
MARUDHAR KESARI JAIN COLLEGE for WOMEN

PG DEPARTMENT OF COMPUTER APPLICATIONS

CLASS : I-BCA

SUBJECT NAME: STRUCTURED PROGRAMMING LANGUAGE IN C

SUBJECT CODE: 23UFC14

SYLLABUS

UNIT-1

Over view of C: Importance of C, sample C program, C program structure, executing C program.

Constants, Variables, and Data Types: Character set, C Tokens, keywords and identifiers, constants,

variables, data types, declaration of variables, Assigning values to variables--- Assignment statement,

declaring variable and constant, as volatile. Operators and Expression.

Overview of C:

What is the C Language?

The C programming language is a general-purpose high-level language developed by Dennis Ritchie at

Bell Labs in the 1970s. It was intended to be a low-level language that provided direct access to

hardware and system resources, making it highly efficient and flexible. Due to its simplicity and

elegance, C has become the building block for many other programming languages.

History of C Language

The C programming language’s history can be traced to Dennis Ritchie, who developed it at Bell Labs

in the early 1970s. It evolved from an earlier language called B, which was developed by Ken

Thompson. B itself was based on the BCPL language.

C gained popularity due to its portability and efficiency. In 1978, Brian Kernighan and Dennis Ritchie

published “The C Programming Language,” which became the go-to reference for C programmers.

Since then, C has been widely used and has influenced the development of other programming

languages.

Application of C Programming Language

C programming language finds its application in various domains, including:

 Operating systems: C is extensively used in developing operating systems like Windows, Linux,

and macOS.

 Embedded systems: C is the language of choice for developing firmware and software for

various embedded systems, such as microcontrollers and IoT devices.

 System Utilities: Many system utilities, such as text editors, compilers, and interpreters, are

written in C.

 Game development: C is used to develop games due to its ability to handle complex

calculations and graphics.

 Database systems: The core components of databases and their management systems are often

built using C.

 Networking: C is used for developing network protocols and applications.

https://iies.in/blog/applications-of-microcontrollers-in-embedded-systems/

Introduction

C programming is a powerful and versatile programming language that plays a significant role in

software development. With its simplicity, efficiency, and wide range of applications, C has stood the

test of time and continues to be a popular choice among programmers worldwide.

The importance of C programming cannot be overstated in the world of computer science and

programming. As one of the oldest and most widely used programming languages, C has become the

foundation for many modern programming languages.

In short, C programming holds immense importance for anyone interested in the world of coding and

software development.

Importance of C programming language over other languages

C programming language offers several advantages over other programming languages, including:

 Efficiency: C allows for direct memory manipulation and low-level access to system resources.

This results in highly efficient code execution.

 Portability: C code can be easily ported to different platforms without major modifications,

thanks to its wide availability of compilers and libraries.

 Speed: C is known for its fast execution speed, making it suitable for developing performance-

critical applications.

 Control: C gives programmers fine-grained control over memory management and system

resources.

 Compatibility: C code can be easily integrated with code written in other languages like C++,

Java, and Python.

https://iies.in/blog/best-embedded-systems-programming-languages/
https://iies.in/crash-courses/python-crash-course/

Advantages of C Programming Language

Apart from the benefits mentioned above, there are several advantages of using C programming

language, including:

 Modularity: C supports modular programming, allowing developers to break down complex

programs into smaller, manageable modules for easier development and maintenance.

 Wide community support: C has a large and active development community, making it easy to

find resources, libraries, and support online.

 Skill transferability: Once you learn C, it becomes easier to learn other programming languages

since many languages, including C++, are based on C.

Disadvantages of C Programming Language

While C programming language offers many advantages, it also has some disadvantages, including:

 Complexity: C can be difficult to learn for beginners due to its low-level nature and the need to

understand concepts like pointers and memory management.

 Lack of safety features: C does not have built-in features like garbage collection, which can lead

to memory leaks and other runtime errors if not managed properly.

 Vulnerabilities: The low-level nature of C makes it prone to security vulnerabilities like buffer

overflows if not correctly handled by the programmer.

Sample C Program:

To understand this example, you should have the knowledge of the following C programming topics:

#include <stdio.h>

void main()

{ // printf() displays the string inside quotation

 printf("Hello, World!");

}

https://www.programiz.com/c-programming

Parts of C program-

include <stdio.h> – This command is a preprocessor directive in C that includes all standard input-

output files before compiling any C program so as to make use of all those functions in our C program.

void main() – This is the line from where the execution of the program starts. The main() function

starts the execution of any C program.

{ (Opening bracket) – This indicates the beginning of any function in the program (Here it indicates

the beginning of the main function).

/* some comments */ – Whatever is inside /*——-*/ are not compiled and executed; they are only

written for user understanding or for making the program interactive by inserting a comment line.

These are known as multiline comments. Single line comments are represented with the help of 2

forward slashes “//——”.

printf(“Hello World”) –The printf() command is included in the C stdio.h library, which helps to

display the message on the output screen.

getch() – This command helps to hold the screen.

return 0 –This command terminates the C program and returns a null value, that is, 0.

} (Closing brackets)- This indicates the end of the function. (Here it indicates the end of the main

function)

How "Hello, World!" program works?

 The #include is a preprocessor command that tells the compiler to include the contents

of stdio.h (standard input and output) file in the program.

 The stdio.h file contains functions such as scanf() and printf() to take input and display output

respectively.

 If you use the printf() function without writing #include <stdio.h>, the program will not

compile.

 The execution of a C program starts from the main() function.

 printf() is a library function to send formatted output to the screen. In this

program, printf() displays Hello, World! text on the screen.

 The return 0; statement is the "Exit status" of the program. In simple terms, the program ends

with this statement.

Basic Structure of C Program

The components of the basic structure of a C program consists of 7 parts

1. Document section

2. Preprocessor/link Section

3. Definition section

4. Global declaration section

5. Function declaration section

6. Main function

7. User-defined function section

Example of C Program Structure

The “Hello World!” example is the most popular and basic program that will help you get started with

programming. This program helps you display the output “Hello World” on the output screen.

With the help of this example, we can easily understand the basic structure of a C program.

#include <stdio.h>

int main()

{

// Our first basic program in C

printf("Hello World!\n\n");

return 0;

}

Structure of C program with example

#include <stdio.h> /* Link section */

int subtract = 0; /* Global declaration, definition section */

int all (int, int); /* Function declaration section */

int main () /* Main function */

{

printf("Welcome to DataFlair tutorials!\n\n");

printf ("This is a C program \n");

subtract= all (25,10);

printf ("Subtraction of the two numbers : %d \n", subtract);

return 0;

}

int all (int x, int y) /* User defined function */

{

return x-y; /* definition section */

}

1. Documentation Section

It is the section in which you can give comments to make the program more interactive. The compiler

won’t compile this and hence this portion would not be displyed on the output screen.

2. Preprocessor directives Section

This section involves the use of header files that are to included necessarily program.

3. Definition section

This section involves the variable definition and declaration in C.

4. Global declaration Section

This section is used to define the global variables to be used in the programs, that means you can use

these variables throughout the program.

5. Function prototype declaration section

This section gives the information about a function that includes, the data type or the return type, the

parameters passed or the arguments.

6. Main function

It is the major section from where the execution of the program begins. The main section involves the

declaration and executable section.

7. User-defined function section

When you want to define your function that fulfills a particular requirement, you can define them in

this section.

Excuting C Program:

1. The C program (source code) firstly, is sent to the preprocessor. To convert the preprocessor

directives into their respective values, the preprocessor is responsible. An expanded source code

is generated by the preprocessor.

2. 2. Then the expanded source code is sent to the compiler that compiles the code and converts

into the assembly code.

3. 3. The assembly code is then sent to the assembler that assembles the code and converts into the

object code. Then, a simple.obj file is generated.

4. 4. The object code is then sent to the linker that links it to the library like header files. In the

next step, it is converted into an executable code. Then, a simple.exe file is generated.

5. 5. The executable code is then sent to the loader that loads the code into the memory followed

by the execution of the code. The output is then sent to the console, after execution.

Character Set In C

Characters are used in forming either words or numbers or even expressions in C programming.

Characters in C are classified into 4 groups:

Letters

In C programming, we can use both uppercase and lowercase letters of English language

 Uppercase Letters: A to Z

 Lowercase Letters: a to z

Digits

We can use decimal digits from 0 to 9.

Special Characters

C Programming allows programmer to use following special characters:

` ~ @ ! $ # ^ * % & () [] { } < > + = _ – | / \ ; : ' “ , . ?

White Spaces

In C Programming, white spaces contains:

 Blank Spaces

 Tab

 Carriage Return

 New Line

Summary of Special Characters in C

 Here is a table that represents all the types of character sets that we can use in the C language:

Type of
Character

Description Characters

Lowercase
Alphabets

a to z a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u,
v, w, x, y, z

Uppercase
Alphabets

A to Z A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R,
S, T, U, V, W, X, Y, Z

Digits 0 to 9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special
Characters

– ` ~ @ ! $ # ^ * % & () [] { } < > + = _ – | / \ ; : ‘ “ , .
?

White Spaces – Blank Spaces, Carriage Return, Tab, New Line

Tokens in C

A token in C can be defined as the smallest individual element of the C programming language

that is meaningful to the compiler. It is the basic component of a C program.

Types of Tokens in C

The tokens of C language can be classified into six types based on the functions they are used to

perform. The types of C tokens are as follows:

1. Keywords

2. Identifiers

3. Constants

4. Strings

5. Special Symbols

6. Operators

1. C Token – Keywords

The keywords are pre-defined or reserved words in a programming language. Each keyword is

meant to perform a specific function in a program. Since keywords are referred names for a

compiler, they can’t be used as variable names because by doing so, we are trying to assign a new

https://www.geeksforgeeks.org/keywords-in-c/

meaning to the keyword which is not allowed. You cannot redefine keywords. However, you can

specify the text to be substituted for keywords before compilation by using C preprocessor

directives. C language supports 32 keywords which are given below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

2. C Token – Identifiers

Identifiers are used as the general terminology for the naming of variables, functions, and arrays.

These are user-defined names consisting of an arbitrarily long sequence of letters and digits with

either a letter or the underscore(_) as a first character. Identifier names must differ in spelling and

case from any keywords. You cannot use keywords as identifiers; they are reserved for special use.

Once declared, you can use the identifier in later program statements to refer to the associated value.

A special identifier called a statement label can be used in goto statements.

Rules for Naming Identifiers

Certain rules should be followed while naming c identifiers which are as follows:

 They must begin with a letter or underscore(_).

 They must consist of only letters, digits, or underscore. No other special character is allowed.

 It should not be a keyword.

 It must not contain white space.

 It should be up to 31 characters long as only the first 31 characters are significant.

3. C Token – Constants

The constants refer to the variables with fixed values. They are like normal variables but with the

difference that their values can not be modified in the program once they are defined.

Constants may belong to any of the data types.

Examples of Constants in C

const int c_var = 20;

const int* const ptr = &c_var;

4. C Token – Strings

Strings are nothing but an array of characters ended with a null character (‘\0’). This null character

indicates the end of the string. Strings are always enclosed in double quotes. Whereas, a character is

enclosed in single quotes in C and C++.

Examples of String

char string[20] = {‘g’, ’e’, ‘e’, ‘k’, ‘s’, ‘f’, ‘o’, ‘r’, ‘g’, ’e’, ‘e’, ‘k’, ‘s’, ‘ \0’};

char string[20] = “geeksforgeeks”;

char string [] = “geeksforgeeks”;

5. C Token – Special Symbols

The following special symbols are used in C having some special meaning and thus, cannot be used

for some other purpose. Some of these are listed below:

 Brackets[]: Opening and closing brackets are used as array element references. These

indicate single and multidimensional subscripts.

 Parentheses(): These special symbols are used to indicate function calls and function

parameters.

 Braces{}: These opening and ending curly braces mark the start and end of a block of code

containing more than one executable statement.

https://www.geeksforgeeks.org/strings-in-c/

 Comma (,): It is used to separate more than one statement like for separating parameters in

function calls.

 Colon(:): It is an operator that essentially invokes something called an initialization list.

 Semicolon(;): It is known as a statement terminator. It indicates the end of one logical

entity. That’s why each individual statement must be ended with a semicolon.

 Asterisk (*): It is used to create a pointer variable and for the multiplication of variables.

 Assignment operator(=): It is used to assign values and for logical operation validation.

 Pre-processor (#): The preprocessor is a macro processor that is used automatically by the

compiler to transform your program before actual compilation.

 Period (.): Used to access members of a structure or union.

 Tilde(~): Used as a destructor to free some space from memory.

6. C Token – Operators

Operators are symbols that trigger an action when applied to C variables and other objects. The data

items on which operators act are called operands.

Depending on the number of operands that an operator can act upon, operators can be classified as

follows:

 Unary Operators: Those operators that require only a single operand to act upon are known

as unary operators.For Example increment and decrement operators

 Binary Operators: Those operators that require two operands to act upon are called binary

operators. Binary operators can further are classified into:

1. Arithmetic operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Bitwise Operator

 Ternary Operator: The operator that requires three operands to act upon is called the

ternary operator. Conditional Operator(?) is also called the ternary operator.

https://www.geeksforgeeks.org/operators-in-c/

What are Constants in C?

As the name suggests, Constants are the variables whose values cannot be changed throughout the

execution of the program once they are initialized at the beginning of the program. Constants are also

known as literals. A number, a character, a string of characters, an array, a structure, a union, a pointer,

and an enum can be set as a constant.

How to Use Constants in C?

In the C programming language, A variable can be used as a constant by the following methods:

 Using const keyword.

 Using the #define preprocessor.

Before we start creating the constants, Let us have an insight into the different kinds of Constants in C.

Types of Constants in C

Constants can be broadly

divided into two types:

Numeric Constants

Numeric constants contain

signed or unsigned numerals,

or a zero or a decimal. In a

nutshell, all types of

numbers come under

Numeric constants.

Numeric constants are once again divided into three types:

 Decimal Integer

 Octal Integer

 Hexadecimal Integer

Integer Constants

Integer constants are the numbers with decimals (base 10), hexadecimal (base 16), binary (base 2), or

octal (base 8). We will understand this better once we look into each of the Integer constants.

Let us know more about each integer constant in detail.

Decimal Integer

Decimal integers are the constants with base 10. Non-zero decimal digits (1 to 9) are decimal integers

followed by zero or more decimal digits (0 to 9).

Example: 255,100,69,999, etc.

Octal Integer

Octal integers are the constants with base 8. The digit zero (0) is followed by zero or more octal digits

(0 to 7).

Example:0, 0125, 034673, 03245, etc.

Hexadecimal Integer

Hexadecimal integers are the constants with base 16. The sequence starts with 0x followed by one or

more hexadecimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, A, b, B, c, C, d, D, e, E, f, F).

Example:0x3b24, 0XF96, 0x21, 0x3AA, 0X29b, 0X4bD, etc.

Real Constants

A constant with the combination of positive, negative, or zero followed by a decimal point and the

fractional part is known as a real constant.

Example:-89, 0.123, 45, etc.

Character Constants

One or more characters are enclosed within a single quote (' ') or ("") depending on the type of

characters.

Single Character Constants

Character constants having a single character enclosed within the ' ' (Single quote) are known as

character constants.

Example: 's', 'c', 'a', 'l', 'e', 'r', etc.

String Constants

Character constants with various special symbols, digits, characters, and escape sequences enclosed

within the " "(double quotes) are known as string constants.

Let us look at the examples and try to understand them better.

Example: "Scaler", "by", "InterviewBit", "123", "number1" etc.

As we can see in the above examples, all the words or the strings are enclosed within the double-

quotes. If we look at the last two examples, we can see numbers, but the numbers are treated as strings

by the computer because they are enclosed inside the double quotes.

Backslash Character Constants

Backslash characters or escape sequences are the types of character constants. A definite backslash

character performs a specific task. Let’s imagine that we are writing a code, and in the code, we added

a couple of sentences, and we want them to be printed in separate lines. For this purpose, we can write

the printf statement thrice, but it is not an efficient way to write the code. Now we have to tell the

compiler to print the sentences in 3 different lines and how can we tell it to the compiler? We can use

the backslash character \n to tell the compiler to print the sentences in 3 different lines. Here is a list of

backslash characters and their meaning:

Constants Meaning

\a beep sound

\b backspace

\f form feed

Constants Meaning

\n new line

\r carriage return

\t horizontal tab

\v vertical tab

\' single quote

\" double quote

\\ backslash

\0 null

Variables:

A variable in C is a memory location with some name that helps store some form of data and retrieves

it when required. We can store different types of data in the variable and reuse the same variable for

storing some other data any number of times.

C Variable Syntax

The syntax to declare a variable in C specifies the name and the type of the variable.

data_type variable_name = value; // defining single variable

 or

data_type variable_name1, variable_name2; // defining multiple variable

 data_type: Type of data that a

variable can store.

 variable_name: Name of the

variable given by the user.

 value: value assigned to the

variable by the user.

Example

int var; // integer variable

char a; // character variable

float fff; // float variables

here are 3 aspects of defining a variable:

1. Variable Declaration

2. Variable Definition

3. Variable Initialization

1. C Variable Declaration

Variable declaration in C tells the compiler about the existence of the variable with the given name

and data type. No memory is allocated to a variable in the declaration.

2. C Variable Definition

In the definition of a C variable, the compiler allocates some memory and some value to it. A

defined variable will contain some random garbage value till it is not initialized.

Example

int var;

char var2;

Note: Most of the modern C compilers declare and define the variable in single step. Although we

can declare a variable in C by using extern keyword, it is not required in most of the cases. To know

more about variable declaration and definition, click here.

3. C Variable Initialization

Initialization of a variable is the process where the user assigns some meaningful value to the

variable.

Example

int var; // variable definition

var = 10; // initialization

 or

int var = 10; // variable declaration and definition

https://www.geeksforgeeks.org/difference-between-definition-and-declaration/

Rules for Naming Variables in C

You can assign any name to the variable as long as it follows the following rules:

1. A variable name must only contain alphabets, digits, and underscore.

2. A variable name must start with an alphabet or an underscore only. It cannot start with a

digit.

3. No whitespace is allowed within the variable name.

4. A variable name must not be any reserved word or keyword.

Assignment Statement

An Assignment statement is a statement that is used to set a value to the variable name in a program.

5. Assignment statement allows a variable to hold different types of values during its program

lifespan. Another way of understanding an assignment statement is, it stores a value in

the memory location which is denoted by a variable name.

Syntax

The symbol used in an assignment statement is called as an operator. The symbol is ‘=’.

Note: The Assignment Operator should never be used for Equality purpose which is double equal sign

‘==’.

The Basic Syntax of Assignment Statement in a programming language is :

variable = expression ;

where,

variable = variable name

https://www.toppr.com/guides/computer-science/computer-fundamentals/memory-concepts/

expression = it could be either a direct value or a math expression/formula or a function call

Few programming languages such as Java, C, C++ require data type to be specified for the variable, so that

it is easy to allocate memory space and store those values during program execution.

data_type variable_name = value ;

Example –

int a = 50 ;

float b ;

a = 25 ;

b = 34.25f ;

Declare variable as constant in C

The const keyword

Variables can be declared as constants by using the “const” keyword before the datatype of the

variable. The constant variables can be initialized once only. The default value of constant variables are

zero.

A program that demonstrates the declaration of constant variables in C using const keyword is given as

follows.

Example

#include <stdio.h>

int main() {

 const int a;

 const int b = 12;

 printf("The default value of variable a : %d", a);

 printf("

The value of variable b : %d", b);

 return 0;

}

Constants and Volatile

Constants

Things which are all unchangable are said to be constant whereas things which are all

changable are said to be volatile. The following diagram clearly represents the

relationship between constant and volat ile.

In the following diagram sealed box contains a variable i which is init ialized by 16 at the

time of declaration which indicates that one cannot change the value of variable i after

init ializat ion whereas opened box contains a varibale j which is int ialized by 30 at the

time of declaration, open box indicates the one can change the value of variable j at

anyt ime.

Constant vs Volatile

The following table represents the constant against volatile

Constant Volatile

Constant variables are unchangable. Volatile variables are changable.

Constant variable can be created by using the

keyword const.

Volatile varibale can be created by using the

keyword Volatile.

For example const int i = 16 is the way of declaring

and initializing constant variable.

For example volatile int j = 30 is the way of

declaring and initializing volatile variable.

Constant variable can only be initialized at the time

of declaration.

Volatile varibale can be initialized at anytime.

By default, all variables are not constant. By default, all variables are volatile.

The const variable is otherwise known as Read Only

Variable.

The volatile variable is otherwise known as

Read/Write Variable.

Another way to achieve constant variable by the use

of #define preprocessor directive e.g.) #define a 5.

Another way to achieve volatile variable by the

use of nothing e.g.) int a = 5 is volatile.

Data Types in C

A data type specifies the type of data that a variable can store such as integer, floating, character, etc.

Primary or Fundamental Data types:

‘C’ compilers support four fundamental data

types. They are as follows −

 Integer

 Character

 Floating − point

 Double precision floating point

Integral data type

Integral data types are used to store whole numbers and characters.

It is further classified into two types −

 Integer data type.

 Character data type.

1. Integer data type

This data type is used to store whole numbers.

The integer storage are short int, int and long int in both signed and unsigned forms.

 Integer Data Types

Type size(in

bytes)

Range Control

String

short in (or) signed

short int

1 -128 to 127 %h

unsigned short int 1 0 to 255 %uh

int (or) signed int 4 -32768 to 32767 %d or %i

unsigned int 4 0 to 65535 %u

Long int (or) signed

long int

4 -2147483648 to

2147483647

%ld

Unsigned long int 4 0 to 4294967295 %lu

2. Character data type

 Character data type is used to store characters only.

 These characters are internally stored as integers.

 Each character has an equivalent ASCII value.

 For example, ‘A’ has ASCII value 65.

 Character Data Types

Type Size(in bytes) Range Control String

Char(or) signed Char 1 -128 to 127 %C

unsigned Char 1 0 to 255 %c

3. Floating - point Data type

Floating point data types are used to store real numbers.

float’ is used for 6 digits of accuracy.

‘double' is used for 12 digits of accuracy.

More than 12 digits, ‘long double’ is used.

 Floating Point Data Types

Type size(in bytes) Range Control String

Float 4 3.4E - 38 to 3.4 E + 38 %f

Double 8 1.7 E - 308 to 1.7 E + 308 %lf

long double 16 3.4 E - 4932 to 1.1 E + 4932 %Lf

4. Void Data Type:The void data type is an empty data type that refers to an object that does not

have a value of any type.

C – Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions.

C language is rich in built-in operators and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Increment and Decrement Operators

 Conditional operators

 Bitwise Operators

 Special Operators

1. Arithmetic Operators: It is used to performing mathematical operations such as

addition, subtraction, multiplication, division, modulus, etc., on the given

operands.

Syntax:

C = A + B;

Example:

#include <stdio.h>

#include <conio.h>

Void main ()

{

int num1, num2, res;

float f1, f2, res1;

printf (" Enter two integer numbers: ");

scanf ("%d %d", &num1, &num2);

res = num1 + num2;

printf (" Enter two float numbers: \n ");

scanf ("%f %f", &f1, &f2);

res1 = f1 + f2; // use + operator

printf (" The sum of two integer numbers: %d \n", res);

printf (" The sum of two float numbers: %f \n ", res1);

printf (" The sum of two double numbers: %lf", res2);

}

2. Relational Operators: Relational Operators are the operators used to create a relationship

and compare the values of two operands.

Syntax:

Opr1 == Opr2

 Example:

#include <stdio.h>

#include <math.h>

void main ()

{

 int a = 5;

 int b = 10;

 printf (" a == b : %d", (a == b));

 if (a == b)

 printf ("\n %d is equal to %d", a, b);

 else

 printf (" \n %d is not equal to %d", a, b);

 }

 3. Logical Operators:

 logical operators are used to evaluate the truth value of an expression or a condition.

There are three logical operators in C: "&&" (logical AND), "||" (logical OR), and "!" (logical

NOT).

#include <stdio.h>

void main()

{

int x = 22, y = 33;

if (x > 0 && y > 0)

{

 printf("Both values are greater than 0\n");

}

else

{

 printf("Both values are less than 0\n");

}

}

4. Assignment Operators: The assignment operator is used to assign the value, variable and

function to another variable.

the various types of the assignment operators such as =, +=, -=, /=, *= and %=.

Example of the Assignment Operators:

A = 5; // use Assignment symbol to assign 5 to the operand A

B = A; // Assign operand A to the B

B = &A; // Assign the address of operand A to the variable B

A = 10 * 2 + 5; // assign equation to the variable A

5. Increment and Decrement Opeartors:

 Increment Operators are the unary operators used to increment or add 1 to the operand value.

The Increment operand is denoted by the double plus symbol (++). It has two types, Pre Increment

and Post Increment Operators.

 Pre-increment Operator

The pre-increment operator is used to increase the original value of the operand by 1 before

assigning it to the expression.

 Syntax X = ++A;

 Post increment Operator

The post-increment operator is used to increment the original value of the operand by 1 after

assigning it to the expression.

 Syntax X = A++;

Example:

#include <stdio.h>

#include <conio.h>

void main ()

{

 // declare integer variables

int x, a, b, c;

printf (" Input the value of X: ");

scanf (" %d", &x);

printf (" Input the value of Y: ");

scanf (" %d", &y);

 // use post-increment operator to update the value by 1

a = x++;

b = y++;

c=++x;

printf (" \n The original value of a: %d", a);

printf (" \n The original value of b: %d", b);

printf (" \n The original value of c: %d", c);

}

Expressions:

An expression is a formula in which operands are linked to each other by the use of operators to

compute a value. An operand can be a function reference, a variable, an array element or a constant.

a-b; In the above expression, minus character (-) is an operator, and a, and b are the two operands.

Types:

o Arithmetic expressions

o Relational expressions

o Logical expressions

o Conditional expressions

Arithmetic Expressions

o An arithmetic expression is an expression that consists of operands and arithmetic operators. An

arithmetic expression computes a value of type int, float or double.

Evaluation of Arithmetic Expressions

o The expressions are evaluated by performing one operation at a time. The precedence and

associativity of operators decide the order of the evaluation of individual operations.

When individual operations are performed, the following cases can be happened:

o When both the operands are of type integer, then arithmetic will be performed, and the result of

the operation would be an integer value. For example, 3/2 will yield 1 not 1.5 as the fractional

part is ignored.

o When both the operands are of type float, then arithmetic will be performed, and the result of

the operation would be a real value. For example, 2.0/2.0 will yield 1.0, not 1.

o If one operand is of type integer and another operand is of type real, then the mixed arithmetic

will be performed. In this case, the first operand is converted into a real operand, and then

arithmetic is performed to produce the real value. For example, 6/2.0 will yield 3.0 as the first

value of 6 is converted into 6.0 and then arithmetic is performed to produce 3.0.

Let's understand through an example.

6*2/ (2+1 * 2/3 + 6) + 8 * (8/4)

Relational Expressions

o A relational expression is an expression used to compare two operands.

o It is a condition which is used to decide whether the action should be taken or not.

o In relational expressions, a numeric value cannot be compared with the string value.

o The result of the relational expression can be either zero or non-zero value. Here, the zero value

is equivalent to a false and non-zero value is equivalent to true.

Example: #include <stdio.h>

 Void main()

{

 int x=4;

 if(x%2==0)

 {

 printf("The number x is even");

 }

 else

 printf("The number x is not even");

}

Logical Expressions

o A logical expression is an expression that computes either a zero or non-zero value.

It is a complex test condition to take a decision.

Example: #include <stdio.h>

int main()

{

 int x = 4;

 int y = 10;

 if ((x <10) && (y>5))

 {

 printf("Condition is true");

 }

 else

 printf("Condition is false");

 return 0;

}

Conditional Expressions

o A conditional expression is an expression that returns 1 if the condition is true otherwise 0.

o A conditional operator is also known as a ternary operator.

Syntax of Conditional operator

Suppose exp1, exp2 and exp3 are three expressions.

	What is the C Language?
	History of C Language
	Application of C Programming Language
	Introduction
	C programming is a powerful and versatile programming language that plays a significant role in software development. With its simplicity, efficiency, and wide range of applications, C has stood the test of time and continues to be a popular choice am...
	The importance of C programming cannot be overstated in the world of computer science and programming. As one of the oldest and most widely used programming languages, C has become the foundation for many modern programming languages.
	In short, C programming holds immense importance for anyone interested in the world of coding and software development.
	Importance of C programming language over other languages
	Advantages of C Programming Language
	Disadvantages of C Programming Language
	Basic Structure of C Program
	Character Set In C
	Letters
	Digits
	Special Characters
	White Spaces

	Tokens in C
	Types of Tokens in C
	1. C Token – Keywords
	2. C Token – Identifiers
	Rules for Naming Identifiers

	3. C Token – Constants
	Examples of Constants in C

	4. C Token – Strings
	Examples of String

	5. C Token – Special Symbols
	6. C Token – Operators
	What are Constants in C?
	How to Use Constants in C?
	Numeric Constants
	Character Constants

	C Variable Syntax
	1. C Variable Declaration
	2. C Variable Definition
	3. C Variable Initialization

	Rules for Naming Variables in C

	Assignment Statement
	Syntax
	The const keyword
	Example
	#include <stdio.h>
	int main() {
	const int a;
	const int b = 12;
	printf("The default value of variable a : %d", a);
	printf("
	The value of variable b : %d", b);
	return 0;
	}

	Constants and Volatile
	Constants
	Constant vs Volatile

	Data Types in C
	Integral data type
	1. Integer data type
	2. Character data type
	3. Floating - point Data type
	Relational Expressions
	Logical Expressions
	Conditional Expressions

