
MARUDHARKESARIJAINCOLLEGEFORWOMEN,VANIYAMBADI PG 

DEPARTMENT OF COMPUTER APPLICATIONS 

 

Subjectcode:23USCA14 

Class : I-MCA 

SUBJECT:LINUXANDSHELLPROGRAMMING 

 

 

UNIT-

VSYLLABUS 

Workingwithalternativeshells:Understandingthedash shells-Programminginthe 

dash shells-introducing the ZSH shell-writing script for ZSH.writing simple script 

utilities:Automatingbackups–Managinguseraccounts-watchingdiskspace producing 

scriptfordatabase,webeandemail;writingdatabaseshellscript-Emailingreportsfrom 

script.UsingpythonAsabashscriptingAlternative:technicalrequriments-Python 

language-Helloworldthepython way-Pythonicarguments-supplying arguments- 

supplying arguments-counting arguments-significant white space-Reading user 

input-Using python to write to files-String Manipulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

WhatisthedashShell? 

The Debi and dash shell has had an interesting past. It’s a direct descendant of the 

ash shell, a simple copy of the original Bourne shell available on Unix systems 

Kenneth Almquistcreated a small-scale version of the Bourne shell for Unix 

systems and called it the Almquist shell,which was then shortened to ash. This 

original version of the ash shell was extremely small andfast but without many 

advanced features, suchas command line editingor history features, making 

itdifficulttouseasaninteractiveshell. 

The NetBSD Unix operating system adopted the ash shell and still uses it today as 

the default shell.The NetBSD developers customized the ash shell by adding 

severalnew features, makingitclosertothe Bourneshell. The new features include 

command line editing using both emacs and vi editorcommands and a history 

command to recall previously entered commands. This version of the 

ashshellisalsousedbytheFreeBSDoperatingsystemasthedefaultloginshell. 

The Debi a Linux distribution created its own version of the ash shell (called Debi 

anash, or dash) forinclusionin its version ofLinux. For the most part, dashcopies 

the features of the NetBSDversion of the ash shell, providing advanced command- 

line editing capabilities. 

 

Everyshellscript muststartwithalinethat declarestheshell 

used forthe script. Inourbashshellscripts, we’vebeenusingthis: 

#!/bin/bash 

This tells the shell to use the shell program located at /bin/bash to execute the 

script. In the UNIX world, the default shell was always /bin/sh. Many shell script 

programmers familiar with the UNIX environment copy this into their Linux shell 

scripts: 

#!/bin/shunmostLinuxdistributions;the/bin/shefiles isasymbolic link 

 

ThedashShellFeatures: 

Althoughboththe bashshelland the dashshellare modeled after the Bourne shell, 

they have some differences. This section walks you through the features found in 

the Debiandash shell to acquaint you with how the dash shell works beforethe 

shellscripting features. 

Thedashcommandlineparameters 

Thedashshellusescommandlineparameterstocontrolitsbehavior.The liststhe 

command line parameters and describes what each one does. 

 
 
 
 
 
 



ThedashCommandLineParameters 

Parameter Description: 

-a-Exportsallvariablesassignedtotheshell 

-c-Readscommandsfromaspecifiedcommandstring 

-e-Ifnotinteractive,exitsimmediatelyifanyuntestedcommandfails 

-f-Displayspathnamewildcardcharacters 

-n-Ifnotinteractive,readscommandsbutdoesn’texecutethem 

-u-WritesanerrormessagetoSTDERRwhenattemptingtoexpandavariablethat is not 

set 

-v-WritesinputtoSTDERRasitis read 

-x-WriteseachcommandtoSTDERRasitisexecuted 

-I-IgnoresEOFcharactersfromtheinputwhenininteractivemode 

-i-Forcestheshelltooperateininteractive mode 

-m-Turnsonjobcontrol(enabledbydefaultininteractivemode) 

-s-Readscommands fromSTDIN(thedefaultbehaviorifno fileargumentsare Present) 

-E-Enablestheemacscommandlineeditor 

-V-EnablestheVIcommandlineeditor 

 

Debi an added a few additional command line parameters to the original ash shell 

command 

Lineparameterlist. 

The-Eand-Vcommandlineparametersenablethespecialcommand 

 

 

Thedashenvironmentvariables: 

The dash shell uses quite a few default environment variables uses to track 

information,and you can create your own environment variables as well. This 

section describes theenvironment variables and how dash handles them. 

 

Defaultenvironmentvariables 

The dashenvironment variables are verysimilar to the environment variables used 

in bash.This is not by accident. Remember that both the dash and bash shells are 

extensionsoftheBourneshell,sotheybothincorporatemanyofitsfeatures. 

However,becauseofitsgoalof simplicity,thedashshell containssignificantly fewer 

environment variables than the bash shell. You need to take this into consideration 

when creating shellscripts in a dash shell environment. 

Thedashshellusesthesetcommandtodisplayenvironmentvariables: 

Positionalparameters: 

In addition to the default environment variables, the dash shell also assigns special 

variablesto any parameters defined in the command line. Here are the positional 

parametervariables available for use in the dash shell: 

■ $0:Thenameoftheshell 

■ $n:Thenthpositionparameter 



■ $*:Asingle valuewiththecontentsofalltheparameters,separatedbythefirst 

character inthe IFS environment variable, or a space ifIFS isn’t defined 

■ $@Expandstomultipleargumentsconsisting of all thecommandline 

parameters 

■ $#:Thenumberofpositionalparameters 

■ $?:Theexitstatusofthemostrecentcommand 

■ $-:Thecurrentoption flags 

■ $$:TheprocessID(PID)ofthecurrentshell 

■ $!:TheprocessID(PID)ofthemostrecentbackgroundcommand 

All the dash positional parameters mimic the same positional parameters available 

in the Bash shell. You can use each of the positional parameters in yourshell scripts 

just as you 

wouldbeinthebashshell. 

User-definedenvironmentvariable: 

Thedashshellalsoallowsyoutosetyourownenvironmentvariables.Aswith bash, you 

can define a new environment variable on the command line by using 

theassignment 

statement: 

$testing=10;exporttesting 

$echo$testing 

10 

$ 

Without the export command, user-defined environment variables are visible only 

in the current shell or process. 

Thedashbuilt-incommands: 
Justaswiththebashshell, thedashshellcontainsasetof built-incommandsthat it 

recognizes. 

Youcanusethesecommandsdirectlyfromthecommand line interface, oryoucan 

incorporate them in your shell scripts. 

ThedashShellBuilt-InCommands 

CommandDescription 

Alias-Createsanaliasstringtorepresentatextstring Bg- 

Continues specified job in background mode 

cd-Switchestothespecifieddirectory 

echo-Displaysatextstringandenvironmentvariables 

eval- Concatenates all arguments with a space 

Exec-Replacestheshellprocesswiththespecifiedcommand 

Exit- Terminates the shell process 

Export-Exportsthespecifiedenvironmentvariable foruseinallchildshells fg -

Continues specified job in foreground mode 

getopts-Obtainsoptionsandargumentsfroma listofparameters 

hashMaintainsandretrievesahashtableofrecentcommandsandtheirlocations pwd-- 

Displays the value of the current working directory 



read ---Reads a line from STDIN and assigns the value to a variable 

read-only--Readsaline fromSTDINtoavariablethat can’tbechanged 

printf-- Displays text and variables using a formatted string 

set-Listsorsetsoptionflagsandenvironmentvariables 

shift-Shiftsthepositionalparametersaspecified numberoftimes test 

-Evaluates anexpression and returns 0 iftrue or 1 if false 

times-Displaystheaccumulated userandsystemtimes fortheshellandallshell processes 

trap-Parsesandexecutesanactionwhentheshellreceivesaspecifiedsignal 

type-Interpretsthespecified nameanddisplaystheresolution(alias, built-in, 

command, 

keyword) 

ulimit-Queriesorsetslimitsonprocesses 

umask-Setsthevalueofthedefault fileanddirectorypermissions 

unalias- Removes the specified alias 

unset-Removesthespecified variableoroptionflagfromtheexported variables 

wait- Waits for the specified job to complete and returns the exit status 

Scripting in dash: 

Unfortunately,thedashshelldoesn’trecognizeallthescriptingfeaturesofthebash shell. 

 Shellscripts writtenfor the bashenvironment often failwhenrun inthe dash 

shell,causing all sorts of grief for shell script programmers. This section 

describes the differences 

 you’ll need to be aware of to get your shell scripts to run properly in a dash 

shell environment. 

Creatingdashscripts: 

You probably guessed by now that creating shell scripts for the dash shell is pretty 

similarto creatingshellscripts for the bash shell. Youshould always specify which 

shell you wantto use in your script to ensure that the script runs with the proper 

shell. 

Youdothisonthefirstlineoftheshell: 

#!/bin/dash 

You can also specify a shell command line parameter on this line, as was 

documented earlier 

in“Thedashcommandlineparameters”section. Things 

that don’t work 

Unfortunately, because the dash shell is only a subset of the Bourne shell features, 

somethings in the bash shell scripts don’t work in the dash shell. These are often 

called bashisms. 

This section is a quick summaryof bashshell features you maybe used to using in 

your 

bashshellscriptsthatdon’tworkifyou’reinadashshellenvironment. 

Usingarithmetic 

Itshowedthreewaystoexpressamathematicaloperationinthebashshellscript: 

■ Usingtheexprcommand:exproperation 



■ Usingsquarebrackets:$[operation] 

■ Usingdoubleparentheses:$((operation)) 

The dashshellsupports the exprcommand and the double parentheses method but 

doesn’t 

supportthesquarebracketmethod.Thiscanbeaproblemifyouhavelotsof 

mathematicaloperations that use square brackets. 

Theproper format forperforming mathematicaloperationsindashshellscriptsis to 

use the double parentheses method: 

$cattest5b 

#!/bin/dash 

#testingmathematicaloperations 

value1=10 

value2=15 

value3=$(($value1*$value2)) echo 

"The answer is $value3" 

$ ./test5b 

Theansweris150 

$ 

Nowtheshellcanperformthecalculationproperly. 

Thetestcommand: 

The bashshelltest command allows youto use the double equalsign(==) to test if 

two strings are equal. Thisis an add-on to accommodate programmers familiar with 

using this format in other programming languages. 

However, the test command available in the dash shell doesn’t recognize the == 

symbol for text comparisons. Instead, it only recognizes the = symbol. If you use 

the==symbolinyourbashscripts, youneedtochangethetextcomparisonsymbol to just 

a single equal sign: 

$ cat test7 

#!/bin/dash 

#testingthe=comparison 

test1=abcdef 

test2=abcdef 

if[$test1=$test2] then 

echo"They'rethesame!"else 

echo"They'redifferent"f

i 

$ ./test7 

They'rethesame! 

$ 

Thislittlebashismisresponsible formanyhoursoffrustrationforshell 

programmers! 



ThefunctionCommand: 

Itshowed youhowtodefine yourownfunctionsinyourshellscripts.Thebash shell 

supports two methods for defining functions: 

■ Usingthefunction()statement 

■ Usingthefunctionname only 

Thedashshelldoesn’tsupportthefunctionstatement.Instead,inthedashshell you 

mustdefineafunctionusingthefunctionnamewithparentheses. 

Ifyou’rewriting shell scriptsthatmay beusedin thedash environment,always 

definefunctions using the function name and not the function() statement: 

$cattest10 

#!/bin/dash 

#testingfunctions 

func1() { 

echo"Thisisanexampleofafunction" 

} 

count=1 

while[$count-le5] do 

func1 

count=$(($count+1)) 

done 

echo"Thisistheendoftheloop"func1 

echo"Thisistheendofthescript" 

$ ./test10 

Thisisanexampleofa function 

Thisisanexampleofa function 

Thisisanexampleofa function 

Thisisanexampleofa function 

Thisisanexampleofa function 

This is the end of the loop 

Thisisanexampleofa function 

Thisisanexampleofa function 

This is the end of the script 

$ 

Now the dashshellrecognizes the function defined inthe script just fi ne and uses it 

withinthe script. 



ThezshShell: 

Another popular shell that you may run into is the Z shell (called zsh). Thezsh shell 

is an open-source Unix shell developed by Paul Falstad. It takesideasfrom all the 

existing shells and adds many unique features to create a full-blown advanced shell 

designed for programmers. 

Thefollowingaresomeofthe featuresthatmakethezshshellunique: 

■ Improvedshelloptionhandling 

■ Shellcompatibilitymodes 

■ Loadablemodules 

Of all these features, a loadable module is the most advanced feature in shell 

design. As you’ve seen in the bash and dash shells, each shell contains a set of 

built-incommands thatare available withoutthe need forexternalutilityprograms. 

The benefit of built-in commands is execution speed. The shell doesn’t haveto load 

a utility program into memory before running it; the built-in commands are already 

in the shell memory, ready to go. 

 The zshshellprovides a coresetofbuilt-in commands, plus the capabilityto 

add more command modules. Each command module provides a set of 

additional built-in commands for specific circumstances, such as network 

support and advanced math functions. You can add only the modules you 

think you need for your specific situation. 

 This feature provides a great way to limit the size of the zsh shell for 

situations thatrequire a small shell size and few commands or expand the 

number of available built-in commands for situations that require faster 

execution speeds. 

PartsofthezshShell: 

The built-in command that are available (or can be added byinstalling modules), 

as well as the command line parameters and environment variables used by the 

zsh shell. 

Shelloptions: 

The most shells use command line parameters to define the behavior of the 

shell. The zshshelluses a few command line parameters to define the operation 

of the shell, but mostly it uses options to customize the behavior of the shell. 

You can set shell options either on the command line or within the shell itself 

using the set command 

 

ParameterDescription: 

-cExecutesonlythespecifiedcommandandexits 

-iStartsasaninteractiveshell,providingacommandline interfaceprompt 

-sForcestheshelltoreadcommandsfromSTDIN 

-oSpecifiescommandlineoptions 



Although this may seem like a small set of command line parameters, the -o 

parameter is somewhat misleading. It allows you to set shell options that define 

features within the shell. 

By far, the zsh shell is the most customizable shell available. You can alter lots of 

features for your shell environment. 

Thedifferentoptionsfitintoseveralgeneralcategories: 

■ Changingdirectories:Optionsthatcontrolhowthecdanddirscommands handle 

directory changes 

■ Completion:Optionsthatcontrolcommandcompletionfeatures 

■ Expansionandglobbing:Optionsthatcontrolfileexpansionincommands 

■ History:Optionsthatcontrolcommandhistoryrecall 

■ Initialization:Optionsthatcontrolhowtheshellhandlesvariablesandstartup fi les 

when started 

■ Input/output:Optionsthatcontrolcommandhandling 

■ Jobcontrol:Optionsthatdictatehowtheshellhandlesandstartsjobs 

■ Prompting:Optionsthatdefine howtheshellworkswithcommand lineprompts 

■ Scriptsand functions:Optionsthatcontrolhowtheshellprocessesshellscripts and 

defines shell functions 

■ Shellemulation:Optionsthatallow youtosetthebehaviorofthezshshellto mimic 

the behavior of other shell types 

■ Shellstate:Optionsthatdefinewhattypeofshelltostart 

■ zle:Optionsforcontrollingthezshlineeditor(zle) feature 

■ Optionaliases:Specialoptions that canbe used as aliases forotheroption names 

With this many different categories of shell options, you can imagine just how 

many actual 

optionsthezshshellsupport. 

Built-incommands: 

The zsh shell is unique in that it allows you to expand the built-in commands 

available in the shell. This provides for a wealth of speedy utilities at your 

fingertips for a host of different applications.This section describes the core built- 

incommands, along withthe various modules available at the time ofthis writing. 

 

Corebuilt-incommands: 

CommandDescription 

Alias Defines an alternate name for a command and arguments 

autoload Preloads a shell function into memory for quicker access 

bg Executes a job in background mode 

bindkeyBindskeyboardcombinationstocommands 

builtinExecutes thespecifiedbuilt-incommandinsteadofanexecutablefileof 



thesamename 

bye Thesameasexit 

cd  Changesthecurrentworkingdirectory 

chdir Changesthecurrentworkingdirectory 

command Executesthespecifiedcommandasanexternalfile insteadofa 

function orbuilt-in command 

declare Sets  thedatatypeofavariable(sameastypeset) 

dirs. Displays the contents ofthe directory stack 

disable Temporarilydisablesthespecifiedhashtableelements 

disown  Removes the specified job from the job table 

echo Displaysvariablesandtext 

emulate Setszshtoemulateanothershell,suchastheBourne,Korn,orC shellsenable 

Enables the specified hash table elements 

evalExecutes  thespecifiedcommandandarguments inthecurrentshell 

process 

exec Executesthespecifiedcommandandargumentsreplacingthecurrent 

shell process 

exit Exitstheshellwiththespecifiedexitstatus.Ifnonespecified,usethe status 

of the last command 

export Allowsthespecifiedenvironmentvariablenamesandvaluestobeusedin child 

shell processes false Returns an exit status of 1 

The zsh shell is no slouch when it comes to providing built-in commands! You 

should recognize most of these commands from their bash counterparts. The most 

important features of the zsh shell built-in commands are modules. 

 

Add-inmodules: 

There’s a long list of modules that provide additional built-in commandsfor the zsh 

shell, and the list continues to grow as resourceful programmers create new 

modules. It shows some of the more popular modules available. 

ModuleDescription: 

zsh/datetime-Additionaldateandtimecommandsandvariables 

zsh/files- Commands for basic file handling 

zsh/mapfile-Accesstoexternalfilesviaassociativearrays 

zsh/math func - Additional scientific functions 

zsh/pcre-Theextendedregularexpressionlibrary 

zsh/net/socket -Unix domain socket support 

zsh/stat-Accesstothestatsystemcalltoprovidesystemstatistics 

zsh/system Interface- for various low-level system features 

zsh/net/tcp -Access to TCP sockets 



zsh/zftp-AspecializedFTPclientcommand 

zsh/zselect-Blocksandreturnswhenfiledescriptorsareready 

zsh/zutil- Various shell utilities 

The zsh shell modules cover a wide range of topics, from providing simple 

command line editing features to advanced networking functions. The idea behind 

the zsh shell is to provide a basic minimum shell environment and let you add on 

the pieces you need to accomplish your programming job. 

 

Viewing,adding,andremovingmodules: 

The zmodload command is the interface to the zsh modules. You use 

thiscommand to view, add, and remove modules fromthe zsh shell session. 

Usingthe mod load command without any command line parameters displays the 

currentlyinstalled modules in your zsh shell: 

% zmodload 

zsh/zutil 

zsh/complete 

zsh/main 

zsh/terminfo 

zsh/zle 

zsh/parameter 

Different zshshellimplementations include different modules bydefault. Toadd a 

new module, just specifythe module name onthe zmodload command line: 

%zmodloadzsh/zftp 

% 

Nothingindicatesthatthemoduleloaded.Youcanperformanotherzmodload command, 

and the new module should appear inthe list of installed modules. 

After you load a module, the commands associated with the module are available 

as built-in commands: 

%zftpopenmyhost.comrichtesting1 Welcome 

to the myhost FTP server. 

%zftpcodtest 

%zftpdir 

01-21-1111:21PM120823test1 

01-21-1111:23PM118432test2 

%zftpgettest1>test1.txt 

%zftp close 

% 



The zftp command allows you to conduct a complete FTP session directly from 

your zsh shell command line! You can incorporate these commands into your zsh 

shell scripts to perform file transfers directly from your scripts. 

Toremoveaninstalledmodule,usethe -uparameter,alongwiththe modulename: 

%zmodload-uzsh/zftp 

%zftp 

zsh:commandnotfound:zftp 

% 

 

Scriptingwithzsh: 

The main purpose of the zsh shell was to provide an advanced programming 

environment for shell programmers. With that in mind, it’s no surprise that the zsh 

shell offers many features that make shell scripting easier. 

 

 

Mathematicaloperations: 

As you would expect, the zsh shell allows you to perform mathematical functions 

with ease. In the past, the Korn shell has led the way in supporting mathematical 

operations by providing support for floating-point numbers. The zsh shell has full 

support for floatingpoint 

numbersinallitsmathematicaloperations! Performing 

calculations 

Thezshshellsupportstwomethodsforperformingmathematicaloperations: 

■ Theletcommand 

■ Doubleparentheses 

Whenyouusethe letcommand, youshouldenclosetheoperationindouble 

quotation 

markstoallowforspaces: 

%letvalue1="4*5.1/3.2" 

%echo$value1 

6.3750000000 

% 

Be careful,using floating pointnumbersmay introducea precision problem.To solve 

this, 

it’salwaysagoodideatousetheprintfcommandandtospecifythedecimal precision 

neededtocorrectlydisplaytheanswer: 

%printf"%6.3f\n"$value1 

6.375 

% 



Nowthat’smuchbetter! 

Thesecond method istousethedoubleparentheses.This method incorporatestwo 

techniques 

fordefiningthemathematicaloperation: 

%value1=$((4*5.1)) 

%((value2= 4*5.1)) 

%printf"%6.3f\n"$value1$value2 

20.400 

20.400 

% 

Notice that you can place the double parentheses either around just the operation 

(preceded by a dollar sign) or around the entire assignment statement. Both 

methods produce the same results. 

Mathematicalfunctions 

With the zsh shell, built-in mathematical functions are either feast or famine. The 

default 

zshshelldoesn’tincludeanyspecial mathematicalfunction. However, ifyou 

install the 

zsh/mathfunc module, you have more math functions than you’ll most likely ever 

need: 

%value1=$((sqrt(9))) 

zsh:unknownfunction:sqrt 

%zmodloadzsh/mathfunc 

%value1=$((sqrt(9))) 

%echo$value1 

3. 

% 

That was simple!Now youhave anentire mathlibraryoffunctions atyour 

fingertips. 

Mathematicalfunctions: 

With the zsh shell, built-in mathematical functions are either feast or famine. The 

default zsh shell doesn’t include any special mathematical function. However, if 

you install the 

zsh/math fun module, you have more math functions than you’ll most likely ever 

need: 

%value1=$((sqrt(9))) 

zsh:unknownfunction:sqrt 

%zmodloadzsh/mathfun 

%value1=$((sqrt(9))) 

%echo$value1 



3. 

% 

That was simple!Now youhave anentire mathlibraryoffunctions atyour 

fingertips. 

Structuredcommands: 

Thezshshellprovidesthe usualsetofstructuredcommandsforyourshellscripts: 

■ if-then-elsestatements 

■ Forloops(includingtheC-style) 

■ whileloops 

■ untilloops 

■ selectstatements 

■ casestatements 

The zsh shell uses the same syntax for each of these structured commands that 

you’re used to from the bash shell. The zsh shell also includes adifferent structured 

command called repeat. The repeat command uses this format: 

repeatparam 

do 

commands 

done 

The paramparameter must be a number or a mathematical operation that evaluates 

toa number. The repeat command then performs the specified commands that 

number of times: 

%cattest1 

#!/bin/zsh 

#usingtherepeatcommand 

value1=$(( 10 / 2 )) 

repeat$value1 

do 

echo"Thisisatest"done 

$./test1 

Thisisatest 

Thisisatest 

Thisisatest 

Thisisatest 

Thisisatest 

% 

Thiscommandallowsyoutorepeatsectionsofcodeforasetnumberoftimes based on a 

calculation. 

Functions: 



The zshshellsupports the creationof your own functions either usingthe function 

command or by defining the function name with parentheses: 

%functionfunctest1{ 

>echo"Thisisthetest1function" 

} 

%functest2() 

{ 

>echo"Thisisthetest2function" 

} 

%functest1 

Thisisthetest1 function 

%functest2 

Thisisthetest2 function 

% 

As with bash shell functions (see Chapter 17), you can definefunctions within your 

shell script and then either use global variables or pass parameters to your 

functions. 

 

WritingSimpleScriptUtilities: 

Automatingbackups: 

The responsible for a Linux system in a business environment or just using it at 

home, the loss of data can be catastrophic. To help prevent bad things from 

happening, it’s always a good idea to perform regular backups (or archives). 

However, what’s a good idea and what’s practical are often two separate things. 

Trying to arrangea backup schedule to store importantfiles can be a challenge. This 

is another place where shell scripts often come to the rescue.It demonstrates two 

methods for usingshellscripts to archive data on your Linux system. 

Archivingdatafiles: 

If you’re using your Linux systemto work on an important project, you can createa 

shellscript that automatically takes snapshots ofspecific directories. Designating 

these directories in a configuration file allows you to change them when particular 

project changes. This helps avoid a timeconsuming restore process from your main 

archive files 

Obtainingtherequiredfunctions: 

TheworkhorseforarchivingdataintheLinuxworldisthetarcommand. 

The tar command is used to archive entire directories into a single file. Here’s 

anexample ofcreatinganarchive fi le ofa workingdirectory usingthe tar command: 

$tar-cfarchive.tar/home/Christine/Project/*.* 

tar: Removing leading '/' from member names 

$ 



$ls-larchive.tar 

-Raw-raw-r--.1Christine51200Aug2710:51archive.tar 

Insteadofmodifyingorcreatinga newarchivescript foreachnewdirectoryor ifle you 

want to back up, you can use a configuration if le. The configuration if le should 

contain 

Eachdirectoryorifleyouwanttobeincludedinthe archive. 

$catFiles_To_Backup 

/home/Christine/Project 

/home/Christine/Downloads 

/home/Does_not_exist 

/home/Christine/Documents 

Creatingadailyarchivelocation: 

Ifyouarejustbackingupa few fi les,it’sfineto keepthearchive inyourpersonal 

directory. 

However,if several directoriesarebeingbackedup,itisbesttocreateacentral repository 

archive directory: 

$sudomkdir/archive 

[sudo]passwordforChristine: 

$ 

$Less-LD/archive 

Drawer-or-x.2rootroot4096Aug2714:10/archive 

$ 

After you have your central repository archive directory created, you need to grant 

access to it for certain users. If you do not do this, trying to create if les in this 

directory fails, as shown here: 

$MyFiles_To_Backup/archive/ 

My: cannot move 'Files_To_Backup' to 

'/archive/Files_To_Backup': Permission denied 

$ 

You could grant theusers needing to createif les in this directory permission via 

sudo or create a user group. Inthis case, a special user group is created, Archives: 

$Sudogrouped Archives 

$ 

$Sudochirp Archives /archive 

$ 

$Less-LD/archive 

 

Runningthedailyarchivescript: 

Beforeyouattempttotestthescript,rememberthatyouneedtochange permissions 

on 



thescriptifle(seeChapter11).Thefile’sownermustbegivenexecute(x) privilege before 

thescriptcanberun: 

$ls-lDaily_Archive.sh 

-Raw-raw-r--.1Christine1994Aug2815:58Daily_Archive.sh 

$ 

$chmodu+xDaily_Archive.sh 

$ 

$ls-lDaily_Archive.sh 

-rwxrw-r--.1ChristineChristine1994Aug2815:58Daily_Archive.sh 

$ 

TestingtheDaily_Archive.shscriptisstraightforward: 

$./Daily_Archive.sh 

/home/Does_not_exist, does not exist. 

Obviously,Iwillnotincludeitinthisarchive. It is 

listed on line 3 of the config file. 

Continuingtobuildarchivelist... 

Starting archive... 

Archivecompleted 

Resultingarchivefileis:/archive/archive140828.tar.gz 

$ls/archive 

archive140828.tar.gzFiles_To_Backup 

$ 

You can see that the script caught one directory that does not exist, 

/home/Does_not_ 

exist. It lets you know what line number in the configuration fi le this erroneous 

directory is on and continues making a list and archiving the data. Your datais now 

safely archived in a tarball file. 

 

Creatinganhourlyarchivescript: 

Thehigh-volumeproductionenvironmentwherefilesarechangingrapidly,a 

daily archive might not be good enough. If you want to increase the archiving 

frequency to hourly, you need to take another item into consideration.When 

backing up fi les hourly and trying to use the date command to timestamp each 

tarball, things can get pretty ugly pretty quickly. Sifting through a directory of 

tarballs with filenames looking like this is tedious: 

archive010211110233.tar.gz 

 Instead of placing all the archivefi lesin the samefolder,you can create a 

directory hierarchy for your archived files. 



 The archive directory contains directories for each month of the year, using 

the month number as the directory name. Each month’s directory in turn 

contains folders for each day of the month (using the day’s numerical value 

as the directory name). This allows you to just timestamp the individual 

tarballs and place them inthe appropriate directory for the dayand month. 

 First, the new directory /archive/hourly must be created, along with the 

appropriatepermissions set upon it. Rememberfromearly inthis chapterthat 

members of the archivers group are granted permission to create archives in 

this directory area. Thus, the newly created directory must have its primary 

group and group permissions changed: 

$ sudo mkdir /archive/hourly 

[sudo]passwordforChristine: 

$ 

$sudochgrpArchivers/archive/hourly 

$ 

$ls-ld/archive/hourly/ 

Drawer-or-x.2rootArchivers4096Sep209:24/archive/hourly/ 

$ 

$sudochmod775/archive/hourly 

$ 

$ls -ld/archive/hourly 

drwxrwxr-x.2rootArchivers4096Sep209:24/archive/hourly 

$ 

After the new directory is set up, the Files_To_Backup confi guration fi le for the 

hourly archives can be moved to the new directory: 

$catFiles_To_Backup 

/us/local/Production/MachineErrors 

/home/Development/SimulationLogs 

$ 

$MyFiles_To_Backup/archive/hourly/ 

$ 

Now,there isa newchallengetosolve.The script mustcreatethe individualmonth and 

day directories automatically. If these directories already exist, and the script tries 

to create them, anerror is generated. This is not a desirable outcome! 

ManagingUseraccounts: 

Managing user accounts is much more than just adding, modifying, and 

deleting accounts. You must also consider security issues, the need to preserve 

work, andthe accurate managementofthe accounts. This canbe a time-consuming 

task. Here is another instance whenwriting script utilities is a realtimesaver! 

Obtainingtherequiredfunctions 



Deletinganaccountisthemorecomplicatedaccountsmanagementtask.When deleting an 

account, at least four separate actions are required: 

1. Obtainthecorrectuseraccountnametodelete. 

2. Killanyprocessescurrentlyrunningonthesystemthatbelongstothataccount. 

3. Determinealliflesonthesystembelongingtotheaccount. 

4. Removetheuseraccount. 

It’s easy to miss a step. The shell script utility in this section helps you avoid 

making such mistakes. 

Gettingthecorrectaccountname: 

The first step in the account deletion process is the most important: obtaining the 

correct user account name to delete. Because this is an interactive script, you can 

use the read command (see Chapter 14) to obtain the account name. If the script 

user walks away and leaves the question hanging, you can use the -t option on the 

read command and timeout after giving the script user 60 seconds to answer the 

question: 

Echo"Pleaseenterthe usernameoftheuser” 

Echo-e"account youwishtodelete fromsystem: \c" 

read -t 60 ANSWER 

Because interruptionsarepartof life,it’sbesttogive usersthreechancestoanswer the 

question. This is accomplished by using a while loop (Chapter 13) with the -z 

option, to test whether the ANSWER variable is empty. The ANSWER variable is 

empty when the script first enters the while loop on purpose. The question to fi ll 

the ANSWER variable is at the end of the loop: 

while[-z"$ANSWER"] 

Do 

[...] 

Echo"Pleaseenterthe usernameoftheuser” 

Echo-e"account youwishtodelete fromsystem: \c" 

Read -t 60 ANSWER 

Done 

Creatingafunctiontogetthecorrectaccount name: 

The first thing you need to do is declare the function’s name, get answer. Next, 

clear out any previous answers to questions your script user gave using the unset 

command the code to do these two items looks like this: 

Functiongetsanswer{ # 

unsetANSWER 

The other original code item you need to change is the question to the script user. 

The script doesn’t ask the same question each time, so two new variables are 

created, LINE1 



andLINE2,tohandlequestionlines: 

echo$LINE1 

echo-e$LINE2"\c" 

statement(seeChapter12)assistswiththis problem.The functiontestsifLINE2is empty 

andonlyusesLINE1ifitis: 

if[-n"$LINE2"] 

then 

echo$LINE1 

echo-e$LINE2"\c"else 

echo-e$LINE1"\c"fi 

Finally, thefunction needs to clean up after itself by clearing out theLINE1 

andLINE2 

variables.Thus,thefunctionnowlookslikethis: 

function get_answer { 

# 

unsetANSWER 

ASK_COUNT=0 

# 

while[-z"$ANSWER"] do 

ASK_COUNT=$[$ASK_COUNT+1] # 

case$ASK_COUNTin 

2) 

echo 

[...] 

esac 

# 

echo 

if[-n"$LINE2"] 

then#Print2lines 

echo $LINE1 

echo-e$LINE2"\c" 

else #Print 1 line 

echo-e$LINE1"\c"fi 

# 



read-t60ANSWER 

done 

# 

unsetLINE1 

unsetLINE2 

# 

} #End of get_answer function 

Verifyingtheenteredaccountname 

Because of potential typographical errors, the user account name that was entered 

should 

beverifi ed.Thisiseasy becausethecodeisalreadyin placetohandleasking a question: 

LINE1="Is $USER_ACCOUNT the user account " 

LINE2="youwishtodelete 

fromthesystem?[y/n]"get_answer 

After the question is asked, the script must process the answer. The variable 

ANSWER again carries the script user’s answer to the question. If the user 

answered “yes,” the correct user account to delete has been entered and the script 

can continue. A case statement processes the answer. The case statement must be 

coded so it checks for themultiple ways the answer “yes” can be entered. 

case $ANSWER in 

y|Y|YES|yes|Yes|yEs|yeS|YEs|yES ) 

# 

;; 

*) 

echo 

echo "Because the account, $USER_ACCOUNT, is not " 

echo"theoneyouwishtodelete,weareleavingthescript..."echo 

exit 

;; 

esac 

Sometimes, this script needs to handle a yes/no answer fromthe user. Thus, again, 

it makes sense to create a function to handle this task. Only a few changes need to 

be made to the preceding code. 

Determiningwhethertheaccountexists: 

The user has given us the name of the account to delete and has verifi ed it. 

Now is a good time to double-check that the user account really exists on the 

system.Also,it isa goodideato show thefull account record to the script user to 



checkone moretimethatthis is theaccounttodelete.Toaccomplishtheseitems,a 

variable, USER_ACCOUNT_RECORD, is 

settotheoutcomeofa grepsearchforthe accountthroughthe/etc/ 

passwdfile.The-woptionallowsanexactwordmatchforthisparticularuser account: 

USER_ACCOUNT_RECORD=$(cat/etc/passwd|grep-w$USER_ACCOUNT) 

Theexitstatusofthe grepcommand helps here.Ifthe 

account record is not found, the ?variable is setto1: 

if[$?-eq1] then 

echo 

echo"Account,$USER_ACCOUNT,notfound." echo 

"Leaving the script..." 

echo 

exit 

fi 

Ifthe record was found, youstill need to verifywiththe script user that this is the 

correct account. Here is where allthe work to set up the functions reallypays off! 

 

 

Removinganyaccountprocesses: 

So far, the script has obtained and verifi ed the correct name of the user 

account to be deleted. In order to remove the user account from the system, the 

account cannot ownanyprocesses currently running. Thus, the next step is to fi nd 

and kill off those processes. This is goingto get a little complicated! 

Finding the user processes is the easy part. Here the script can use the ps 

command and the -u option to locate any running processes owned by the account. 

Byredirecting the output to /dev/null, the user doesn’t see any display. This is 

handy, 

because ifthere are noprocesses, the pscommand onlyshows a header, whichcan be 

confusing to the script user: 

ps-u$USER_ACCOUNT>/dev/null#Areuserprocessesrunning? 

The ps command’s exit status and a case structure are used to determine the 

nextstep 

to take: 

case$?in 

1)#NoprocessesrunningforthisUserAccount # 

echo"Therearenoprocessesforthisaccountcurrentlyrunning." 



echo 

;; 

0)#ProcessesrunningforthisUserAccount. 

#AskScriptUserifwants ustokilltheprocesses. # 

echo"$USER_ACCOUNThasthefollowingprocessesrunning:"echo 

ps-u$USER_ACCOUNT 

# 

LINE1="Wouldyoulikemetokilltheprocess(es)?[y/n]"get_ans

wer 

# 

[...] 

esac 

If the ps command’s exit status returns a 1, there are no processes running on the 

system that belong to the user account. However, if the exit status returns a 0, 

processes owned the script does is to call the process_answer 

functionUnfortunately, the next item is too complicated for process_answer. 

Anothercase statement mustbe embedded toprocess the script user’s answer. The 

first part of the case statement looks very similar to the process_answer function: 

case $ANSWER in y|Y|YES|yes|Yes|yEs|yeS|YEs|yES ) # If user answers "yes", 

#kill User Account processes. 

[...] 

;; 

*)#Ifuseranswersanythingbut"yes",donotkill. echo 

echo"Willnotkilltheprocess(es)"ech

o 

;; 

esac 

 

Findingaccountfiles: 

When a user account is deleted from the system, it is a good practice to archive all 

the files that belonged to that account. Alongwiththat practice, it is also important 

to remove the files or assigntheirownership to another account. Ifthe account you 

delete has a User ID 

MonitoringDiskSpace: 

One ofthe biggest problems with multi-user Linux systems is the amount of 

available diskspace. Insomesituations, suchas ina file-sharingserver, diskspace can 

fill up almost immediately just because ofone careless user. 



This shell script utility helps you determine the top ten disk space consumers for 

designated directories. It produces a date-stamped report that allows disk space 

consumption trends to be monitored. 

Obtainingtherequiredfunctions: 

The firsttoolyouneedto use istheducommand.Thiscommanddisplaysthe disk 

usage for individual fi les and directories. The -s option lets you summarize totalsat 

the directory level. This comes in handy when calculating the total disk space used 

by an individual user. Here’s what it looks like to use the du command to 

summarize each user’s $HOME directory for the /home directory contents: 

$sudodu-s /home/* 

[sudo]passwordforChristine: 

4204/home/Christine 

56/home/Consultant 

52/home/Development 

4/home/NoSuchUser 

96/home/Samantha 

36/home/Timothy 

1024/home/user1 

$ 

The -s option works well for users’ $HOME directories, but what if we wanted to 

view diskconsumption in a system directory such as /var/log? 

$sudodu-s /var/log/* 

4/var/log/anaconda.ifcfg.log 

20/var/log/anaconda.log 

32 /var/log/anaconda.program.log 

108 /var/log/anaconda.storage.log 

40/var/log/anaconda.syslog 

56/var/log/anaconda.xlog 

116/var/log/anaconda.yum.log 

4392/var/log/audit 

4/var/log/boot.log 

[...] 

$ 

The listingquicklybecomes too detailed. The -S (capitalS) optionworks better for 

our purposes here, providing a total for each directory and subdirectory 

individually. This allows you to pinpoint problemareas quickly: 

$sudodu-S/var/log/ 4 

/var/log/ppp 

4/var/log/sssd 



3020/var/log/sa 

80/var/log/prelink 

4/var/log/samba/old 

4/var/log/samba 

4/var/log/ntpstats 

4/var/log/cups 

4392/var/log/audit 

420/var/log/gdm 

4/var/log/httpd 

152/var/log/ConsoleKit 

2976/var/log/ 

$ 

Because we are interested in the directories consuming the biggest chunks of disk 

space, 

thesortcommandisusedonthelistingproducedbydu: 

$Sudodu-S/var/log/ |sort-rn 4392 

/var/log/audit 

 
Creatingthescript: 

To save time and effort, the script creates a report for multiple designated 

directories.Variableto accomplish thiscalledCHECK_DIRECTORIESisused. For 

our purposes here, the variable is set tojust two directories: 

CHECK_DIRECTORIES=" /var/log /home" 

The script contains a for loop to performthe du command on eachdirectory listed in 

the variable. This technique is used to read and process values in a list. Each Time

 the for loop iterates through the list of values in the variable 

CHECK_DIRECTORIES, 

ItassignstotheDIR_CHECKvariablethenextvalue inthe list: For 

DIR_CHECK in $CHECK_DIRECTORIES 

Do 

[...] 

Du-S$DIR_CHECK 

[...] 

Done 

Toallowquickidentifyaction,adatestampisaddedtothereport’sifrename, using the date 

Command.Usingtheexeccommand(seeChapter15)thescriptredirectsitsoutput to the 

Date stamped report if le: 

DATE=$(date'+%madly') 



exec>disk_space_$DATE.rpt 

Nowtoproducea nicelyformattedreport, thescript uses the echocommand toput in a 

fewreporttitles: 

echo"TopTenDiskSpaceUsage" 

echo"for$CHECK_DIRECTORIESDirectories" 

Solet’sseewhatthisscriptlookslikeallputtogether: 

#!/bin/bash 

# 

# Big Users - Find big disk space users in various directories 

############################################################### 

#Parameters forScript 

ProducingScriptsforDatabase,Web,andE-Mail: 

Writingdatabaseshellscripts: 

 IT stores all the information you want in your shell script variables, but at 

the end of the script, the variables just go away. Sometimes, you’d like for 

your scripts to be able to store data that you can use later. 

 In the old days, storing and retrieve data from a shell scriptrequired creating 

a file, reading data from the file, parsing the data, and then saving the data 

back into the if le. 

Searchingfordata inthe file meansreadingeveryrecord inthe fileto look for your 

data. Nowadays withdatabases beingallthe rage, it’s a snap to interface your shell 

scripts with professional-quality open-source databases. Currently, themost popular 

open-source database used in the Linux world is Myself. Its popularity has grown 

as a part of the Linux-Apache-Myself-PHP (LAMP) server 

EnvironmentwhichmanyInternetwebservers use for hostingonline stores, blogs, 

and applications. 

Connectingtotheserver: 

The myself client program allows you to connect to any myself database 

server anywhere onthe network, usingany user account and password. Bydefault, 

ifyouenterthe meprogramonacommand linewithoutanyparameters, itattempts to 

connect to a myself 

Serverrunningonthesame Linuxsystem, usingthe Linuxloginusername. Type 

'help;'or '\h' for help. Type '\c'to clear the current input statement. 

Myself> 

The -p parameter tells theI program to prompt for a password to use with the 

user account to log in. Enter the password that you assigned to the root user 

account, either during the installation process, or using the mysqladmin utility. 

After you’re logged in to the server, you can start entering commands. 

TheIcommand 



TheIprogramusestwodifferenttypesofcommands: 

■ Specialmysqlcommands 

■ StandardSQLstatements 

The mysql program uses its own set of commands that let you easily control the 

environment and retrieve information about the MySQL server. The mysql 

commands use either a full name (suchas status) or a shortcut (suchas \s). 

You can use either the full command or the shortcut command directly from the 

mysql 

commandprompt: 

mysql>\s 

 - 

mysqlVer14.14Distrib5.5.38, fordebian-linux-gnu(i686)usingreadline6.3 

Connection id: 

The mysqlprogramimplementsallthestandardStructuredQueryLanguage (SQL) 

commands supported by the MySQL server. One uncommon SQL command that 

the mysql program implements is the SHOW command. Using this command, you 

can extract information about the MySQL server, such as the databases and tables 

created: 

mysql>SHOWDATABASES; 

+ + 

|Database| 

+ + 

|information_schema| 

|mysql| 

+ + 

2rowsinset(0.04sec) 

mysql> USE mysql; 

Databasechanged 

mysql>SHOWTABLES; 

+ + 

|Tables_in_mysql| 

+ + 

|columns_priv| 

|db| 

|func| 

|help_category| 

|help_keyword| 

|help_relation| 

|help_topic| 

Creatingadatabase: 



The MySQL server organizes data into databases. A database usually holds 

the data for a single application, separating it from other applications that use the 

database server.Creating a separate database for each shell script application helps 

eliminateconfusionanddata mix-ups.Here’stheSQLstatementrequiredtocreatea new 

database: 

CREATEDATABASEname; 

That’s pretty simple. Of course, you must have the proper privileges to create new 

databases on the MySQL server. The easiest way to do that is to log in as the root 

user account: 

$mysql-uroot–p 

Enter password: 

WelcometotheMySQLmonitor.Commandsendwith;or \g. Your 

MySQL connection id is 42 

Serverversion:5.5.38-0ubuntu0.14.04.1 

The test.*entrydefines the database and tables to whichthe privileges apply. This is 

specified in the following format: 

database.table 

As youcansee fromthis example, you’re allowed to use wildcard characters when 

specifying the database and tables. This format applies the specificed privileges to 

all the tablescontained in the database named test.Finally, you specify the user 

account(s) to which the privileges apply. The neat thing aboutthe grant command is 

that ifthe user account doesn’t exist, it creates it 

Youcantestthenewuseraccountdirectlyfromthemysqlprogram: 

$mysqlmytest-utest–p Enter 

password: 

WelcometotheMySQLmonitor.Commandsendwith;or \g. Your 

MySQL connection id is 42 

Creatingatable 

The MySQL server is considered a relational database. In arelational database, data 

is organized by data fi elds, records, and tables. A data fi eld is a single piece of 

information, such as an employee’s last name or a salary. A record isa collection of 

related data fi elds, such asthe employee ID number, last name, fi rst name, 

address, and salary. Each record indicatesone set of the data fields.ss table contains 

all the records that hold the related data. Thus, you’ll have a table called 

Employees that holds the records for each employee. 

To create a new table in the database, you need to use the CREATE TABLE SQL 

command: 

$mysqlmytest-uroot-p Enter 

password: 



mysql>CREATETABLEemployees( 

->empidintnotnull, 

->lastnamevarchar(30), 

->firstnamevarchar(30), 

->salaryfloat, 

->primarykey(empid)); 

QueryOK,0rowsaffected(0.14sec) 

mysql> 

First, notice that to create the new table, we needed to log in to MySQL using the 

root user account because the test user doesn’t have privileges to create anew table. 

Next, notice that we specifi ed the mytest database on the mysql program 

command line. If we hadn’the done that, we would need to use the USE SQL 

command to connect to the test databaseMySQL Data Types 

DataTypeDescription 

char --A fixed-length string value 

varchar--Avariable-lengthstringvalue 

int ---An integer value 

float--- A fl oating-point value 

boolean---ABooleantrue/falsevalue 

date--AdatevalueinYYYY-MM-DDformat 

time--- A time value in HH:mm:ss format 

timestamp-- A date and time value together 

text--- A long string value 

BLOB--Alargebinaryvalue,suchasanimageorvideoclip 

empid data field also specifies a data constraint. A data constraint restricts 

what type of data you can enter to create a valid record. The not nulldata constraint 

indicates thatevery record must have an empid value specified. 

Finally, the primary key defines a data field that uniquely identifies each 

individualrecord. This meansthateachdata record must haveauniqueempid value in 

the table. 

Aftercreatingthe new table, youcanuse the appropriate commandtoensure 

that it’s created. 

Inmysql,it’stheshowtablescommand: mysql> 

show tables; 

+ -+ 

|Tables_in_test | 

+ -+ 

|employees| 

+ -+ 

1rowinset(0.00sec) 



Insertinganddeletingdata: 

Not surprisingly, you use the INSERT SQL command to insert new data 

records into the table. Each INSERT command must specify the data fi eld values 

for the MySQL server to accept the record. 

Here’s the formatoftheINSERTSQLcommand: 

INSERT INTO table VALUES (...) 

Thevaluesareinacomma-separatedlistofthedatavaluesforeachdata field: 

$mysqlmytest-utest-p Enter 

password: 

mysql>INSERTINTOemployeesVALUES(1,'Blum','Rich',25000.00); Query 

OK, 1 row affected (0.35 sec) 

The exampleusesthe–u commandline prompt tolog in asthe test user account that 

wascreated in MySQL. 

The INSERT command pushes the data values you specify into the data fi 

elds inthe table.If youattempt to add another record that duplicates the empid data 

fi eld value, you get an error message: 

mysql>INSERTINTOemployeesVALUES(1,'Blum','Barbara',45000.00); 

ERROR 1062 (23000): Duplicate entry '1' for key 1 

Queryingdata: 

After you have all your data in your database, it’s time to start running 

reports to extract information.The workhorse for all your querying is the SQL 

SELECT command. The SELECT command isextremely versatile, but with 

versatility comes complexity. 

Here’sthebasic formatofa SELECTstatement: 

SELECTdatafieldsFROMtable 

The data fields parameter is a comma-separated list of the data field names 

you want the query to return. If you want to receive all the data field values, you 

canuseanasteriskas awildcardcharacter. You mustalsospecifythespecifictable you 

want the query to search. To get meaningful 

results,youmustmatchyourquerydatafieldswiththepropertable. 

By default, the SELECT command returns all the data records in the specified 

table: 

mysql>SELECT*FROMemployees; 

Usingthedatabaseinyourscripts: 

Now that you have a workingdatabase going, it’s fi nallytime to turnour attention 

back to the shell scripting world. This section describes what you need to do to 

interact with your databases using shell scripts. 

Loggingintotheserver: 



If you’ve created a special user account in MySQL for your shell scripts, you need 

to use it.To log in with the mysql command. There are a couple ways to do that. 

One method is to include the password on the command line using the -p 

parameter: 

mysqlmytest-utest–ptest 

This, however, is not a good idea. Anyone who has access to yourscript willknow 

the user account and password for your database. 

 

Tosetthedefaultpasswordinthisfile,justcreatethe following: 

$ cat .my.cnf 

[client] 

password=test 

$chmod400.my.cnf 

$ 

The chmod commandisused to restrict the .my.cnf fi le so only you can view it.You 

can test this now from the command line: 

$ mysqlmytest-utest 

Readingtable informationforcompletionoftableandcolumnnames You 

can turn off this feature to get a quicker startup with -A Welcome to 

the MySQL monitor. Commands end with ; or \g. 

YourMySQLconnectionidis 44 

Serverversion:5.5.38-0ubuntu0.14.04.1(Ubuntu) 

Copyright(c)2000,2014,Oracleand/oritsaffiliates.Allrightsreserved. 

Oracle is a registered trademark of Oracle Corporation and/or its 

affiliates. Other names may be trademarks oftheir respectiveowners. 

Type'help;'or'\h'forhelp.Type '\c'toclearthecurrent inputstatement. mysql> 

Perfect!Now youdon’t have to include the password onthe command line in your 

shellscripts. 

Sendingcommandstotheserver: 

After establishing the connection to the server, you’ll want to send commands 

tointeract with your database. There are two methods to do this: 

■ Sendasinglecommandandexit. 

■ Sendmultiplecommands. 

To sendasinglecommand,youmustincludethecommandaspartof themysql command 

line. For the mysqlcommand, youdo this usingthe -e parameter: 

$catmtest1 

#!/bin/bash 

#sendacommandtotheMySQLserver 

MYSQL=$(which mysql) 



$MYSQLmytest-utest-e'select*fromemployees' 

Thisis anexampleofdefininganendoffilestring, withdatainit: 

$catmtest2 

#!/bin/bash 

#sendingmultiplecommandstoMySQL 

MYSQL=$(which mysql) 

$MYSQLmytest-utest<<EOF show 

tables; 

select*fromemployeeswheresalary>40000; EOF 

$ ./mtest2 

Tables_in_test 

employees 

empidlastnamefirstnamesalary 2 

Blum Barbara 45000 

4BlumJessica52340 

$ 

The shell redirects everything with the EOF delimiters to the mysql 

command, which executes the lines as if you typed them yourself at the prompt. 

Using this method, youcan send as many commands to the MySQL server as you 

need. You’ll notice, however,that there’s no separation between the output from 

each command. In the next section, 

“Formattingdata,”you’llsee howto fixthisproblem 

Formatting data 

The standard output from the mysql command doesn’t lend itself to data retrieval. 

If youneed to actually do something with the data you retrieve,you need to do some 

fancy data manipulation. This section describes some of the tricks you can use to 

help extract datafrom your database reports.The fi rst stepin trying to capture 

database data is to redirect the output from the mysql and psql commands in an 

environment variable. This allows you to use the output information in other 

commands. Here’s an example: 

$catmtest4 

#!/bin/bash 

#redirectingSQLoutputtoavariable 

MYSQL=$(which mysql) 

dbs=$($MYSQLmytest-utest-Bse'showdatabases') for 

db in $dbs 

do 

echo$db 

done 



$ ./mtest4 

information_schema 

test 

$ 

 

Usingthe Web 

Oftenwhenyouthinkofshellscriptprogramming, the lastthing youthink ofis the 

Internet. The command line world often seems foreign to thefancy, graphical world 

of theInternet. There are, however, several different utilities you can easily use in 

your shell scripts to gain access to data content on the web, as well as on other 

network devices. 

Almost as old as the Internet itself, the Lynx program was created in 1992 by 

students at the University of Kansas as a text-based browser. Because it’s text- 

based, the Lynx program allows you to browse websites directly from a terminal 

session, replacing the fancy graphics on web pages with HTML text tags. This 

allows you to surf the Internet fromjust about any type of Linux terminal. 



 


	SUBJECT:LINUXANDSHELLPROGRAMMING
	WhatisthedashShell?
	ThedashShellFeatures:
	ThedashCommandLineParameters
	Thedashenvironmentvariables:
	Defaultenvironmentvariables
	Positionalparameters:
	CommandDescription
	Creatingdashscripts:
	Usingarithmetic
	Thetestcommand:
	ThefunctionCommand:
	ThezshShell:
	PartsofthezshShell:
	Shelloptions:
	ParameterDescription:
	Built-incommands:
	Corebuilt-incommands:
	Add-inmodules:
	ModuleDescription:
	Viewing,adding,andremovingmodules:
	Scriptingwithzsh:
	Mathematicaloperations:
	Mathematicalfunctions:
	Structuredcommands:
	Functions:
	WritingSimpleScriptUtilities:
	Archivingdatafiles:
	Obtainingtherequiredfunctions:
	Creatingadailyarchivelocation:
	Runningthedailyarchivescript:
	Creatinganhourlyarchivescript:
	ManagingUseraccounts:
	Gettingthecorrectaccountname:
	Creatingafunctiontogetthecorrectaccount name:
	Determiningwhethertheaccountexists:
	Removinganyaccountprocesses:
	Findingaccountfiles:
	MonitoringDiskSpace:
	Obtainingtherequiredfunctions: (1)
	ProducingScriptsforDatabase,Web,andE-Mail:
	Connectingtotheserver:
	Creatingadatabase:
	Creatingatable
	Insertinganddeletingdata:
	Queryingdata:
	Usingthedatabaseinyourscripts:
	Loggingintotheserver:
	Sendingcommandstotheserver:
	Usingthe Web

