

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI

PG DEPARTMENT OF COMPUTER APPLICATIONS

Subject code : 23PCA12

Class : I-MCA

SUBJECT: LINUX AND SHELL PROGRAMMING

Linux and shell programming

UNIT-III

Creating functions: Basic script functions returning a value-Using

variable in Function –Arrays and variable functions-Functions recursion-

Creating a library-Using function on the command line-writing script for

graphical Desktop: Creating text menus-Building text windows widgets

adding x windows graphics .Introducing sed and gawk: Learning about

theseteditorbasics.

Basic Function:

The bash shell provides a feature allowing you to do just that. Functions

are blocks of script codethat you assign a name to and reuse anywhere in

your code. Anytime you need to use that block of code in your script, you

simply use the function name you assigned it (referred to as calling the

function). This section describes how to create and use functions in your

shell scripts.

function name

{

commands

}

The name attribute defines a unique name assigned to the function. Each

function youdefine in your script must be assigned a unique name.

The commands are one or more bash shell commands that make up your

function. Whenyou call the function, the bash shell executes each of the

commands in the order theyappear in the function, just as in a normal

script.The second format for defining a function in a bash shell script

more closely follows howfunctions are defined in other programming

languages:

name()

{

commands

}

The empty parentheses after the function name indicate that you’re

defining a function.The same naming rules apply in this format as in the

original shell script function format.

Using functions

To use a function in your script, specify the function name on a line, just

as you would any

other shell command:

$ cat test1

#!/bin/bash

using a function in a script

function func1 {

echo "This is an example of a function"

}

count=1

while [$count -le 5]

do

func1

count=$[$count + 1]

done

echo "This is the end of the loop"

func1

echo "Now this is the end of the script"

$

$./test1

This is an example of a function

This is an example of a function

This is an example of a function

This is an example of a function

This is an example of a function

This is the end of the loop

This is an example of a function

Now this is the end of the script

Each time you reference the func1 function name, the bash shell returns

to thefunc1 function definition and executes any commands you defined

there.

The function definition doesn’t have to be the fi rst thing in your shell

script, but be care-

ful. If you attempt to use a function before it’sdefined, you’ll get an error

message:

$ cat test2

#!/bin/bash

using a function located in the middle of a script

count=1

echo "This line comes before the function definition"

function func1 {

echo "This is an example of a function"

}

while [$count -le 5]

do

func1

count=$[$count + 1]

done

echo "This is the end of the loop"

func2

echo "Now this is the end of the script"

function func2 {

echo "This is an example of a function"

}

$

$./test2

This line comes before the function definition

This is an example of a function

452

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 452

This is an example of a function

This is an example of a function

This is an example of a function

This is an example of a function

This is the end of the loop

./test2: func2: command not found

Now this is the end of the script

$

The first function, func1, was defined after a couple of statements in the

script, which isperfectly fine. When the func1 function was used in the

script, the shell knew where tofind it.

Returning Value:

The bash shell treats functions like mini-scripts, complete with an exit

status .There are three different ways you can generate an exit status for

your functions.

The default exit statusof a function is the exit status returned by the last

command inthe function. After the function executes, you use the

standard $? variable to determine

the exit status of the function:

$ cat test4

#!/bin/bash

testing the exit status of a function

func1() {

echo "trying to display a non-existent file"

ls -l badfile

}

echo "testing the function: "

func1

echo "The exit status is: $?"

$

$./test4

testing the function:

trying to display a non-existent file

ls: badfile: No such file or directory

The exit status is: 1

$

The exit status of the function is 1 because the last command in the

function failed.

However, you have no way of knowing if any of the other commands in

the function com-pleted successfully or not. Look at this example:

$ cat test4b

#!/bin/bash

testing the exit status of a function

func1() {

ls -l badfile

echo "This was a test of a bad command"

}

echo "testing the function:"

func1

echo "The exit status is: $?"

$

$./test4b

testing the function:

ls: badfile: No such file or directory

This was a test of a bad command

The exit status is: 0

$

This time, because the function ended with an echo statement that

completed successfully,the exit status of the function is 0, even though

one of the commands in the function failed. Using the default exit status

of a function can be a dangerous practice.

Using the return command:

Using the return command

The bash shell uses the return command to exit a function with a specifi c

exit status.The return command allows you to specify a single integer

value to defi ne the functionexit status, providing an easy way for you to

programmatically set the exit status of yourfunction:

$ cat test5

#!/bin/bash

using the return command in a function

functiondbl {

read -p "Enter a value: " value

echo "doubling the value"

return $[$value * 2]

}

dbl

echo "The new value is $?"

$

The dbl function doubles the integer value contained in the $value

variable provided by the user input. It then returns the result using the

return command, which the script dis-plays using the $? variable.

Keep the following two tips in mind to avoid problems:

■ Remember to retrieve the return value as soon as the function

completes.

■ Remember that an exit status must be in the range of 0 to 255.

The second problem defines a limitation for using this return value

technique. Because anexit status must be less than 256, the result of your

function must produce an integer value less than 256. Any value over that

returns an error value:

$./test5

Enter a value: 200

doubling the value

The new value is 1

Using function output

Just as you can capture the output of a command to a shell variable, you

can also capture

the output of a function to a shell variable. You can use this technique to

retrieve any type

of output from a function to assign to a variable:

result='dbl'

This command assigns the output of the dbl function to the $result shell

variable. Here’s

an example of using this method in a script:

$ cat test5b

#!/bin/bash

using the echo to return a value

functiondbl {

read -p "Enter a value: " value

echo $[$value * 2]

}

result=$(dbl)

echo "The new value is $result"

$

$./test5b

Enter a value: 200

The new value is 400

$

$./test5b

456

Part III: Advanced Shell Scripting

c17.indd 12/08/2014 Page 456

Enter a value: 1000

The new value is 2000

$

The new function now uses an echo statement to display the result of the

calculation. The script just captures the output of the dbl function instead

of looking at the exit status for the answer.

USING THE VARIABLE IN FUNCTION:

we used a variable called $value within the function to hold the value that

it processed. When you use variables in your functions, you need to be

somewhat careful about how you defi ne and handle them. This is a

common cause of problems in shell scripts. This section goes over a few

techniques for handling variables both inside and outside your shell script

functions.

Passing parameters to a function

As mentioned earlier in the “Returning a Value” section, the bash shell

treats functionsjust like mini-scripts. This means that you can pass

parameters to a function just like a regular script

Functions can use the standard parameter environment variables to

represent any parameters passed to the function on the command line. For

example, the name of the function isdefined in the $0 variable, and any

parameters on the function command line are define using the variables

$1, $2, and so on.

func1 $value1 10

The function can then retrieve the parameter values using the parameter

environment

variables. Here’s an example of using this method to pass values to a

function:

$ cat test6

#!/bin/bash

passing parameters to a function

functionaddem {

if [$# -eq 0] || [$# -gt 2]

then

echo -1

elif [$# -eq 1]

then

echo $[$1 + $1]

else

echo $[$1 + $2]

fi

}

echo -n "Adding 10 and 15: "

value=$(addem 10 15)

echo $value

echo -n "Let's try adding just one number: "

value=$(addem 10)

echo $value

echo -n "Now trying adding no numbers: "

value=$(addem)

echo $value

echo -n "Finally, try adding three numbers: "

value=$(addem 10 15 20)

echo $value

$

$./test6

Adding 10 and 15: 25

Let's try adding just one number: 20

Now trying adding no numbers: -1

Finally, try adding three numbers: -1

$

The addem function in the text6 script fi rst checks the number of

parameters passed toit by the script. If there aren’t any parameters, or if

there are more than two parameters,addem returns a value of -1. If there’s

just one parameter, addem adds the parameter toitself for the result. If

there are two parameters, addem adds them together for the result.

$ cat badtest1

#!/bin/bash

trying to access script parameters inside a function

function badfunc1 {

echo $[$1 * $2]

}

if [$# -eq 2]

then

value=$(badfunc1)

echo "The result is $value"

else

echo "Usage: badtest1 a b"

fi

$

$./badtest1

Usage: badtest1 a b

$./badtest1 10 15

./badtest1: * : syntax error: operand expected (error token is "*

")

The result is

$

Even though the function uses the $1 and $2 variables, they aren’t the

same $1 and $2

Even though the function uses the $1 and $2 variables, they aren’t the

same $1 and $2

variables available in the main part of the script. Instead, if you want to

use those values

in your function, you have to manually pass them when you call the

function:

$ cat test7

#!/bin/bash

trying to access script parameters inside a function

function func7 {

echo $[$1 * $2]

}

if [$# -eq 2]

then

value=$(func7 $1 $2)

echo "The result is $value"

else

echo "Usage: badtest1 a b"

fi

$

$./test7

Usage: badtest1 a b

$./test7 10 15

The result is 150

$

By passing the $1 and $2 variables to the function, they become available

for the function to use, just like any other parameter.

Array Variables and Functions
advanced the way of allowing a single variable to hold multiple values

sing arrays. Using array variable values with functions is a little tricky,

and there aresome special considerations. This section describes a

technique that allows you to do that.

Passing arrays to functions

The art of passing an array variable to a script function can be confusing.

If you try to pass

the array variable as a single parameter, it doesn’t work

$ cat badtest3

#!/bin/bash

the array variable into its individual values

and use the values as function parameters. Inside the function, you can

reassemble all the

parameters into a new array variable. Here’s an example of doing this:

$ cat test10

#!/bin/bash

array variable to function test

functiontestit {

localnewarray

newarray=(;'echo "$@"')

echo "The new array value is: ${newarray[*]}"

}

myarray=(1 2 3 4 5)

echo "The original array is ${myarray[*]}"

testit ${myarray[*]}

$

$./test10

The original array is 1 2 3 4 5

The new array value is: 1 2 3 4 5

$

The script uses the $myarray variable to hold all the individual array

values to place them all on the command line for the function. The

function then rebuilds the array variable from the command line

parameters. Once inside the function, the array can be used just

like any other array:

$ cat test11

#!/bin/bash

adding values in an array

functionaddarray {

local sum=0

localnewarray

newarray=($(echo "$@"))

for value in ${newarray[*]}

do

sum=$[$sum + $value]

done

echo $sum

}

myarray=(1 2 3 4 5)

echo "The original array is: ${myarray[*]}"

arg1=$(echo ${myarray[*]})

result=$(addarray $arg1)

echo "The result is $result"

$

$./test11

The original array is: 1 2 3 4 5

The result is 15

$

The addarray function iterates through the array values, adding them

together. You can

put any number of values in the myarray array variable, and the addarray

function adds

them.

Returning arrays from functions:

Passing an array variable from a function back to the shell script uses a

similar technique.

The function uses an echo statement to output the individual array values

in the proper

order, and the script must reassemble them into a new array variable:

$ cat test12

#!/bin/bash

returning an array value

functionarraydblr {

localorigarray

localnewarray

local elements

locali

origarray=($(echo "$@"))

newarray=($(echo "$@"))

elements=$[$# - 1]

for ((i = 0; i<= $elements; i++))

{

newarray[$i]=$[${origarray[$i]} * 2]

}

echo ${newarray[*]}

}

myarray=(1 2 3 4 5)

echo "The original array is: ${myarray[*]}"

arg1=$(echo ${myarray[*]})

result=($(arraydblr $arg1))

echo "The new array is: ${result[*]}"

$

$./test12

The original array is: 1 2 3 4 5

The new array is: 2 4 6 8 10

The script passes the array value, using the $arg1 variable to the arraydblr

function.

The arraydblr function reassembles the array into a new array variable,

and it makes a

copy for the output array variable. It then iterates through the individual

array variable

values, doubles each value, and places it into the copy of the array

variable in the function.

The arraydblr function then uses the echo statement to output the

individual values

Function Recursion
One feature that local function variables provide is self-containment. A

self-contained function

doesn’t use any resources outside of the function, other than whatever

variables the

script passes to it in the command line.

This feature enables the function to be called recursively, which means

that the function calls itself to reach an answer. Usually, a recursive

function has a base value that it eventually iterates down to. Many

advanced mathematical algorithms use recursion to reduce a

complex equation down one level repeatedly, until they get to the level

defined by the base

value.

The classic example of a recursive algorithm is calculating factorials. A

factorial of a number is the value of the preceding numbers multiplied

with the number. Thus, to find the

factorial of 5, you’d perform the following equation:

5! = 1 * 2 * 3 * 4 * 5 = 120

Using recursion, the equation is reduced down to the following format:

x! = x * (x-1)!

or in English, the factorial of x is equal to x times the factorial of x-1. This

can be

expressed in a simple recursive script:

function factorial {

if [$1 -eq 1]

then

echo 1

else

local temp=$[$1 - 1]

local result='factorial $temp'

echo $[$result * $1]

fi

}

The factorial function uses itself to calculate the value for the factorial:

$ cat test13

#!/bin/bash

using recursion

function factorial {

if [$1 -eq 1]

then

echo 1

else

local temp=$[$1 - 1]

local result=$(factorial $temp)

echo $[$result * $1]

fi

}

read -p "Enter value: " value

result=$(factorial $value)

echo "The factorial of $value is: $result"

$

$./test13

Enter value: 5

The factorial of 5 is: 120

$

Creating a Library:

It’s easy to see how functions can help save typing in a single script, but

what if you just happen to use the same single code block between scripts?

It’s obviously challenging if you have to defi ne the same function in

each script, only to use it one time in each script.There’s a solution for

that problem! The bash shell allows you to create a library file for your

functions and then reference that single library fi le in as many scripts as

you need to.

$ catmyfuncs

my script functions

functionaddem {

echo $[$1 + $2]

}

functionmultem {

echo $[$1 * $2]

}

functiondivem {

if [$2 -ne 0]

then

echo $[$1 / $2]

else

echo -1

fi

}

$

The next step is to include the myfuncs library fi le in your script fi les

that want to use

any of the functions. This is where things get tricky.

The problem is with the scope of shell functions. As with environment

variables, shell functions

are valid only for the shell session in which you defi ne them. If you run

the myfuncs

shell script from your shell command line interface prompt, the shell

creates a new shell

and runs the script in that new shell. This defines the three functions for

that shell, but

when you try to run another script that uses those functions, they aren’t

available

Using Functions on the Command Line

You can use script functions to create some pretty complex operations.

Sometimes, it would be nice to be able to use these functions directly on

the command line interface prompt.Just as you can use a script function

as a command in a shell script, you can also use a script function as a

command in the command line interface. This is a nice feature because

after you define the function in the shell, you can use it from any

directory on the system;

you don’t have to worry about a script being in your PATH environment

variable. The trick

is to get the shell to recognize the function. You can do that in a couple of

ways.

The fi rst method defines the function all on one line:

$ functiondivem { echo $[$1 / $2]; }

$ divem 100 5

20

$

When you defi ne the function on the command line, you must remember

to include a semicolon

at the end of each command, so the shell knows where to separate

commands:

$ functiondoubleit { read -p "Enter value: " value; echo $[

$value * 2]; }

$

$ doubleit

Enter value: 20

40

$

The other method is to use multiple lines to defi ne the function. When

you do that,

the bash shell uses the secondary prompt to prompt you for more

commands. Using this

method, you don’t need to place a semicolon at the end of each command;

just press the

Enter key:

$ functionmultem {

>echo $[$1 * $2]

> }

$ multem 2 5

10

$

When you use the brace at the end of the function, the shell knows that

you’re finished

defining the function.

Be extremely careful when creating functions on the command

writing script for graphical Desktop: Creating text menus-Building

text windows:

Creating Text Menus

The most common way to create an interactive shell script is to utilize a

menu. Offering your customers a choice of various options helps guide

them through exactly what the script can and can’t do.

Menu scripts usually clear the display area and then show a list of options

available. The customer can select an option by pressing an associated

letter or number assigned to each option. Figure 18-1

shows the layout of a sample menu.

The core of a shell script menu is the case command (see Chapter 12).

The case command performs

specific commands, depending on what character your customer selects

from the menu.

The following sections walk you through the steps you should follow to

create a menu-based

shell script.

Create the menu layout

The first step in creating a menu is, obviously, to determine what

elements you want to

appear in the menu and lay them out the way that you want them to

appear.

Before creating the menu, it’s usually a good idea to clear the monitor

display. This enables

you to display your menu in a clean environment without distracting text.

The clear command uses the terminfo data of your terminal session (see

Chapter 2) to

clear any text that appears on the monitor. After the clear command, you

can use the

echo command to display your menu elements.

By default, the echo command can only display printable text characters.

When creating

menu items, it’s often helpful to use nonprintable items, such as the tab

and newline characters.

To include these characters in your echo command, you must use the -e

option.

Thus, the command:

echo -e "1.\tDisplay disk space"

results in the output line:

1. Display disk space

This greatly helps in formatting the layout of the menu items. With just a

few echo commands,

you can create a reasonable-looking menu:

clear

echo

echo -e "\t\t\tSys Admin Menu\n"

echo -e "\t1. Display disk space"

echo -e "\t2. Display logged on users"

echo -e "\t3. Display memory usage"

echo -e "\t0. Exit menu\n\n"

echo –en "\t\tEnter option: "

The -en option on the last line displays the line without adding the

newline character atthe end. This gives the menu a more professional

look, because the cursor stays at the end

of the line waiting for the customer’s input.

The last part of creating the menu is to retrieve the input from the

customer. This is done

using the read command (see Chapter 14). Because we expect only

single-character input,

the nice thing to do is to use the -n option in the read command to retrieve

only one character.

This allows the customer to enter a number without having to press the

Enter key:

read -n 1 option

Next, you need to create your menu functions.

Create the menu functions

Shell script menu options are easier to create as a group of separate

functions. This enables

you to create a simple, concise case command that is easy to follow.

To do that, you need to create separate shell functions for each of your

menu options. The

first step in creating a menu shell script is to determine what functions

you want your

script to perform and lay them out as separate functions in your code.

It is common practice to create stub functions for functions that aren’t

implemented yet. A

stub function is a function that doesn’t contain any commands yet or

possibly just an echo

statement indicating what should be there eventually:

functiondiskspace {

clear

echo "This is where the diskspace commands will go"

}

This enables your menu to operate smoothly while you work on the

individual functions.

Create the menu functions

Shell script menu options are easier to create as a group of separate

functions. This enables

you to create a simple, concise case command that is easy to follow.

To do that, you need to create separate shell functions for each of your

menu options. The

first step in creating a menu shell script is to determine what functions

you want your

script to perform and lay them out as separate functions in your code.

It is common practice to create stub functions for functions that aren’t

implemented yet. A

stub function is a function that doesn’t contain any commands yet or

possibly just an echo

statement indicating what should be there eventually:

functiondiskspace {

clear

echo "This is where the diskspace commands will go"

}

This enables your menu to operate smoothly while you work on the

individual functions.

You don’t have to code all the functions for your menu to work.The last

part of creating the menu is to retrieve the input from the customer. This

is done

using the read command (see Chapter 14). Because we expect only

single-character input,

the nice thing to do is to use the -n option in the read command to retrieve

only one character.

This allows the customer to enter a number without having to press the

Enter key:

read -n 1 option

Next, you need to create your menu functions.

Create the menu functions

Shell script menu options are easier to create as a group of separate

functions. This enables

you to create a simple, concise case command that is easy to follow.

To do that, you need to create separate shell functions for each of your

menu options. The

first step in creating a menu shell script is to determine what functions

you want your

script to perform and lay them out as separate functions in your code.

It is common practice to create stub functions for functions that aren’t

implemented yet. A

stub function is a function that doesn’t contain any commands yet or

possibly just an echo

statement indicating what should be there eventually:

functiondiskspace {

clear

echo "This is where the diskspace commands will go"

}

This enables your menu to operate smoothly while you work on the

individual functions.

You don’t have to code all the functions for your menu to work.

One thing that helps out in the shell script menu is to create the menu

layout itself as a

function:

function menu {

clear

echo

echo -e "\t\t\tSys Admin Menu\n"

echo -e "\t1. Display disk space"

echo -e "\t2. Display logged on users"

echo -e "\t3. Display memory usage"

echo -e "\t0. Exit program\n\n"

echo -en "\t\tEnter option: "

read -n 1 option

}

This enables you to easily redisplay the menu at any time just by calling

the menu function.Add the menu logic

Now that you have your menu layout and your functions, you just need to

create the

programming logic to put the two together. As mentioned, this requires

the case command.

The case command should call the appropriate function according to the

character selection

expected from the menu. It’s always a good idea to use the default case

command

character (the asterisk) to catch any incorrect menu entries.

The following code illustrates the use of the case command in a typical

menu:

menu

case $option in

0)

break ;;

1)

disk space ;;

2)

whose on ;;

3)

mem usage ;;

*)

clear

echo "Sorry, wrong selection";;

esac

This code first uses the menu function to clear the monitor screen and

display the menu. The

read command in the menu function pauses until the customer hits a

character on the keyboard.

Doing Windows

Using text menus is a step in the right direction, but there’s still so much

missing in

our interactive scripts, especially if we try to compare them to the

graphical Windows

world. Fortunately for us, some very resourceful people out in the open

source world have

helped us out.

The dialog package is a nifty little tool originally created by Savio Lam

and currently maintained

by Thomas E. Dickey. This package recreates standard Windows dialog

boxes in a

text environment using ANSI escape control codes. You can easily

incorporate these dialog

boxes in your shell scripts to interact with your script users. This section

describes the dialog

package and demonstrates how to use it in shell scripts.

The dialog package

The dialog command uses command line parameters to determine what

type of Windows

widgetto produce. A widget is the dialog package term for a type of

Windows element. The

dialog package currently supports the types of widgets

The dialog Widgets

Widget Description

calendar-Provides a calendar from which to select a date

checklist- Displays multiple entries where each entry can be turned on or

off

form-Allows you to build a form with labels and text fields to be fi lled

out

fselect-Provides a file selection window to browse for a fi le

gauge-Displays a meter showing a percentage of completion

infobox-Displays a message without waiting for a response

inputbox-Displays a single text form box for text entry

inputmenu- Provides an editable menu

menu-Displays a list of selections from which to choose

As you can see from Table 18-1, you can choose from lots of different

widgets. This can give

your scripts a more professional look with very little effort.

To specify a specifi c widget on the command line, you need to use the

double dash format:

dialog --widget parameters

where widget is the widget name as seen in Table 18-1, and parameters

defines the size

of the widget window and any text required for the widget.

Each dialog widget provides output in two forms:

■ Using STDERR

■ Using the exit code status

The exit code status of the dialog command determines the button

selected by the

user. If an OK or Yes button is selected, the dialog command returns a 0

exit status.

If a Cancel or No button is selected, the dialog command returns a 1 exit

status. You

can use the standard $? variable to determine which button was selected

in the dialog

widget.

If a widget returns any data, such as a menu selection, the dialog

command sends the

data to STDERR. You can use the standard bash shell technique of

redirecting the STDERR

output to another fi le or fi le descriptor:

dialog --inputbox "Enter your age:" 10 20 2>age.txt

This command redirects the text entered in the textbox to the age.txt fi le.

The following sections look at some examples of the more common

dialog widgets you’ll use

If your terminal emulator supports the mouse, you can click the OK button to close the
dialog box. You can also use keyboard commands to simulate a click — just press the
Enter key.

The exit status of the dialog command is set depending on which button

the user selects.

If the No button is selected, the exit status is 1, and if the Yes button is

selected, the exit

status is 0.

The inputbox widget:

The inputbox widget provides a simple textbox area for the user to enter a

text string.

The dialog command sends the value of the text string to STDERR. You

must redirect that

to retrieve the answer. Figure 18-4 demonstrates what the inputbox

widget looks like.

As you can see in Figure 18-4, the inputboxprovides two buttons — OK and Cancel. If

the Cancel button is selected, the exit status of the command is 1; otherwise, the exit
status is 0:

$ dialog --inputbox "Enter your age:" 10 20 2>age.txt

$ echo $?

0

$ cat age.txt

12$

You’ll notice when you use the cat command to display the contents of

the text fi le that

there’s no newline character after the value. This enables you to easily

redirect the fi le contents

to a variable in a shell script to extract the string entered by the user.

The textbox widget

The textbox widget is a great way to display lots of information in a

window. It produces

a scrollable window containing the text from a fi le specified in the

parameters:

$ dialog --textbox /etc/passwd 15 45

The contents of the /etc/passwd fi le are shown within the scrollable text

window, as

illustrated in Figure 18-5.

You can use the arrow keys to scroll left and right, as well as up and

down in the text

fi le. The bottom line in the window shows the percent location within the

fi le that

you’re viewing. The textbox contains only a single Exit button, which

should be selected

to exit the widget.

The menu widget

The menu widget allows you to create a window version of the text menu

we created earlier

in this chapter. You simply provide a selection tag and the text for each

item:

$ dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space"

2 "Display users" 3 "Display memory usage" 4 "Exit" 2> test.txt

The fi rst parameter defines a title for the menu. The next two parameters

defi ne the height

and width of the menu window, while the third parameter defines the

number of menu

items that appear in the window at one time. If there are more menu

items, you can scroll

through them using the arrow keys.

Following those parameters, you must add menu item pairs. The fi rst

element is the tag

used to select the menu item. Each tag should be unique for each menu

item and can be

selected by pressing the appropriate key on the keyboard. The second

element is the text

used in the menu. Figure 18-6 demonstrates the menu produced by the

example command

The menu widget

The menu widget allows you to create a window version of the text menu

we created earlier

in this chapter. You simply provide a selection tag and the text for each

item:

$ dialog --menu "Sys Admin Menu" 20 30 10 1 "Display disk space"

2 "Display users" 3 "Display memory usage" 4 "Exit" 2> test.txt

The fi rst parameter defines a title for the menu. The next two parameters

defi ne the height

and width of the menu window, while the third parameter defines the

number of menu

items that appear in the window at one time. If there are more menu

items, you can scroll

through them using the arrow keys.

The fselect widget

There are several fancy built-in widgets provided by the dialog command.

The fselect

widget is extremely handy when working with fi lenames. Instead of

forcing the user to

type a fi lename, you can use the fselect widget to browse to the fi le

location and select

the fi le, as shown in Figure 18-7.

The fselect widget format looks like:

$ dialog --title "Select a file" --fselect $HOME/ 10 50 2>file.txt

 The fi rst

parameter after the fselect option is the starting folder location used in the

window. The fselect widget window consists of a directory listing on the

left side, a fi le

listing on the right side that shows all the fi les in the selected directory,

and a simple textbox

that contains the currently selected fi le or directory. You canmanualtype

a fi lename

in the textbox, or you can use the directory and fi le listings to select one

(use the spacebar

to select a fi le to add to the textbox).

The dialog options

In addition to the standard widgets, you can customize lots of different

options in the dialog

command. You’ve already seen the --title parameter in action. This

allows you to set

a title for the widget that appears at the top of the window.

Lots of other options allow you to completely customize both the

appearance and the

behavior of your windows. Table 18-2 shows the options available for the

dialog

command.

TABLE 18-2 The dialog Command Options

Option Description

--add-widget Proceeds to the next dialog unless Esc or the Cancel button

has been pressed

--aspect ratio Specifies the width/height aspect ratio of the window

--backtitle title Specifies a title to display on the background, at the top of

the

screen

--begin x y Specifies the starting location of the top-left corner of the

window

--cancel-label label Specifies an alternative label for the Cancel button

Continues

Option Description

--clear Clears the display using the default dialog background color

--colors Embeds ANSI color codes in dialog text

--cr-wrap Allows newline characters in dialog text and forces a line wrap

--create-rc file Dumps a sample configuration fi le to the specified fi le

--defaultno Makes the default of a yes/no dialog No

--default-item string Sets the default item in a checklist, form, or menu

dialog

--exit-label label Specifies an alternative label for the Exit button

--extra-button Displays an extra button between the OK and Cancel

buttons

--extra-label label Specifies an alternative label for the Extra button

--help Displays the dialog command help message

--help-button Displays a Help button after the OK and Cancel buttons

--help-label label Specifies an alternative label for the Help button

--help-status Writes the checklist, radiolist, or form information after the

help information in the Help button was selected

--ignore Ignores options that dialog does not recognize

--input-fdfdSpecifies an alternative fi le descriptor, other than STDIN

--insecure Changes the password widget to display asterisks when

typing

--item-help Adds a help column at the bottom of the screen for each tag

in a checklist, radiolist, or menu for the tag item

--keep-window Doesn’t clear old widgets from the screen

--max-input size Specifies a maximum string size for the input; default is

2048

--nocancelSuppresses the Cancel button

--no-collapse Doesn’t convert tabs to spaces in dialog text

--no-kill Places the tailboxbg dialog in background and disables

SIGHUP for the process

--no-label label Specifies an alternative label for the No button

--no-shadow Doesn’t display shadows for dialog windows

--ok-label label Specifies an alternative label for the OK button

--output-fdfdSpecifies an alternative output fi le descriptor other than

STDERR

--print-maxsize Prints the maximum size of dialog windows allowed to

the

output

Introducing sed and gaw:

Getting to know the sed editor

The sed editor is called a stream editor, as opposed to a normal

interactive text editor. In an interactive

text editor, such as vim, you interactively use keyboard commands to

insert, delete, or replace text in the data. A stream editor edits a stream of

data based on a set of rules you supply ahead of time, before the editor

processes the data

After the stream editor matches all the commands against a line of data, it

reads the next

line of data and repeats the process. After the stream editor processes all

the lines of data

in the stream, it terminates.

Because the commands are applied sequentially line by line, the sed

editor makes only one

pass through the data stream to make the edits. This makes the sed editor

much faster than

an interactive editor and allows you to quickly make changes to data in a

fi le on the fl y.

Here’s the format for using the sed command:

sed options script file

The options parameters allow you to customize the behavior of the sed

command and

include the options shown in Table 19-1.

TABLE 19-1 Thesed Command Options

Option Description

-e script Adds commands specified in the script to the commands run

while processing

the input

-f file Adds the commands specified in the fi le to the commands run

while processing

the input

-n Doesn’t produce output for each command, but waits for the print

command

The script parameter specifies a single command to apply against the

stream data. If more

than one command is required, you must use either the -e option to

specify them in the

command line or the -f option to specify them in a separate fi le.

Numerous commands are

available for manipulating data. We examine some of the basic

commands used by the sed

editor in this chapter and then look at some of the more advanced

commands

Defining an editor command in the command line

By default, the sed editor applies the specified commands to the STDIN

input stream. This

allows you to pipe data directly to the sed editor for processing. Here’s a

quick example

demonstrating how to do this:When you run this example, it should

display the results almost instantaneously. That’s the

power of using the sed editor. You can make multiple edits to data in

about the same time

it takes for some of the interactive editors just to start up.

Of course, this simple test just edited one line of data. You should get the

same speedy

results when editing complete fi les of data:

$ cat data1.txt

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

$

$ sed 's/dog/cat/' data1.txt

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

The quick brown fox jumps over the lazy cat.

$

The sed command executes and returns the data almost instantaneously.

As it processes

each line of data, the results are displayed. You’ll start seeing results

before the sed editor

completes processing the entire fi le.

It’s important to note that the sed editor doesn’t modify the data in the

text fi le itself. It

only sends the modified text to STDOUT. If you look at the text fi le, it

still contains the

original data:

$ cat data1.txt

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

$

Using multiple editor commands in the command line

To execute more than one command from the sed command line, just use

the -e option:

$ sed -e 's/brown/green/; s/dog/cat/' data1.txt

The quick green fox jumps over the lazy cat.
Instead of using a semicolon to separate the commands, you can use the secondary prompt
in the bash shell. Just enter the fi rst single quotation mark to open the sedprogram script
(sededitor command list), and bash continues to prompt you for more commands until you
enter the closing quotation mark:
$ sed -e '

>s/brown/green/

>s/fox/elephant/

>s/dog/cat/' data1.txt

The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.

$

You must remember to fi nish the command on the same line where the closing single quotation

mark appears. After the bash shell detects the closing quotation mark, it processes the
command. After it starts, the sedcommand applies each command you specified to each

line of data in the text fi le.

Reading editor commands from a file
Finally, if you have lots of sedcommands you want to process, it is often easier to just
store them in a separate fi le. Use the -f option to specify the fi le in the sedcommand:
$ cat script1.sed

s/brown/green/
s/fox/elephant/

s/dog/cat/
$
$ sed -f script1.sed data1.txt

The quick green elephant jumps over the lazy cat.

The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$

In this case, you don’t put a semicolon after each command. The sededitor knows that
each line contains a separate command. As with entering commands on the command line,Instead
of using a semicolon to separate the commands, you can use the secondary prompt
in the bash shell. Just enter the fi rst single quotation mark to open the sed program script
(sed editor command list), and bash continues to prompt you for more commands until you
enter the closing quotation mark:
$ sed -e '
>s/brown/green/
>s/fox/elephant/
> s/dog/cat/' data1.txt

The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$
You must remember to fi nish the command on the same line where the closing single quotation
mark appears. After the bash shell detects the closing quotation mark, it processes the
command. After it starts, the sed command applies each command you specified to each
line of data in the text fi le.
Reading editor commands from a file
Finally, if you have lots of sed commands you want to process, it is often easier to just
store them in a separate fi le. Use the -f option to specify the fi le in the sed command:
$ cat script1.sed
s/brown/green/
s/fox/elephant/
s/dog/cat/
$
$ sed -f script1.sed data1.txt
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
The quick green elephant jumps over the lazy cat.
$
In this case, you don’t put a semicolon after each command. The sed editor knows that
each line contains a separate command. As with entering commands on the command line,

Commanding at the sed Editor Basics

The key to successfully using the sed editor is to know its myriad of

commands and formats,

which help you to customize your text editing. This section describes

some of the

basic commands and features you can incorporate into your script to start

using the sed

editor.

Introducing more substitution options

You’ve already seen how to use the s command to substitute new text for

the text in a line.

However, a few additional options are available for the substitute

command that can

help make your life easier.

Substituting flags

There’s a caveat to how the substitute command replaces matching

patterns in the text

string. Watch what happens in this example:

$ cat data4.txt

This is a test of the test script.

This is the second test of the test script.

$

$ sed 's/test/trial/' data4.txt

This is a trial of the test script.

This is the second trial of the test script.

$
■ A number, indicating the pattern occurrence for which new text should be
substituted
■ g, indicating that new text should be substituted for all occurrences of the

existing text
■ p, indicating that the contents of the original line should be printed
■ w file, which means to write the results of the substitution to a fi le

In the fi rst type of substitution, you can specify which occurrence of the matching pattern
thesededitor should substitute new text for:
$ sed 's/test/trial/2' data4.txt

This is a test of the trial script.

This is the second test of the trial script.
$

As a result of specifying a 2 as the substitution flag, the sededitor replaces the pattern
only in the second occurrence in each line. The g substitution flag enables you to replace

every occurrence of the pattern in the text:
$ sed 's/test/trial/g' data4.txt

This is a trial of the trial script.

This is the second trial of the trial script.
$
The p substitution flag prints a line that contains a matching pattern in the substitute
command. This is most often used in conjunction with the -n sedoption:
$ cat data5.txt
This is a test line.
This is a different line.

$
$ sed -n 's/test/trial/p' data5.txt

This is a trial line.
$

The -n option suppresses output from the sededitor. However, the p substitution flag outputs

any line that has been modifi ed. Using the two in combination produces output only
for lines that have been modified by the substitute command.

Replacing characters

Sometimes, you run across characters in text strings that aren’t easy to

use in the substitution

pattern. One popular example in the Linux world is the forward slash (/).

Substituting pathnames in a fi le can get awkward. For example, if you

wanted to substitute

the C shell for the bash shell in the /etc/passwd fi le, you’d have to do this:

$ sed 's/\/bin\/bash/\/bin\/csh/' /etc/passwd

Because the forward slash is used as the string delimiter, you must use a

backslash to

escape it if it appears in the pattern text. This often leads to confusion and

mistakes.

To solve this problem, the sed editor allows you to select a different

character for the

string delimiter in the substitute command:

$ sed 's!/bin/bash!/bin/csh!' /etc/passwd

In this example, the exclamation point is used for the string delimiter,

making the pathnames

much easier to read and understand.

Using addresses

By default, the commands you use in the sed editor apply to all lines of

the text data. If

you want to apply a command only to a specifi c line or a group of lines,

you must use line

addressing.

There are two forms of line addressing in the sed editor:

■ A numeric range of lines

■ A text pattern that fi lters out a line

Both forms use the same format for specifying the address:

[address]command
Introducing sed and gawk

You can also group more than one command together for a specifi c address:
address {
command1
command2
command3

}

The sededitor applies each of the commands you specify only to lines that match the

addressspecifi ed. This section demonstrates using both of these addressing techniques in
yoursededitor scripts.

Addressing the numeric line
When using numeric line addressing, you reference lines using their line position in the
text stream. The sededitor assigns the fi rst line in the text stream as line number one and

continues sequentially for each new line.
The address you specify in the command can be a single line number or a range of lines
specified by a starting line number, a comma, and an ending line number. Here’s an example
of specifying a line number to which the sedcommand will be applied:
$ sed '2s/dog/cat/' data1.txt

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog
$

The sededitor modified the text only in line two per the address specifi ed. Here’s another

example, this time using a range of line addresses:
$ sed '2,3s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy dog

$

If you want to apply a command to a group of lines starting at some point within the text,
but continuing to the end of the text, you can use the special address, the dollar sign:
$ sed '2,$s/dog/cat/' data1.txt
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy cat
The quick brown fox jumps over the lazy cat

The quick brown fox jumps over the lazy cat

Regular Expressions:

Linux Regular Expressions are special characters which help search

data and matching complex patterns. Regular expressions are shortened

as ‘regexp’ or ‘regex’. They are used in many Linux programs like grep,

bash, rename, sed, etc.

Types of Regular expressions

For ease of understanding let us learn the different types of Regex one by

one.

Basic Regular expressions

Some of the commonly used commands with Regular expressions are tr,

sed, vi and grep. Listed below are some of the basic Regex.

Symbol Descriptions

. replaces any character

^ matches start of string

$ matches end of string

* matches up zero or more times the preceding character

\ Represent special characters

() Groups regular expressions

? Matches up exactly one character

Regular expressions in Linux, commonly referred to as Reg Ex, are

powerful tools used for pattern matching and text manipulation in Linux

and other programming languages. Regular expressions allow users to

define patterns that can match specific strings of characters or patterns

within larger strings of text.

Defining regular Expressions:

The Linux regular expression, basically it is a sequence of characters or

string that would define the searching pattern. These searching patterns

are used by the string search algorithms like vim, vi, sed, awk, find, grep,

etc. It is a very powerful tool in Linux.

Interval Regular expressions

These expressions tell us about the number of occurrences of a character

in a string. They are

Expression Description

{n} Matches the preceding character appearing ‘n’ times exactly

Expression Description

{n,m} Matches the preceding character appearing ‘n’ times but not more than m

{n, } Matches the preceding character only when it appears ‘n’ times or more

Example:

Filter out all lines that contain character ‘p’

We want to check that the character ‘p’ appears exactly 2 times in a string

one after the other. For this the syntax would be:

cat sample | grep -E p\{2}

Note: You need to add -E with these regular expressions.

Extended regular expressions

These regular expressions contain combinations of more than one

expression. Some of them are:

Expression Description

\+ Matches one or more occurrence of the previous character

\? Matches zero or one occurrence of the previous character

Example:

Searching for all characters ‘t’

Suppose we want to filter out lines where character ‘a’ precedes character

‘t’

We can use command like

catsample|grep "a\+t"

Brace expansion

The syntax for brace expansion is either a sequence or a comma separated

list of items inside curly braces “{}”. The starting and ending items in a

sequence are separated by two periods “..”.

Interval Regular expressions

These expressions tell us about the number of occurrences of a character

in a string. They are

Expression Description

{n} Matches the preceding character appearing ‘n’ times exactly

{n,m} Matches the preceding character appearing ‘n’ times but not more than m

{n, } Matches the preceding character only when it appears ‘n’ times or more

Example:

Filter out all lines that contain character ‘p’

We want to check that the character ‘p’ appears exactly 2 times in a string

one after the other. For this the syntax would be:

cat sample | grep -E p\{2}

Note: You need to add -E with these regular expressions.

Extended regular expressions

These regular expressions contain combinations of more than one

expression. Some of them are:

Expression Description

\+ Matches one or more occurrence of the previous character

\? Matches zero or one occurrence of the previous character

Example:

Searching for all characters ‘t’

Suppose we want to filter out lines where character ‘a’ precedes character

‘t’

We can use command like

catsample|grep "a\+t"

Brace expansion

The syntax for brace expansion is either a sequence or a comma separated

list of items inside curly braces “{}”. The starting and ending items in a

sequence are separated by two periods “..”.

	SUBJECT: LINUX AND SHELL PROGRAMMING
	Basic Function:
	Returning Value:
	Using the return command:
	Passing parameters to a function
	Array Variables and Functions
	Passing arrays to functions
	Returning arrays from functions:

	Function Recursion
	Creating a Library:
	Using Functions on the Command Line
	writing script for graphical Desktop: Creating text menus-Building text windows:
	Create the menu layout
	The textbox widget
	Types of Regular expressions
	Defining regular Expressions:
	Interval Regular expressions
	Extended regular expressions
	Brace expansion
	Interval Regular expressions (1)
	Extended regular expressions (1)
	Brace expansion (1)

