to submit jobs to run and how
to manage these jobs.

Understandingtheatcommandformat

Thebasicatcommandformatisprettysimple:

at[-ffilename]time

Bydefault, the atcommand submits input from STDINto the queue. You can specify a file-
name used to read commands (your script file) using the -fparameter.

Thetimeparameter specifies when you want the Linux system to run the job. If you spec-
ify a time that has already passed, the atcommand runs the job at that time on the nextday.

You can get pretty creative with how you specify the time. The atcommand recognizes
lots of different time formats:

■ Astandardhourandminute,suchas10:15

■ AnAM/PMindicator,suchas10:15PM

■ Aspecificnamedtime,suchasnow,noon,midnight,orteatime(4PM)

Inadditiontospecifyingthetimetorunthejob,youcanalsoincludeaspecificdate,using a few
different date formats:

■ Astandarddateformat,suchasMMDDYY,MM/DD/YY,orDD.MM.YY

■ Atextdate,suchasJul4orDec25,withorwithouttheyear

■ Atimeincrement:

■ Now+25minutes

■ 10:15PMtomorrow

■ 10:15+7days

Whenyouuse the atcommand, the job is submitted into a jobqueue. The job queue holds the
jobs submitted by the atcommand for processing. There are 26 different job queues
available for different priority levels. Job queues are referenced using lowercase letters, a
through z, and uppercase letters A through Z.

Thehigheralphabetically the job queue, the lower the priority (higher nicevalue) the job
willrununder.Bydefault,atjobsaresubmittedtotheatjobaqueue.Ifyouwanttorun a job at a
lower priority, you can specify a different queue letter using the -qparameter.

Retrievingjoboutput

When the job runs on the Linux system, there’s no monitor associated with the job.Instead,
the Linux system uses the e-mail address of the user who submitted the job as
STDOUTandSTDERR.Anyoutputdestined to STDOUTor STDERRis mailed to the user via the
mail system.

Here’sasimple example using the atcommand to schedule a job to run on a CentOS
distribution:

$cattest13.sh

#!/bin/bash

#Testusingatcommand #

echo"Thisscriptranat$(date+%B%d,%T)" echo

sleep5

echo"Thisisthescript'send..."#

Afewyearsago,thebatchcommandwasanothermethodthatallowedascripttoberunatalatertime.The batchcommand

was unique because you could schedule a script to run when the system was at a lower usage level. However,

nowadays, the batchcommand is just simply a script, /usr/bin/batch, that calls the atcom-

mandandsubmitsyourjobtothebqueue.

PartII:ShellScriptingBasics

$at-ftest13.shnow

job7at2015-07-1412:38

$

Theatcommand displays the job number assigned to the job along with the time the job is
scheduled to run. The -foption tells what script file to use and the nowtime designation directs
atto run the script immediately.

Using e-mail for the atcommand’s output is inconvenient at best. The atcommand sendse-
mailviathesendmailapplication.Ifyoursystemdoesnotusesendmail,youwon’tget
anyoutput!Therefore,it’sbest to redirect STDOUTand STDERRin your scripts (see Chapter
15) when using the atcommand, as the following example shows:

$cattest13b.sh

#!/bin/bash

#Testusingatcommand #

echo"Thisscriptranat$(date+%B%d,%T)">test13b.out echo >>

test13b.out

sleep5

echo"Thisisthescript'send...">>test13b.out #

$

$at-M-ftest13b.shnow

job8at2015-07-1412:48

$

$cattest13b.out

ThisscriptranatJuly14,12:48:18

Thisisthescript'send...

$

If you don’t want to use e-mail or redirection with at, it is best to add the -Moption to
suppress any output generated by jobs using the atcommand.

Listingpendingjobs

Theatqcommandallowsyouto view what jobs arepending on the system:

$at-M-ftest13b.shteatime

job17at2015-07-1416:00

$

$at-M-ftest13b.shtomorrow

job18at2015-07-1513:03

$

$at-M-ftest13b.sh13:30

job19at2015-07-1413:30

$

$at-M-ftest13b.shnow

job20at2015-07-1413:03

$

$atq

20 2015-07-1413:03=Christine

18 2015-07-1513:03aChristine

17 2015-07-1416:00aChristine

19 2015-07-1413:30aChristine

$

The job listing shows the job number, the date and time the system will run the job, and
the job queue the job is stored in.

Removingjobs

After you know the information about what jobs are pending in the job queues, you can use
the atrmcommand to remove a pending job:

$atq

18 2015-07-15 13:03 a Christine

17 2015-07-14 16:00 a Christine

19 2015-07-14 13:30 a Christine

$

$atrm 18

$

$atq

17 2015-07-14 16:00 a Christine

19 2015-07-14 13:30 a Christine

$

Just specify the job number you want to remove. You can only remove jobs that you submit
for execution. You can’t remove jobs submitted by others.

Schedulingregularscripts
Using the atcommand to schedule a script to run at a preset time is great, but what if you
need that script to run at the same time every day or once a week or once a month?
Insteadofhavingtocontinuallysubmitatjobs,youcanuseanotherfeatureoftheLinuxsystem.

TheLinuxsystem uses the cronprogram to allow you to schedule jobs that need to run
onaregularbasis. The cronprogram runs in the background and checks special tables, called
cron tables, for jobs that are scheduled to run.

Lookingatthecrontable

Thecrontableuses a special format for allowing you to specify when a job should be run.
The format for the crontable is:

minhourdayofmonthmonthdayofweekcommand

PartII:ShellScriptingBasics

The crontable allows you to specify entries as specific values, ranges of values (such as 1–
5), or as a wildcard character (the asterisk). For example, if you want to run a command at
10:15 on every day, you would use this crontable entry:

1510***command

Thewildcardcharacterusedin the dayofmonth, month, and dayofweekfields indicates
thatcronwillexecute the command every day of every month at 10:15. To specify a com-
mand to run at 4:15 PM every Monday, you would use the following:

1516**1command

You can specify the dayofweekentry as either a three-character text value (mon, tue,
wed,thu,fri,sat,sun)orasanumericvalue,with0beingSundayand6beingSaturday.

Here’s another example: to execute a command at 12 noon on the first day of every month,
you would use the following format:

00121**command

Thedayofmonthentryspecifiesadatevalue(1–31)forthemonth.

The command list must specify the full command pathname or shell script to run. You
can add any command line parameters or redirection symbols you like, as a regular
command line:

1510***/home/rich/test4.sh>test4out

The cronprogram runs the script using the user account that submitted the job. Thus, you
must have the proper permissions to access the command and output files specified in the
command listing.

Buildingthecrontable

Each system user can have their own crontable (including the root user) for running
scheduledjobs.Linux provides the crontabcommand for handling the crontable. To list
anexistingcrontable,usethe-lparameter:

Theastutereadermightbewonderingjusthowyouwouldbeabletosetacommandtoexecuteonthelastdayof every month because

you can’t set the dayofmonthvalue to cover every month. This problem has plagued Linux and Unix programmers,

and has spawned quite a few different solutions. A common method is to add an if-then statement that uses the

date command to check if tomorrow’s date is 01:

0012***if[`date+%d-dtomorrow`=01];then;command

Thischeckseverydayat12noontoseeifit’sthelastdayofthemonth,andifso,cronrunsthecommand.

$crontab-l

nocrontabforrich

$

Bydefault,eachuser’scrontablefiledoesn’texist.Toaddentriestoyour crontable, usethe -
eparameter. When you do that, the crontabcommand starts a text editor (see Chapter
10) with the existing crontable (or an empty file if it doesn’t yet exist).

Viewingcrondirectories

Whenyoucreateascriptthathaslesspreciseexecutiontimeneeds,itiseasiertouseone ofthe pre-
configured cronscript directories. There are four basic directories: hourly, daily, monthly,
and weekly.

$ls/etc/cron.*ly

/etc/cron.daily:

cups makewhatis.cronprelink tmpwatch

logrotatemlocate.cron readahead.cron

/etc/cron.hourly:

0anacron

/etc/cron.monthly:

readahead-monthly.cron

/etc/cron.weekly:

$

Thus, if you have a script that needs to be run one time per day, just copy the script to

thedaily directory and cronexecutes it each day.

Lookingattheanacronprogram

Theonlyproblem with the cronprogram is that it assumes that your Linux system is oper-
ational 24 hours a day, 7 days a week. Unless you’re running Linux in a server environment,
this may not necessarily be true.

IftheLinuxsystemisturnedoffatthetimeajobisscheduledtoruninthecrontable, the job doesn’t
run. The cronprogram doesn’t retroactively run missed jobs when the system is turned back
on. To resolve this issue, many Linux distributions also include the anacronprogram.

If anacrondetermines that a job has missed a scheduled running, it runs the job as
soonaspossible.ThismeansthatifyourLinuxsystemisturnedoffforafewdays,whenit starts
back up, any jobs scheduled to run during the time it was off are automatically run.

This feature is often used for scripts that perform routine log maintenance. If the
systemisalwaysoffwhenthescriptshouldrun,thelogfileswouldnevergettrimmedandcould

PartII:ShellScriptingBasics

grow to undesirable sizes. With anacron, you’re guaranteed that the log files are trimmed
at least each time the system is started.

Theanacronprogramdealsonlywithprogramslocatedinthecrondirectories,suchas
/etc/cron.monthly. It uses timestamps to determine if the jobs have been run at the
proper scheduled interval. A timestamp file exists for each crondirectory and is located in
/var/spool/anacron:

$sudocat/var/spool/anacron/cron.monthly

20150626

$

Theanacronprogramhasitsowntable(usuallylocatedat/etc/anacrontab)tocheck the
job directories:

$sudocat/etc/anacrontab

/etc/anacrontab: configuration file for anacron

#Seeanacron(8)andanacrontab(5)fordetails.

SHELL=/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

#themaximalrandomdelayaddedtothebasedelayofthejobs RANDOM_DELAY=45

#thejobswillbestartedduringthefollowinghoursonly

START_HOURS_RANGE=3-22

#periodindays delayinminutes job-identifier command

1 5 cron.daily nicerun-parts/etc/cron.daily

7 25 cron.weekly nicerun-parts/etc/cron.weekly

@monthly45 cron.monthly nicerun-parts/etc/cron.monthly

$

Thebasicformatoftheanacrontableisslightlydifferentfromthatofthecrontable:

perioddelayidentifiercommand

The period entry defines how often the jobs should be run, specified in days. The anacron
program uses this entry to check against the jobs’ timestamp file. The delay entry specifies
howmany minutes after the system starts the anacronprogram should run missed scripts.
The command entry contains the run-partsprogram and a cronscript directory name.
Therun-partsprogramisresponsiblefor runningany scriptin thedirectory passedto it.

Notice that anacrondoes not run the scripts located in /etc/cron.hourly. This is
becausethe anacronprogram does not deal with scripts that have execution time needs of
less than daily.

The identifier entry is a unique non-blank character string — for example, cron-weekly.It
is used to uniquely identify the job in log messages and error e-mails.

Startingscriptswithanewshell
The ability to run a script every time a user starts a new bash shell (even just when a spe-
cific user starts a bash shell) can come in handy. Sometimes, you want to set shell features
for a shell session or just ensure that a specific file has been set.

Recall the startup files run when a user logs into the bash shell (covered in detail in
Chapter6). Also, remember that not every distribution has all the startup files. Essentially,
the first file found in the following ordered list is run and the rest are ignored:

■ $HOME/.bash_profile

■ $HOME/.bash_login

■ $HOME/.profile

Therefore,youshouldplaceanyscriptsyouwantrunatlogintimeinthefirstfilelisted.

The bash shell runs the .bashrcfile any time a new shell is started. You can test this by
adding a simple echo statement to the .bashrcfile in your home directory and starting a
new shell:

$cat.bashrc

#.bashrc

#Sourceglobaldefinitions

if[-f/etc/bashrc];then

./etc/bashrc

fi

#Userspecificaliasesandfunctions echo

"I'm in a new shell!"

$

$bash

I'minanewshell!

$

$exit

exit

$

The.bashrcfileisalsotypicallyrunfromoneofthebashstartupfiles.Becausethe
.bashrcfile runs both when you log into the bash shell and when you start a bash shell, if
youneedascripttoruninbothinstances,placeyourshellscriptinsidethisfile.

PartII:ShellScriptingBasics

Summary
The Linux system allows you to control your shell scripts by using signals. The bash shell
acceptssignalsandpassesthemontoanyprocessrunningundertheshellprocess.Linuxsig- nals
allow you to easily kill a runaway process or temporarily pause a long-running process.

Youcanusethe trapstatement in your scripts to catch signals and perform commands. This
featureprovidesasimplewaytocontrolwhetherausercaninterruptyourscriptwhileit’s running.

By default, when you run a script in a terminal session shell, the interactive shell is sus-
pended until the script completes. You can cause a script or command to run in background
mode by adding an ampersand sign (&) after the command name. When you run a script
or command in background mode, the interactive shell returns, allowing you to continue
entering more commands. Any background processes run using this method are still tied to
the terminal session. If you exit the terminal session, the background processes also exit.

To prevent this from happening, use the nohupcommand. This command intercepts any
signals intended for the command that would stop it — for example, when you exit the ter-
minal session. This allows scripts to continue running in background mode even if you exit
the terminal session.

When you move a process to background mode, you can still control what happens to it. The
jobs command allows you to view processes started from the shell session. After you know
thejobIDofabackgroundprocess,youcanusethekillcommandtosendLinuxsignals to the

process or use the fgcommand to bring the process back to the foreground in theshell
session. You can suspend a running foreground process by using the Ctrl+Z key combi-
nation and place it back in background mode, using the bgcommand.

The niceand renicecommands allow you to change the priority level of a process. By
giving a process a lower priority, you allow the CPU to allocate less time to it. This comes in
handy when running long processes that can take lots of CPU time.

Inadditiontocontrollingprocesseswhilethey’rerunning,youcanalsodeterminewhenapro-
cessstartsonthesystem.Insteadofrunningascriptdirectlyfromthecommandlineinterface
prompt,youcanscheduletheprocesstorunatanalternativetime.Youcanaccomplishthisin
severaldifferentways.Theatcommandenablesyoutorunascriptonceatapresettime.The

cronprogramprovides an interface that can runscripts at a regularly scheduledinterval.

Finally, the Linux system provides script files for you to use for scheduling your scripts to
run whenever a user starts a new bash shell. Similarly, the startup files, such as .bashrc,
are located in every user’s home directory to provide a location to place scripts and com-
mands that run with a new shell.

In the next chapter, we look at how to write script functions. Script functions allow you
towrite code blocks once and then use them in multiple locations throughout your script.

	MoreStructuredCommands
	TheforCommand
	331
	Readingvaluesinalist
	Readingcomplexvaluesinalist
	Readingalistfromavariable
	Readingvaluesfromacommand
	Changingthefieldseparator
	Readingadirectoryusingwildcards

	TheC-StyleforCommand
	TheClanguageforcommand
	Usingmultiplevariables

	ThewhileCommand
	Basicwhileformat
	Usingmultipletestcommands

	TheuntilCommand
	NestingLoops
	LoopingonFileData
	ControllingtheLoop
	Thebreakcommand
	Breakingoutofasingleloop
	Breakingoutofaninnerloop
	Breakingoutofanouterloop

	Thecontinuecommand

	ProcessingtheOutputofaLoop
	Findingexecutablefiles
	Creatingmultipleuseraccounts

	Summary

	HandlingUserInput
	INTHISCHAPTER
	PassingParameters
	Readingparameters
	Readingthescriptname
	Testingparameters

	UsingSpecialParameterVariables
	Countingparameters
	Grabbingallthedata

	BeingShifty
	WorkingwithOptions
	Findingyouroptions
	Processingsimpleoptions
	Separatingoptionsfromparameters
	Processingoptionswithvalues

	Usingthegetoptcommand
	Lookingatthecommandformat
	Usinggetoptinyourscripts

	Advancingtogetopts

	GettingUserInput
	Readingbasics
	Timingout
	Readingwithnodisplay
	Readingfromafile

	Summary

	ScriptControl
	INTHISCHAPTER
	HandlingSignals
	Signalingthebashshell
	419

	Generatingsignals
	Interruptingaprocess
	Pausingaprocess

	Trappingsignals
	Trappingascriptexit
	Modifyingorremovingatrap

	RunningScriptsinBackgroundMode
	Runninginthebackground
	Runningmultiplebackgroundjobs

	RunningScriptswithoutaHang-Up
	ControllingtheJob
	Viewingjobs
	Restartingstoppedjobs

	BeingNice
	Usingthenicecommand
	Usingtherenicecommand

	RunningLikeClockwork
	Schedulingajobusingtheatcommand
	Understandingtheatcommandformat
	Retrievingjoboutput
	Listingpendingjobs
	Removingjobs

	Schedulingregularscripts
	Lookingatthecrontable
	Buildingthecrontable
	Viewingcrondirectories
	Lookingattheanacronprogram

	Startingscriptswithanewshell

	Summary

