

MARUDHAR KESARI JAIN COLLEGE for WOMEN

PG DEPARTMENT OF COMPUTER APPLICATIONS

CLASS : I-BCA

SUBJECT NAME: STRUCTURED PROGRAMMING LANGUAGE IN C

SUBJECT CODE: 23UFC14

SYLLABUS

UNIT 2

Decision Making and Branching: Decision making with if, simple IF, IFELSE nested

IFELSE, ELSEIF ladder, switch, GOTO statement. Decision Making and Looping: While,

Do-While, For, Jumps in loops.

DECISION MAKING AND BRANCHING

In C, decision-making statements are technology structures enabling programmers to make decisions

based on specific conditions or criteria. In C, there are three primary decision-making statements that

you can use:

 Simple If

 IF else

 Nested if else

 Else if ladder

 Switch and

 GOTO

Conditional operator statements

Each of these statements allows you to make decisions in different ways, depending on the complexity

of your code and the specific conditions you need to evaluate.

Simple IF

‘if’ keyword is used to execute a set of statements when the logical condition is true.

Syntax

The syntax is given below −

if (condition)

{

 Statement (s)

}

Working of ‘simple if’ statement

 The statement inside the if block are

executed only when condition is true,

otherwise not.

 If we want to execute only one statement

when condition is true, then braces ({})

can be removed. In general, we should not

omit the braces even if; there is a single statement to execute.

 When the condition is true the braces ({}) are required to execute more than one statement.

Example

Given below is the C program to execute If conditional operators –

#include<stdio.h>

void main ()

{

 int a=4;

 printf("Enter the value of a: ");

 scanf("%d",&a);

 if(a%2==1){

 printf("a is odd number");

 }

}

IF Else:

The if-else statement is used to perform two operations for a single condition. The if-else statement is

an extension to the if statement , we can perform two different operations, i.e., one is for the correctness

of that condition, and the other is for the

incorrectness of the condition.

we must notice that if and else block cannot be

executed simultaneously.

Using if-else statement is always preferable since

it always invokes an otherwise case with every if

condition.

The syntax of the if-else statement is given below.

 if(expression){

//code to be executed if condition is true

}else{

//code to be executed if condition is false

}

Output

Run 1: Enter the value of a: 56

a is even number

Run2: Enter the value of a: 33

Example:

#include<stdio.h>

void main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

if(number%2==0)

{

printf("%d is even number",number);

}

Else

{

printf("%d is odd number",number);

}

}

Nested If else:

In more complex scenarios, nested if-else

statements can be used to make more

sophisticated decisions. This blog post will

provide an in-depth explanation of nested if-else

statements in C .

Syntax:

if (condition1)

Output:

enter a number:4

4 is even number

enter a number:5

5 is odd number

{

 /* code to be executed if condition1 is true */

 if (condition2)

{

 /* code to be executed if condition2 is true */

}

else

{

 /* code to be executed if condition2 is false */

}

}

else

{

 /* code to be executed if condition1 is false */

}

Example:

#include <stdio.h>

void main()

{

 int num;

 printf("Enter a number: ");

scanf("%d", &num);

 if (num > 0)

{

printf("%d is positive.\n", num);

 }

else

 {

 if (num < 0)

{

printf("%d is negative.\n", num);

 }

else

 {

printf("%d is zero.\n", num);

 }

 }

}

OUTPUT

Enter a number: 10

10 is positive.

Enter a number: -5

-5 is negative.

Enter a number: 0

0 is zero.

Else if Ladder:

if else if ladder in C is used to test a series of conditions sequentially. Furthermore, if a condition is

tested only when all previous if conditions in the if-else ladder are false. If any of the conditional

expressions evaluate to be true, the appropriate code block will be executed, and the entire if-else

ladder will be terminated.

Syntax

if (condition1)

stmt1;

else if (condition2)

stmt2;

- - - - -

- - - - -

else if (condition n)

stmtn;

else

stmt x;

Example:

#include<stdio.h>

void main ()

{

 inta,b,c,d;

 printf("Enter the values of a,b,c,d: ");

 scanf("%d%d%d%d",&a,&b,&c,&d);

 if(a>b && a>c && a>d)

 {

 printf("%d is the largest",a);

 }

else if(b>c && b>a && b>d)

 {

 printf("%d is the largest",b);

 }

else if(c>d && c>a && c>b)

 {

 printf("%d is the largest",c);

 }

else

{

 printf("%d is the largest",d);

}

Output:

Run 1:Enter the values of a,b,c,d: 2 4 6 8

8 is the largest

Run 2: Enter the values of a,b,c,d: 23 12 56

23

56 is the largest

}

Switch:

The switch statement in C is an alternate to if-else-if ladder statement which allows us to execute

multiple operations for the different possible values of a single variable called switch variable. Here,

We can define various statements in the multiple cases for the different values of a single variable.

Syntax:

switch(expression)

{

case value1:

 //code to be executed;

 break; //optional

case value2:

 //code to be executed;

 break; //optional

......

default:

 code to be executed if all cases are not matched;

}

Rules for switch statement in C language

1) The switch expression must be of an integer or character type.

2) The case value must be an integer or character constant.

3) The case value can be used only inside the switch statement.

4) The break statement in switch case is not must. It is optional. If there is no break statement found in

the case, all the cases will be executed present after the matched case. It is known as fall through the

state of C switch statement.

int x,y,z;

char a,b;

float f;

Example:

#include<stdio.h>

int main()

{

int number=0;

printf("enter a number:");

scanf("%d",&number);

switch(number)

{

case 10:

printf("number is equals to 10");

break;

case 50:

printf("number is equal to 50");

break;

case 100:

printf("number is equal to 100");

break;

default:

printf("number is not equal to 10, 50 or 100");

}

return 0;

}

GOTO Statement:

 The goto statement is known as jump statement in C. As the name suggests, goto

is used to transfer the program control to a predefined label.

 The goto statement can be used to repeat some part of the code for a particular

condition. It can also be used to break the multiple loops which can't be done by

using a single break statement.

 The goto statement can be used to jump from anywhere to anywhere within a

function.

Syntax:

Syntax1 | Syntax2

Output1:

enter a number:4

number is not equal to 10, 50 or 100

goto label; | label:

label: | goto label;

Example:

#include <stdio.h>

int main()

{

 int num,i=1;

 printf("Enter the number whose table you want to print?");

 scanf("%d",&num);

 table:

 printf("%d x %d = %d\n",num,i,num*i);

 i++;

 if(i<=10)

 goto table;

}

Output:

Enter the number whose table you want to print?10

10 x 1 = 10

10 x 2 = 20

10 x 3 = 30

10 x 4 = 40

10 x 5 = 50

10 x 6 = 60

10 x 7 = 70

10 x 8 = 80

10 x 9 = 90

10 x 10 = 100

DECISION MAKING AND LOOPING

While Loop:

A while loop in C programming repeatedly executes a target statement as long as a given condition is

true.

Syntax:

while(condition)

{

statement(s);

}

 Here, statement(s) may be a single statement or a

block of statements. The condition may be any

expression, and true is any nonzero value. The loop

iterates while the condition is true.

 When the condition becomes false, the program

control passes to the line immediately following the loop.

Example:

#include <stdio.h>

void main ()

{

 /* local variable definition */

int a = 10;

 /* while loop execution */

while(a < 20)

 {

printf("value of a: %d\n", a);

a++;

 }

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

DO WHILE

 The do…while in C is a loop statement used to repeat some part of the code

till the given condition is fulfilled.

 It is a form of an exit-controlled or post-tested loop where the test condition

is checked after executing the body of the loop.

 Due to this, the statements in the do…while loop will always be executed at

least once no matter what the condition is.

 Syntax of do…while Loop in C

 do {

 // body of do-while loop

} while (condition);

How does the do…while Loop works?

The working of the do…while loop is explained below:

1. When the program control first comes to the do…while loop, the body of the

loop is executed first and then the test condition/expression is checked,

unlike other loops where the test condition is checked first. Due to this property,

the do…while loop is also called exit controlled or post-tested loop.

2. When the test condition is evaluated as true, the program control goes to the

start of the loop and the body is executed once more.

3. The above process repeats till the test condition is true.

4. When the test condition is evaluated as false, the program controls move on to

the next statements after the do…while loop.

FLOW CHART

PROGRAM

#include <stdio.h>

int main () {

 /* local variable definition */

int a = 10;

 /* do loop execution */

do {

printf("value of a: %d\n", a);

 a = a + 1;

 }

while(a < 20);

return 0;

}

OUTPUT

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

while Loop do…while Loop

The test condition is checked before the

loop body is executed.

The test condition is checked after executing the

body.

When the condition is false, the body is not

executed not even once.

The body of the do…while loop is executed at least

once even when the condition is false.

It is a type of pre-tested or entry-

controlled loop.
It is a type of post-tested or exit-controlled loop.

Semicolon is not required. Semicolon is required at the end.

for Loop in C

The for loop in C Language provides a functionality/feature to repeat a set of statements a defined

number of times. The for loop is in itself a form of an entry-controlled loop.

The for loop contains the initialization, condition, and updating statements as part of its syntax. It is

mainly used to traverse arrays, vectors, and other data structures.

Syntax of for Loop

for(initialization; check/test expression; updation)

{

 // body consisting of multiple statements

}

Structure of for Loop

The for loop follows a very structured approach where it begins with initializing a condition then

checks the condition and in the end executes conditional statements followed by an updation of values.

1. Initialization

2. Check/Test Condition

3. Body

4. Updation

program

#include <stdio.h>

 int main()

{

 inti;

 // for loop without curly braces

 for (i = 1; i<= 10; i++)

 printf("%d ", i);

 printf("\nThis statement executes after for loop end!!!!"); // Statement print only once

 return 0;

}

OUTPUT

1 2 3 4 5 6 7 8 9 10

This statement executes after for loop end!!!!

JUMPS INLOOP

Jump Statement in C is used in C programming to transfer the program control from one part of the

code to another.

Types of Jump Statements in C

There are 4 types of jump statements in C:

1. break

2. continue

3. goto

4. return

1. break in C

The break statement exits or terminates the loop or switch statement based on a certain condition,

without executing the remaining code.

Syntax of break in C

https://www.geeksforgeeks.org/c-break-statement/

{

condition

break;

}

Uses of break in C

The break statement is used in C for the following purposes:

 To come out of the loop.

 To come out from the nested loops.

 To come out of the switch case.

PROGRAM

#include <stdio.h>

int main()

{

 inti;

 // for loop

 for (i = 1; i<= 10; i++) {

 // when i = 6, the loop should end

if (i == 6)

{

 break;

 }

 printf("%d ", i);

 }

 printf("Loop exited.\n");

 return 0;

}

OUTPUT

1 2 3 4 5 Loop exited.

Explanation:

 Loop Execution Starts and goes normally till i = 5.

 When i = 6, the condition for the break statement becomes true and the program

control immediately exits the loop.

2. Continue in C

 The continue statement in C is used to skip the remaining code after the continue statement

within a loop and jump to the next iteration of the loop.

 When the continue statement is encountered, the loop control immediately jumps to the next

iteration, by skipping the lines of code written after it within the loop body.

Syntax of continue in C

continue;

Example of continue Statement

#include <stdio.h>

int main()

{

for (int j=0; j<=8; j++)

 {

if (j==4)

 {

https://www.geeksforgeeks.org/continue-in-c/

 /* The continue statement is encountered when

 * the value of j is equal to 4.

 */

 continue;

 }

 /* This print statement would not execute for the

 * loop iteration where j ==4 because in that case

 * this statement would be skipped.

 */

printf("%d ", j);

 }

return 0;

}

Output:

0 1 2 3 5 6 7 8

EXPLANITATION

 Value 4 is missing in the output, why?

 When the value of variable j is 4, the program encountered a continue statement,

which makes the control to jump at the beginning of the for loop for next

iteration, skipping the statements for current iteration (that’s the reason printf

didn’t execute when j is equal to 4).

3. Goto Statement in C

The goto statement is used to jump to a specific point from anywhere in a function. It is used to transfer

the program control to a labeled statement within the same function.

Syntax of goto Statement

gotolabel;

..

label:

//code

Flowchart of goto Statement

https://www.geeksforgeeks.org/goto-statement-in-c/

PROGRAM

#include <stdio.h>

int main()

{

int sum=0;

for(inti = 0; i<=10; i++){

 sum = sum+i;

 if(i==5){

 goto addition;

 }

 }

addition:

printf("%d", sum);

return 0;

}

Output:

15

Explanation: In this example, we have a label addition and when the value of i (inside loop) is equal to

5 then we are jumping to this label using goto. This is reason the sum is displaying the sum of numbers

till 5 even though the loop is set to run from 0 to 10.

4. Return Statement in C

The return statement in C is used to terminate the execution of a function and return a value to the

caller. It is commonly used to provide a result back to the calling code.

returnexpression;

int total (){

 inta,b,c;

 a=10;

 b=20;

 c=a+b;

 return c; //it returns the c value i.e. prints the result

}

Output

When the above program is executed, it produces the following result −

30

https://www.geeksforgeeks.org/return-statement-in-c/

	DECISION MAKING AND BRANCHING
	 GOTO
	Conditional operator statements
	Syntax
	Example
	Example:

	Syntax (1)
	Example:
	#include<stdio.h>
	void main ()
	{
	inta,b,c,d;
	printf("Enter the values of a,b,c,d: ");
	scanf("%d%d%d%d",&a,&b,&c,&d);
	if(a>b && a>c && a>d)
	{ (1)
	printf("%d is the largest",a);
	}
	else if(b>c && b>a && b>d)
	{ (2)
	printf("%d is the largest",b);
	} (1)
	else if(c>d && c>a && c>b)
	{ (3)
	printf("%d is the largest",c);
	} (2)
	else
	{ (4)
	printf("%d is the largest",d);
	} (3)
	} (4)
	Rules for switch statement in C language

	2. Continue in C
	Syntax of continue in C
	Example of continue Statement

