
MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI

 PG DEPARTMENT OF COMPUTER APPLICATIONS

 Subject Name : PYTHON PROGRAMMING

 CLASS : I-BCA

 SUBJECT CODE :23UCA11

UNIT-III

Functions: Function Definition – Function Call – Variable Scope and its Lifetime-Return
Statement.Function Arguments:Required Arguments,Keyword Arguments, Default
Arguments and Variable Length Arguments-Recursion.Python Strings:String operations-
Immutable Strings - Built-in String Methods and Functions - String Comparison.Modules:
import statement- The Python module – dir() function – Modules and Namespace–
Defining our own modules.

Function

The Python provides several functions and methods to write code very easily, and these
functions and methods are called built-in function and methods. Python allows us to create
our functions and methods, and these are called user-defined functions and methods.

2. 1.1 Built-In Functions
The Python interpreter has a number of functions that are built into it and are always
available

Commonly Used Modules

 Python standard library also consists of a number of modules. While a function is a
grouping of instructions, a module is a grouping of functions.

 A module is created as a python (.py) file containing a collection of function
definitions.

 To use a module, we need to import the module. Once we import a module, we
can directly use all the functions of that module.

The syntax of import statement is as follows:

import modulename1 [,modulename2, …]

This gives us access to all the functions in the module(s). To call a function of a
module, the function name should be preceded with the name of the module with
a dot(.) as a separator.

The syntax is as shown below:
modulename.functionname()

Built-in Modules
Python library has many built-in modules that are really handy to programmers. Some
commonly used modules and the frequently used functions that are found in those
modules:

• math

• random

• statistics

math module:

It contains different types of mathematical functions. In order to

use the math module we need to import it using the following statement:

import math

Commonly used functions in math module

Function Syntax Returns Example Output

math.ceil(x)

ceiling value of x

>>> math.ceil(-9.7)
-9
>>> math.ceil (9.7)
10
>>> math.ceil(9)
9

math.floor(x)

floor value of x

>>> math.floor(-4.5)
-5
>>> math.floor(4.5)
4
>>> math.floor(4)
4

math.fabs(x)

absolute value of x

>>> math.fabs(6.7)
6.7
>>> math.fabs(-6.7)
6.7
>>> math.fabs(-4)
4.0

math.factorial(x) factorial of x
>>> math.factorial(5)
120

math.fmod(x,y)

x % y with sign of x

>>>math.fmod(4,4.9)
4.0
>>>math.fmod(4.9,4.9)
0.0
>>>math.fmod(-4.9,2.5)
-2.4
>>>math.fmod(4.9,-4.9)
0.0

math.gcd(x,y)
gcd (greatest common
divisor) of x and y

>>> math.gcd(10,2)
2

math.pow(x,y)
𝑥𝑦

(x raised to the power y)

>>> math.pow(3,2)
9.0
>>>math.pow(4,2.5)

 32.0
>>>math.pow(6.5,2)
42.25
>>>math.pow(5.5,3.2)
233.97

math.sqrt(x)

square root of x

>>> math.sqrt(144)
12.0
>>> math.sqrt(.64)
0.8

math.sin(x)

sine of x in radians

>>> math.sin(0)
0
>>> math.sin(6)
-0.279

random module:

This module contains functions that are used for generating random numbers. In order

to use the random module we need to import it using the following statement:

import random

Commonly used functions in random module

Function Syntax Returns Example Output

random.random()

Random Real
Number (float) in
the range 0.0 to 1.0

>>> random.random()
0.65333522

random.randint(x,y)

x, y are integers
such that x <= y and
returns Random
integer between x
and y

>>>random.randint(3,7)
4
>>> random.randint(-3,5)
1
>>> random.randint(-5,-3)
-5.0

random.randrange(y)
Random integer
between 0 and y

>>> random.randrange(5)
4

random.
randrange(x,y)

Random integer
between x and y

>>> random.randrange(2,7)
2

statistics module:

This module provides functions for calculating statistics of numeric (Real-valued) data. In

order to use the statistics module we need to import it using the following
statement:

import statistics

Commonly used functions in statistics module

Function Syntax Returns Example Output

statistics.mean(x)

arithmetic mean

>>> statistics.
mean([11,24,32,45,51])

32.6

statistics.median(x)

median (middle
value) of x

>>>statistics.
median([11,24,32,45,51])

32

statistics.mode(x)

mode (the most
repeated value)

>>> statistics.
mode([11,24,11,45,11])

11

>>> statistics.
mode(("red","blue","red"))

'red'

• In order to get a list of modules available in Python, we can use the following

statement:

>>> help("module")

• To view the content of a module say math, type the following:

>>> help("math")

From Statement
Instead of loading all the functions into memory by importing a module, from statement
can be used to access only the required functions from a module. It loads only the specified
function(s) instead of all the functions in a module.

Syntax :

>>> from modulename import functionname

Example :

Function Definition and Calling the Function / User-defined Functions

Defining a function in Python

The Python programming language provides the keyword def to create functions. The
general syntax to create functions is as follows.

Syntax

def function_name(list_of_parameters):

statement_1

statement_2

statement_3

...

 The list of parameters in a function definition needs to be separated with a comma.
 In Python, every function returns a None value by default. However, we can return our

value.
 Every function requires a function call to execute its code.

Calling a function in Python

In Python, we use the name of the function to make a function call. If the function requires
any parameters, we need to pass them while calling it.
The general syntax for calling a function is as follows.

Syntax

function_name(parameter_1, parameter_2,...)

Program to demonstrate a Function without arguments

def display():

print("Function without arguments")

display()

When we run the above example code, it produces the following output.

Write a user defined function to add 2 numbers and display their sum.

#function definition

def addnum():

fnum = int(input("Enter first number: "))

snum = int(input("Enter second number: "))

sum = fnum + snum

print("The sum of ",fnum,"and ",snum,"is ",sum)

#function call

addnum()

When we run the above example code, it produces the following output.

WAP using a user defined function that displays sum of first n natural

numbers, where n is passed as an argument.
#function definition

def sumSquares(n):

sum = 0

for i in range(1,n+1):

sum = sum+i

print("The sum of first",n,"natural numbers is: ",sum)

num = int(input("Enter the value for n: "))

sumSquares(num) #function call

Write a program using a user defined function calcFact() to calculate and

display the factorial of a number num passed as an argument

def calcFact(num):

fact = 1

for i in range(num,0,-1):

fact = fact * i

print("Factorial of",num,"is",fact)

num = int(input("Enter the number: "))

calcFact(num)

When we run the above example code, it produces the following output.

Program to Find the Area of Trapezium Using the Formula

Area = (1/2) * (a + b) * h Where a and b Are the 2 Bases of Trapezium and h Is the

Height

def area_trapezium(a,b,h):

area=0.5*(a+b)*h

print("Area of a Trapezium is ",area)

def main():

area_trapezium(10,15,20)

if name == " main ":

main()

When we run the above example code, it produces the following output

The return statement and void Function

In Python, it is possible to compose a function without a return statement. Functions like

this are called void, and they return None

A function may or may not return a value when called. The return statement returns
the values from the function.

A return statement consists of the return keyword followed by an

optional return value.

If an expression list is present, it is evaluated, else None is substituted

def add(a, b):

result = a + b

return result

print(add(2, 2))

Output : 4

https://realpython.com/python-keywords/#returning-keywords-return-yield
https://realpython.com/python-keywords/#returning-keywords-return-yield

Armstrong Number : The sum of cubes of each digit is equal to the number itself.

For example:
153 = 1*1*1 + 5*5*5 + 3*3*3 // 153 is an Armstrong number.

Program to Check If a 3 Digit Number Is Armstrong Number or Not

num = int(input("Enter a number: "))

sum = 0

temp = num

while temp > 0:

digit = temp % 10

sum += digit ** 3

temp = temp//10

if num == sum:

print(num,"is an Armstrong number")

else:

print(num,"is not an Armstrong number")

When we run the above example code, it produces the following output

Enter a number: 121

121 is not an Armstrong number

Enter a number: 407

407 is an Armstrong number

Scope and Lifetime of Variables

The part of the program where a variable is accessible can be defined as the scope of that
variable. A variable can have one of the following two scopes:

A variable that has global scope is known as a global variable and a variable that has a local
scope is known as a local variable.

Global Variable

A variable that is defined outside any function or any block is known as a global variable. It
can be accessed in any functions defined onwards. Any change made to the global variable
will impact all the functions in the program where that variable can be accessed.

 Local Variable

A variable that is defined inside any function or a block is known as a local variable. It can
be accessed only in the function or a block where it is defined. It exists only till the function
executes.

Program to Demonstrate the Scope of Variables

num1 = 5 #globalvariable

def myfunc():

variable num1 outside the function

print("Accessing num =",num1)

num = 10 #localvariable

print("num reassigned =", num)

myfunc()

print("Accessing num outside myfunc",num1)

When we run the above example code, it produces the following output

Calculate and Add the Surface Area of Two Cubes. Use Nested Functions

def add_cubes(a, b):

def cube_surfacearea(x):

return 6 * pow(x, 2)

return cube_surfacearea(a) + cube_surfacearea(b)

def main():

result=add_cubes(2, 3)

print("The surface area after adding two Cubes

is",result)

if name == " main ":

main()

When we run the above example code, it produces the following output

Default Parameters / Default Arguments

Python allows assigning a default value to the parameter. If the function is called with
value then, the function executed with provided value, otherwise, it executed with the
default value given in the function definition.

def addition(num1, num2= 9, num3= 5):

return num1 + num2 + num3

result = addition(10, 20, 30)

print("sum=",result)

result = addition(10, 20) # 3rd argument uses default value

print("sum=",result)

result = addition(10) #2nd and 3rd argument uses default value

print("sum=",result)

When we run the above example code, it produces the following output

Keyword Arguments

The keyword argument is an argument passed as a value along with the parameter name
(kwarg = value).

When keyword arguments are used, we may ignore the order of arguments. We may pass
the arguments in any order because the Python interpreter uses the keyword provided to
match with the respective parameter.

def student_info(rollNo, name, group):

print(f'Roll Number : {rollNo}')

print(f'Student Name : {name}')

print(f'Group : {group}')

student_info(name='Raju', rollNo=111, group='MSDs')

*args and **kwargs

In Python, we can pass a variable number of arguments to a function using special symbols.
There are two special symbols:

1. *args (Non Keyword Arguments)

2. **kwargs (Keyword Arguments)

We use *args and **kwargs as an argument when we are unsure about the number of

arguments to pass in the functions.

Python has *args which allow us to pass the variable number of non keyword arguments

to function. In the function, we should use an asterisk (*) before the parameter name to

pass a variable number of arguments.

Example program on *args

def largest(*numbers):

return max(numbers)

print(largest(20, 35))

print(largest(2, 5, 3))

print(largest(10, 40, 80, 50))

print(largest(16, 3, 9, 12, 44, 40))

When we run the above example code, it produces the following output

Python has **kwargs which allows us to pass the variable length of keyword arguments
to the function. In the function, we use the double-asterisk (**) before the parameter
name to denote this type of argument.

Example program on **kwargs

def Student_info(**kwargs):

print(kwargs)

Student_info(name="Raju",rollno=111,group="MSDs")

When we run the above example code, it produces the following output

Command Line Arguments

A Python program can accept any number of parameters from the command line. Python

sys module stores the command line arguments into a list, we can access it

using sys.argv

import sys
print("Number of arguments:",len(sys.argv))
print('The command line arguments are:')
for i in sys.argv:

print(i)

Save above code Filename.py (Ex:- Command.py)

3. Strings

A string is a sequence of characters which is enclosed in quotes. In Python, A string can be
created by enclosing one or more characters in single, double or triple quote.. The Python
treats both single quote and double quote as same.

For example, the strings 'Hi Friend' and "Hi Friend" both are same.

Creating and Storing Strings

In Python, creating string variables is very simple as we need to assign a string value to a
variable.

str1 = 'Hello World!'

str2 = "Hello World!"

str3 = """Hello World!

welcome to the world of Python"""

str4 = '''Hello World!

welcome to the world of Python'''

Accessing Characters in a String

 Each individual character in a string can be accessed using a technique called
indexing.

 The index specifies the character to be accessed in the string and is written in square
brackets ([]).

 The index of the first character (from left) in the string is 0 and the last character is
n-1 where n is the length of the string.

 If we give index value out of this range then we get an IndexError. The index must
be an integer (positive, zero or negative).

 The index can also be an expression including variables and operators but the

expression must evaluate to an integer

 Python allows an index value to be negative also. Negative indices are used when
we want to access the characters of the string from right to left.

 Starting from right hand side, the first character has the index as -1 and the last
character has the index –n where n is the length of the string.

String is Immutable

A string is an immutable data type. It means that the contents of the string cannot be
changed after it has been created. An attempt to do this would lead to an error.

STRING OPERATIONS

Python allows certain operations on string data type, such as concatenation, repetition,
membership and slicing.

Concatenation

To concatenate means to join. Python allows us to join two strings using concatenation
operator plus which is denoted by symbol +.

Repetition

Python allows us to repeat the given string using repetition operator which is denoted by

symbol *

Note: str1 still remains the same after the use of repetition operator

Membership

Python has two membership operators 'in' and 'not in'. The 'in' operator takes
two strings and returns True if the first string appears as a substring in the second string,
otherwise it returns False.

The 'not in' operator also takes two strings and returns True if the first string does

not appear as a substring in the second string, otherwise returns False.

Slicing

In Python, to access some part of a string or substring, we use a method called slicing. This
can be done by specifying an index range.
To access substring from a string, we use string variable name followed by square brackets

with starting index , ending index and Step of the required substring.

#first index > second index results in an #empty '' string

If the first index is not mentioned, the slice starts from index and If the second index is not
mentioned, the slicing is done till the length of the string.

The slice operation can also take a third index that specifies the ‘step size’. For

example, str1[n:m:k], means every kth character has to be extracted from the string
str1 starting from n and ending at m-1. By default, the step size is one.

Negative indexes can also be used for slicing. If we ignore both the indexes and give step
size as -1 , str1 string is obtained in the reverse order.

Joining

The

string, tuple), separated by a string separator.

Traversing A String

 We can access each character of a string or traverse a string using for loop and

while loop
String Traversal Using for Loop:

str1 = 'Hello World!'

for ch in str1:

print(ch)

String Traversal Using while Loop:

str1 = 'Hello World!'

index = 0

while index < len(str1):

print(str1[index])

index += 1

String Methods and Built-In Functions

Method Description Example

len()
Returns the length of the

given string

>>> str1 = 'Hello World!'

>>> len(str1)

12

title()
Returns the string with first letter
of every word in the string in
uppercase and rest in lowercase

>>> str1 = 'hello WORLD!'

>>> str1.title()

'Hello World!'

lower()
Returns the string with all
Uppercase letters converted to
lowercase

>>> str1 = 'hello WORLD!'

>>> str1.lower()

'hello world!'

upper()
Returns the string with all
lowercase letters converted to
uppercase

>>> str1 = 'hello WORLD!'

>>> str1.upper()

'HELLO WORLD!'

count(str,
start, end)

Returns number of times
substring str occurs in the
given string. If we do not give start
index and end index then

>>> str1 = 'Hello World!

Hello Hello'

>>>str1.count('Hello',12,25

)

2

string method returns a string by joining all the elements of an iterable (list, join()

 searching starts from index 0 and
ends at length of the string

>>> str1.count('Hello')

3

find
(str,start,
end)

Returns the first occurrence of
index of substring str occurring in
the given string. If we do not give
start and end then searching starts
from index 0 and ends at length of
the string. If the substring is not
present in the given string, then
the function returns -1

>>> str1 = 'Hello World!

Hello Hello'

>>>

str1.find('Hello',10,20)

13

>>>

str1.find('Hello',15,25)

19

>>> str1.find('Hello')

0>

>> str1.find('Hee')

-1

Index (str,
start, end)

Same as find() but raises an
exception if the substring is not
present in the given string

>>> str1 = 'Hello World!

Hello Hello'

>>> str1.index('Hello')

0

>>> str1.index('Hee')

ValueError: substring not

found

endswith()

Returns True if the given string
ends with the supplied substring
otherwise returns False

>>> str1 = 'Hello World!'

>>>str1.endswith('World!')

True

>>> str1.endswith('!')

True

>>> str1.endswith('lde')

False

startswith()

Returns True if the given string
starts with the supplied substring
otherwise returns False

>>> str1 = 'Hello World!'

>>> str1.startswith('He')

True

>>> str1.startswith('Hee')

False

isalnum()

Returns True if characters of the
given string are either alphabets
or numeric.
If whitespace or special symbols
are part of the
given string or the string is empty
it returns False

>>> str1 = 'HelloWorld'

>>> str1.isalnum()

True

>>> str1 = 'HelloWorld2'

>>> str1.isalnum()

True

>>> str1 = 'HelloWorld!!'

>>> str1.isalnum()

False

islower()

Returns True if the string is
non-empty and has all lowercase
alphabets, or has at least one
character as lowercase alphabet
and rest are non-alphabet
characters

>>> str1 = 'hello world!'

>>> str1.islower()

True

>>> str1 = 'hello 1234'

>>> str1.islower()

True

>>> str1 = 'hello ??'

>>> str1.islower()

True

 >>> str1 = '1234'

>>> str1.islower()

False

>>> str1 = 'Hello World!'

>>> str1.islower()

False

isupper()

Returns True if the string is
non-empty and has all uppercase
alphabets, or has at least one
character as uppercase character
and rest are non-alphabet
characters

>>> str1 = 'HELLO WORLD!'

>>> str1.isupper()

True

>>> str1 = 'HELLO 1234'

>>> str1.isupper()

True

>>> str1 = 'HELLO ??'

>>> str1.isupper()

True

>>> str1 = '1234'

>>> str1.isupper()

False

>>> str1 = 'Hello World!'

>>> str1.isupper()

False

isspace()

Returns True if the string is
non-empty and all characters are
white spaces (blank, tab,

newline, carriage return)

>>> str1 = ' \n \t \r'

>>> str1.isspace()

True

>>> str1 = 'Hello \n'

>>> str1.isspace()

False

istitle()

Returns True if the string is
non-empty and title case, i.e., the
first letter of every word in the
string in uppercase and rest in
lowercase

>>> str1 = 'Hello World!'

>>> str1.istitle()

True

>>> str1 = 'hello World!'

>>> str1.istitle()

False

lstrip()
Returns the string after removing
the spaces only on the left of the
string

>>> str1 = ' Hello World! '

>>> str1.lstrip()

'Hello World! '

rstrip()

Returns the string after removing
the spaces only on the right of the
string

>>> str1 = ' Hello World!

'

>>> str1.rstrip()

' Hello World!'

strip()
Returns the string after removing
the spaces both on the left and the
right of the string

>>> str1 =' Hello World!

'

>>> str1.strip()

'Hello World!'

replace(olds
tr, newstr)

Replaces all occurrences of old
string with the new string

>>> str1 = 'Hello World!'

>>> str1.replace('o','*')

'Hell* W*rld!'

>>> str1 = 'Hello World!'

>>>str1.replace('World','Co

untry')

'Hello Country!'

 >>> str1 = 'Hello World!

Hello'

>>>

str1.replace('Hello','Bye')

'Bye World! Bye'

join()

Returns a string in which the
characters in the string have been
joined by a separator

>>> str1 = ('HelloWorld!')

>>> str2 = '-'

#separator

>>> str2.join(str1)

'H-e-l-l-o-W-o-r-l-d-!'

partition()

Partitions the given string at the
first occurrence of the substring
(separator) and returns the string
partitioned into three parts.

1. Substring before the separator
2. Separator
3. Substring after the separator
If the separator is not found in the
string, it returns the whole string
itself and two empty strings

>>> str1 = 'India is a

Great Country'

>>> str1.partition('is')

('India ', 'is', ' a Great

Country')

>>> str1.partition(‘are’)

(‘India is a Great

Country’,’ ‘,’ ‘)

capitalize()
Returns a copy of the string with
its first character capitalized and
the rest lowercased

>>>str='hello world!'

>>>str.capitalize()

'Hello world!'

sasefold()

returns a string where all the
characters are in lower case. It is
similar to the lower() method, but
the casefold() method converts
more characters into lower case.

>>>str="HELLO world"

>>>str.casefold()

'hello world'

Write Python Program to Convert Uppercase Letters to Lowercase and Vice Versa

def case_conversion(string):

str1=str()

for ch in string:

if ch.isupper():

str1+=ch.lower()

else:

str1 += ch.upper()

print("The modified string is ",str1)

def main():

str2=input("Enter a String :")

case_conversion(str2)

if name ==" main ":

main()

Output :

Enter a String : Hello WORLD

The modified string is hELLO world

Example Program on String Methods

str1 = ‘ hello World! ‘

print(“String in Uppercase :”, str1.upper())

print(“String in Lower case :”, str1.lower())

print(“Capitalized String :”, str1.capitalize())

print(“String with first letter :”,str1.title())

print(“String alphanumeric :”,str1.isalnum())

print(“String in lowercase :“,str1.islower())

print(“String in uppercase :“,str1.isupper())

print(“Swapcase :“,str1.swapcase())

print(“Right Strip of String :“,str1.rstrip())

print(“Left Strip of String :“,str1.lstrip())

print(“Right & Left Strip of String :“,str1.strip())

Output :

String in Uppercase : HELLO WORLD!

String in Lower case : hello world!

Capitalized String : hello world!

String with first letter : Hello World!

String alphanumeric : False

String in lowercase : False

String in uppercase : False

Swapcase : HELLO wORLD!

Right Strip of String : hello World!

Left Strip of String : hello World!

Right & Left Strip of String : hello World!

Formatting Strings

Python f-string is the newest Python syntax to do string formatting. It is available since
Python 3.6. Python f-strings provide a faster, more readable, more concise, and less error
prone way of formatting strings in Python.

The f-strings have the f prefix and use {} brackets to evaluate values.

The format strings will contain the curly braces { } and the format() method will use those
curly braces { } as placeholders to replace with the content of the parameters.

name = 'Raju'

age = 23

print('%s is %d years old' % (name, age))

print('{} is {} years old'.format(name, age))

print(f'{name} is {age} years old')

Output :

Raju is 23 years old

Raju is 23 years old

Raju is 23 years old

Function Prototypes:

Based on the data flow between the calling function and called function, the functions
are classified as follows...

 Function without Parameters and without Return value

 Function with Parameters and without Return value

 Function without Parameters and with Return value

 Function with Parameters and with Return value

Function without Parameters and without Return value

 In this type of functions there is no data transfer between calling function and called
function.

 Simply the execution control jumps from calling-function to called function and
executes called function, and finally comes back to the calling function.

 For example, consider the following program..

def add():

a=int(input("enter a"))

b=int(input("enter b"))

c=a+b

print(c)

add()

Function with Parameters and without Return value

 In this type of functions there is data transfer from calling-function to called function
(parameters) but there is no data transfer from called function to calling-function
(return value).

 The execution control jumps from calling-function to called function along with the
parameters and executes called function, and finally comes back to the calling
function.

 For example, consider the following program...

Output :

enter a 10

enter b 20

30

def add(a,b):

c=a+b

print(c)

a=int(input("enter a"))

b=int(input("enter b"))

add(a,b)

Function without Parameters and with Return value

 In this type of functions there is no data transfer from calling-function to called-
function (parameters) but there is data transfer from called function to calling-
function (return value).

 The execution control jumps from calling-function to called function and executes
called function, and finally comes back to the calling function along with a return
value.

 For example, consider the following program...

def add():

a = int(input("enter a"))

b = int(input("enter b"))

c = a + b

return c

c = add()

print(c)

Function with Parameters and with Return value

 In this type of functions there is data transfer from calling-function to called-
function (parameters) and also from called function to calling-function (return
value).

 The execution control jumps from calling-function to called function along with
parameters and executes called function, and finally comes back to the calling
function along with a return value

def add(a,b):

c = a + b

return c

a = int(input("enter a"))

b = int(input("enter b"))

c = add(a,b)

print(c)

Output :

enter a 10

enter b 20

30

Output :

enter a 10

enter b 20

30

Output :

enter a 10

enter b 20

30

Unit-III Questions

1. Explain 4 different function prototypes with an example programs

2. Explain built in functions with suitable examples

3. Write a short note on return statement in function with an example
program.

4. Explain Commonly used modules with an example programs

5. Write a short note on formatted strings

6. Explain built-in functions with examples

7. Differentiate between local and global variables with suitable examples

8. Define Function. Explain with syntax how to create a used-defined functions
and how to call the user -defined functions / how to call user defined functions
from the main function

9. Explain about default arguments , *args and **kwargs

10. Write a short note on Command line arguments with an example program

11. Explain strings in detail (Creating and accessing)

12. Explain string operations in detail.
Explain string methods with an

	UNIT-III
	Function
	2. 1.1 Built-In Functions
	Commonly Used Modules
	Built-in Modules
	Commonly used functions in math module
	Commonly used functions in random module

	From Statement
	Syntax :
	Function Definition and Calling the Function / User-defined Functions
	def function_name(list_of_parameters): statement_1
	...
	function_name(parameter_1, parameter_2,...)
	Write a user defined function to add 2 numbers and display their sum.
	WAP using a user defined function that displays sum of first n natural numbers, where n is passed as an argument.
	Write a program using a user defined function calcFact() to calculate and display the factorial of a number num passed as an argument
	Program to Find the Area of Trapezium Using the Formula

	The return statement and void Function
	Scope and Lifetime of Variables
	Default Parameters / Default Arguments
	Keyword Arguments
	*args and **kwargs
	Command Line Arguments
	3. Strings
	Creating and Storing Strings
	Accessing Characters in a String
	String is Immutable
	STRING OPERATIONS
	Concatenation
	Repetition
	Membership
	Slicing
	Joining
	Traversing A String
	String Methods and Built-In Functions
	Write Python Program to Convert Uppercase Letters to Lowercase and Vice Versa
	Output :
	Example Program on String Methods
	Output : (1)

	Formatting Strings
	Function Prototypes:
	Function without Parameters and without Return value
	Function with Parameters and without Return value
	Function without Parameters and with Return value
	Function with Parameters and with Return value

	Unit-III Questions

