

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG Department of Chemistry

for

Undergraduate Programme Bachelor of Science in Chemistry

From the Academic Year 2024-25

CONTENT

- 1. Preamble
- 2. Programme Outcomes
- **3. Programme Specific Outcomes**
- 4. Eligibility for Admission
- 5. Methods of Evaluation and Assessments
- 6. Skeleton & Syllabus

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION

1. Preamble

Chemistry plays a pivotal role in all aspects of physical & biological sciences, engineering, agriculture, medicine, and allied health disciplines. The knowledge of chemistry is essential for student to make the sustainable development and face the upcoming societal change. To impart the basic knowledge of science to young women community, the Department of Chemistry started B.Sc. Programme in the year 2017 followed by M.Sc. Chemistry Programme at 2020. The department offers Chemistry program with the aim of producing chemists with high professional competence, in carrying out both basic and applied chemistry research. The department has well equipped with the latest instruments required to carry out practical experiments in the laboratories and separate library with all needed books.

The faculty members have contributed research towards publication of several research papers in national and international conferences and peer reviewed journals. The research has been carried out in frontier areas of chemistry such as environmental chemistry, electrochemistry, nano materials, coordination chemistry, synthetic organic chemistry, photochemistry, polymer chemistry, and green chemistry. As extension activities, our faculty members and students visit remote villages and various industries in training them to develop entrepreneurial skills and competencies.

In the forthcoming academic year, B.Sc. & M.Sc. Chemistry syllabus provides an integrated and unified approach towards chemical sciences covering all branches of chemistry and following Choice Based Credit System with Outcome Based Education. The curriculum is rigorous in accord to international standards and covers theory and practical courses with full emphasis to construct intellectual assets. In the final semester, the PG students are encouraged to carry out research project in reputed research institutions to enhance their exposure level and placement abilities.

2. PROGRAMME OUTCOMES (PO)

Programme	B.Sc., Chemistry								
Programme Code	24UCH								
Duration	3 years [UG]								
	PO1: Disciplinary Knowledge: Acquire knowledge in chemistry and apply the knowledge in their day-to-day life for betterment of self and society.								
	PO2: Cognitive and Problem-Solving Skills: Develop critical, analytical thinking and problem-solving skills.								
	PO3: Societal and Environmental Impact: Address and develop solutions for societal and environmental needs at local, regional, and national levels.								
	PO4: Research-Related Skills: Develop research skills in defining problems, formulating and testing hypotheses, analyzing, interpreting, and drawing conclusions from data.								
Programme Outcomes	PO5: Employability and Entrepreneurship: Enhance employability and entrepreneurship among students, along with ethical and communication skills.								
	PO6: Self-Directed Learning : Work independently and engage in lifelong learning and continuous professional development.								
	PO7: Moral and Ethical Awareness/Reasoning: Understand the importance of ethical behavior in professional contexts and be able to recognize and address ethical dilemmas.								
	PO8: Lifelong Learning and Adaptability: Be prepared for lifelong learning and professional development, including the ability to adapt to changes in technology, business practices, and economic conditions.								

3. PROGRAMME SPECIFIC OUTCOMES (PSO)

Programme Specific Outcomes:

PSO1: Placement: Apply principles of organic, inorganic, and physical chemistry to design and synthesize novel compounds, contributing to advancements in pharmaceuticals, materials science, and sustainable industries.

PSO2: Research and Development: Develop expertise in Nano Science and Green Chemistry to design and implement sustainable, pollution-free technologies with high accuracy, fostering innovation in environmental protection, industrial applications, and entrepreneurship.

PSO3: Contribution to the Society: Integrate practical expertise in compound analysis to ensure precision in quality control, research, and innovation, contributing to industrial growth and societal well-being.

4. Eligibility for Admission:

Candidates for admission to the first year of the Bachelor of Science Degree of Chemistry course shall be required to have passed the Higher Secondary Examination with Chemistry and Physics / Mathematics / Biology as main subjects by the Government of TamilNadu or any equivalent.

5. Methods of Evaluation and Assessments

Methods of Evaluation									
Internal Evaluation	ı	25 Marks							
External	End Semester Examination	75 Marks							
Evaluation									
	Total	100 Marks							
Methods of Assessment									
Recall (K1) Simple definitions, MCQ, Recall steps, Concept definitions									
Understand /	MCQ, True/False, Short essays, Concept explanations, short summary or								
Comprehend (K2)	overview								
Application (K3)	Suggest idea/concept with examples, suggest form Observe, Explain	nulae, solve problems,							
Analyze (K4)	Problem-solving questions, finish a procedure in ma Between various ideas, Map knowledge	any steps, Differentiate							
Evaluate (K5)	Longer essay/Evaluation essay, Critique or justify with	pros and cons							
Create (K6)	Check knowledge in specific or offbeat situations, I Presentations	Discussion, Debating or							

6. Skeleton & Syllabus

Semester - I											
Code	Course Title	I	on	С							
		L	T	P	S	†					
24UFTA11	Tamil - 1	4	1	0	0	3					
24UFEN11	English - 1	4	1	0	0	3					
24UCHC11	CC - 1 General Chemistry -I	3	1	2	0	5					
24UCHC12P	CC - 2 Quantitative Inorganic Estimation (Titrimetry) & Inorganic Preparation – I (Practical)	0	0	4	0	3					
24UBCA11	EC - 1 AL Biochemistry - I	3	1	0	0	3					
24UBCS11	SEC - 1 (NM) Health and Nutrition	1	0	1	0	2					
24UBCS12P	SEC - 2 Biochemistry Practical - I	0	0	2	0	2					
24UCHF11	FC - Food Chemistry	1	1	0	0	2					
TOTAL											

	Semester - II										
Code	Course Title	I	С								
		L	T	P	S						
24UFTA21	Tamil - 2	4	1	0	0	3					
24UFEN21	English - 2	4	1	0	0	3					
24UCHC21	CC – 3 General Chemistry-II	3	1	2	0	5					
24UCHC22P	CC - 4 Qualitative Organic Analysis and Preparation of Organic Compounds – II (Practical)	0	0	4	0	2					
24UBCA21	EC - 2 AL Biochemistry - II	3	1	0	0	4					
24UBCA22P	EC - 3 Biochemistry Practical - II	0	0	2	0	2					
24UCHS21	SEC – 3 Dairy Chemistry	1	0	1	0	2					
24UCHA21	AEC – 1 Life Skills through Yoga	1	1	0	0	2					
TOTAL					30	23					

L-Lecture T-Tutorial P-Practical S-Seminar C-Credit

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Naan Mudhalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

										Mar	ks	
Cou		Course Name	Category	L	Т	PS		Credits	Hours	CIA	CIA	
24UCI	IC11	Core Course 1 - General Chemistry – I	Core	3	1	2	0	5	6	25	7:	5 100
		Lea	rning O	bje	ctiv	es						
LO1	To understand the various atomic models and atomic structures.											
LO2	To correlate the wave particle duality of matter.											
LO3	To u	nderstand the periodic table	, period	icity	in	pro	pert	ies an	d its a	pplicat	ions.	
LO4	To correlate the nature of chemical bonding and chemical behaviour.											
LO5	To understand the fundamental concept of organic chemistry.											
Unit	Content											
	Aton	nic Structure and Period	ic Tren	ds:	His	tor	y of	aton	n (J.J.	Thoms	on,	
	Rutherford); Moseley's Experiment and Atomic number, Atomic Spectra;										tra;	
1	Elect	tronic Configuration of Ato	oms and	lion	ıs- I	Hun	ıd's	rule,	Pauli'	exclus	ion	18
	princ	eiple and Aufbau princip	ole; Bla	ick-	Bod	y]	Rad	iation	and	Planc	k's	
		tum theory - Bohr's model										
		oduction to Quantum							echanio			
		nanical model of atom, Pos			•							
2		chrodinger wave equation							-			18
		, Ionic and Covalent ra										
		ronegativity-electronegativi										
		cture and Bonding - I: Bo		•		-			-			
2	– polarising power and polarizability; Fajans' rules - effects of polarization,											18
3	Shapes of orbitals, overlap of orbitals $-\sigma$ and π -bonds; hybridization;										•	
	principles of VSEPR theory - Partial ionic character of covalent bond -											
	uipoi	le moment, application to m	ioiecuie	5.								

		Structure and Bonding - II: VB theory - application to hydrogen							
		molecule, limitations of VBT; MO theory - bonding, antibonding and non-							
	4	bonding orbitals, bond order; comparison of VB and MO theories.	10						
	4	Coordinate bond: Metallic bond VB Definition, conductors, insulator,	18						
		semiconductor - types, applications of semiconductors - Vander Waals							
		forces, Hydrogen bonding and its Types.							
		Basic Concepts in Organic Chemistry and Electronic Effects: Types of							
		bond cleavage – heterolytic and hemolytic types of reagents - electrophiles,							
	5	nucleophiles, free radicals. Inductive effect - reactivity of alkyl halides,	18						
		inductomeric and electromeric effects. Resonance - resonance energy,							
		Types of organic reactions - addition, substitution, elimination reaction.							

СО	Course Outcomes
CO1	Explain the atomic structure, wave particle duality of matter, periodic properties bonding, and properties of compounds.
CO2	Classify the elements in the periodic table, types of bonds, reaction intermediates electronic effects in organic compounds, types of reagents.
СОЗ	Apply the theories of atomic structure, bonding, to calculate energy of a spectral transition, Δx , Δp electronegativity, percentage ionic character and bond order
CO4	Evaluate the relationship existing between electronic configuration, bonding, geometry of molecules and reactions; structure reactivity and electronic effects
CO5	Construct MO diagrams, predict trends in periodic properties, assess the properties of elements, and explain hybridization in molecules and organic reaction mechanisms.
Textbo	ooks:
1	Madan R. D. and Sathya Prakash, "Modern Inorganic Chemistry", 2 nd ed., S. Chand and Company, New Delhi, 2003.
2	Rao C. N. R. "University General Chemistry", Macmillan Publication, New Delhi, 2000.
3	Puri B. R. and Sharma L. R. "Principles of Physical Chemistry", 38 th ed., Vishal Publishing Company, Jalandhar, 2002.
4	Bruce P. Y. and Prasad K. J. R. "Essential Organic Chemistry", Pearson Education, New Delhi, 2008.
5	Dash U. N, Dharmarha O. P. and Soni P. L. "Textbook of Physical Chemistry", Sultan Chand & Sons, New Delhi, 2016.
Refere	nce Books:
1	Maron S. H. and Prutton C. P. "Principles of Physical Chemistry", 4 th ed., The Macmillan Company, Newyork, 1972.
2	Lee J. D. "Concise Inorganic Chemistry", 4 th ed., ELBS William Heinemann, London, 1991.
3	Gurudeep Raj. "Advanced Inorganic Chemistry", 26 th ed., Goel Publishing House, Meerut, 2001.
4	Atkins P. W. and Paula J. "Physical Chemistry", 10 th ed., Oxford University Press, New York, 2014.
5	Huheey J. E. "Inorganic Chemistry: Principles of Structure and Reactivity", 4 th ed., Addison, Wesley Publishing Company, India, 1993.
Web re	esources:
1	https://openstax.org/details/books/chemistry-2e
2	https://chem.libretexts.org/Bookshelves/Organic_Chemistry
3	https://faculty.cengage.com/titles/9781305957404
4	https://www.mheducation.com/prek-12/program/chang-chemistry-ap-edition-2023-14e/MKTSP-GEC10M0.html
5	https://ocw.mit.edu/courses/8-04-quantum-physics-i-spring-2016/
	I

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

										Mark	S	
Cou Co		Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
24UCH	IC12P	Core Course 2 - Quantitative Inorganic Estimation (Titrimetry) & Inorganic Preparation—I (Practical)	Core	0	0	4	0	3	4	25	75	100
		Lea	rning O	bjec	tives	5						·
LO1	To un	derstand laboratory safety an	d handli	ng gl	lassw	vares	3					
LO2	To un	derstand volumetric estimati	ons									
LO3	То сол	relate acid base titration and	standard	l solı	ution	ıs						
LO4	To un	derstand precipitation titration	n									
LO5	To understand the complexometric titrations using EDTA											
Unit			Cont	ent								Hours
	Acidii	metry:										
1	1.	Estimation of Borax – Stan										12
	2.	Estimation of Sodium Hyd				Sod	ium	Carb	onate			
	3.	Estimation of HCl – Standa	ard Oxali	c aci	ıd							
_	_	elexometry:	usin a ED	лт Λ								12
2		Estimation of Magnesium v Estimation of Zinc using E	_	ΊA								12
		ometry:										
3	1.	Estimation of Ferrous Iro	n using	Dip	heny	ıl an	nine	/N-P	henyla	anthrani	llic	12
		acid as indicator		-	·							
	Precip	oitation Titration:										12
4	1.	Estimation of Chloride in n	eutral m	ediu	m (D	emo	nstr	ation	expe	riment).		12
	Perma	anganometry:										
5	1.	Estimation of Ferrous Su	lphate –	Stan	dard	FAS	S					12
	2.	Estimation of Oxalic acid	l – Stand	ard (Oxali	ic ac	id					

SCHEME OF VALUATION

24UCHC12P - QUANTITATIVE INORGANIC ESTIMATION (TITRIMETRY) & INORGANIC PREPARATION–I (PRACTICAL)

Internal assessment: 25 Marks

External assessment: 75 marks

Total: 100 marks

Max. Marks: 75

Record: 15 Marks

Volumetric Analysis: 60 Marks

Volumetric Analysis: 60 Marks (Maximum)

Short Procedure: 10 Marks

Error upto 2 %: 50 Marks

2 to 3 %: 40 Marks

3 to 4 %: 30 Marks

4 to 5 %: 20 Marks

> 5 %: 10 Marks

Arithmetic error: Deduct 1 mark

Wrong calculation: Deduct 20 % of marks scored

No calculation: Deduct 40 % of marks scored

CO	Course Outcomes
CO1	Explain the basic principles involved in titrimetric analysis and inorganic preparations.
CO2	Compare the methodologies of different titrimetric analysis.
CO3	Estimate the amount of a substance present in a given solution.
CO4	Assess the yield of different inorganic preparations and identify the end point of various titrations.
CO5	Describe the measurable skills, abilities, knowledge in qualitative analysis.
Textbo	oks:
1	Venkateswaran V, Veeraswamy R, and Kulandivelu A. R. "Basic Principles of Practical Chemistry", 2 nd ed., Sultan Chand & Sons, New Delhi, 1997.
2	Nad A. K, Mahapatra B, and Ghoshal A. "An Advanced Course in Practical Chemistry", 3 rd ed., New Central Book Agency, Kolkata, 2007.
3	Jeffery G. H, Bassett J, Mendham. J and Denney R. C, "Vogel's Textbook of Quantitative Chemical Analysis", 5 th ed., Ergodebooks, Houston, TX, U.S.A, 2006.
4	Vogel A. I. "Qualitative Analysis and Inorganic Preparation", 7 th ed., ELBS and Prentice Hall, 2010.
5	Svehla G. "Vogel's Qualitative Inorganic Analysis", 7th ed., Pearson Education, 2012.
Refere	nce Books:
1	Mendham J, Denney R. C, Barnes J. D, Thomas M, and Sivasankar B. "Vogel's Textbook of Quantitative Chemical Analysis", 6 th ed., Pearson Education Ltd, New Delhi, 2009.
2	Vogel M. L. A, and Arthur I. "Vogel's Textbook of Quantitative Chemical Analysis", 6th ed., Pearson Education, 2002.
3	Svehla G. "Vogel's Quantitative Inorganic Analysis," 7 th ed., Pearson Education Ltd., 2012.
4	Jeffery G. Hammond and Richard Annunziata, "Mendham and Denney's Quantitative Analysis and Separations", 8th ed., Wiley, 2003.
5	Daniel C. Harris, "Quantitative Chemical Analysis", 8 th ed., W. H. Freeman & Co., 2010.
Web re	esources:
1	https://www.bookrix.com
2	https://chemdictionary.org/titration-indicator/
3	https://www.nist.gov/chemistry
4	https://www.rsc.org/
5	http://chemgroups.ucdavis.edu/~larsen/ChemWiki.html

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

									Marks	Marks				
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total			
24UCHA11	Allied / Generic - 1 Allied Chemistry	Allied	3	1	0	0	3	4	25	75	100			
	Le	arning O	bjec	tive	s									
LO1 To understand chemical bonding and nuclear chemistry.														
LO2	Γο know about the important materials used in industries.													
LO3	To understand the variou	Γο understand the various fundamental concepts in organic chemistry.												
LO4	To correlate types of the	To correlate types of thermodynamics process.												
LO5	To understand separation	To understand separation and purification techniques.												
Unit			Hours											
1	Hydrogen, Helium, Nitr magnetic properties. Nuc	bital The Molectogen; di	ory- ular scus mist	on on sion ry: l	ding rbita of	;, a il E b	nti-l dia ond	oondi gram orde	s for er and	1	2			
2	Isotopes, Isobars, Isotones and Isomers. Industrial Chemistry: Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted water gas, producer gas, CNG, LPG and oil gas (manufacturing details not required). Silicones: Synthesis, properties and uses. Fertilizers: Urea, NPK fertilizer, superphosphate, triple superphosphate.													
3	Fundamental Concepts Orbital overlap, hybridis C ₆ H ₆ . Electronic effects mesomeric effect, hyp examples. Reaction r	zation ans: Induction	d go	eome effection	etry et, e and	of elec	CH tron	neric e eff	H ₄ and effect,	1	2			

		aromaticity (Huckel's rule) – aromatic electrophilic substitution:						
		nitration, halogenation, Friedel-Craft's alkylation and acylation.						
		Thermodynamics and Phase Equilibria: Thermodynamics:						
		Types of systems, reversible and irreversible processes,						
	4	Statements of first law and second law of thermodynamics.						
	4	Carnot's cycle and efficiency of heat engine. Entropy and its	12					
		significance. Relationship between Gibbs free energy and						
		entropy. Phase equilibria: Gibb's phase rule, terms involved.						
		Analytical Chemistry: Principles of volumetric analysis.						
	5	Separation and purification techniques – extraction, distillation						
	5	and crystallization. Chromatography: principle and application	12					
		of column, paper and thin layer chromatography.						
1			1					

CO	Course Outcomes
CO1	Gain in-depth knowledge about the theories of chemical bonding, nuclear reactions
	and its applications.
CO2	Evaluate the efficiencies and uses of various fuels and fertilizers.
CO3	Explain the type of hybridization, electronic effect and mechanism involved in the
	organic reactions.
CO4	Apply various thermodynamic principles, systems and phase rule.
CO5	Explain various methods to identify an appropriate method for the separation of
	chemical components.
Textb	ooks:
1	Arun Bahl S. and Bahl B. S, "Advanced Organic Chemistry", S. Chand and Company, New Delhi, 23 rd ed., 2012.
2	Soni P. L. and Chawla H. M, "Text Book of Organic Chemistry", Sultan Chand & Sons, New Delhi, 29 th ed., 2007.
3	Gopalan R, "Analytical Chemistry", Sultan Chand & Sons, 2017.
4	Puri B. R, Sharma L. R. and Madan S. Pathania, "Principles of Physical Chemistry", Vishal Publishing Co., 48 th ed., 2024.
5	Veeraiyan V. and Vaithyanathan S, "Text book of Ancillary Chemistry", Priya Publications, Karur, 2006.
Refer	ence Books:
1	Soni P. L. and Mohan Katyal, "Textbook of Inorganic Chemistry", Sultan Chand & Sons, New Delhi, 20 th ed., 2006.
2	Sharma B. K, "Industrial Chemistry", GOEL publishing House, Meerut, 16 th ed., 2014.
3	Puri B. R. and Sharma L. R, "Textbook of Physical Chemistry", 47th ed., 2020.
4	Puri, Sharma, Pathania and Kaur, "Textbook of Physical Chemistry", Vishal Publishing Co., New Delhi, 2018.
5	Veeraiyan V, "Textbook of Ancillary Chemistry", Priya Publications, Karur, 1 st ed., 2009.
Web	resources:
1	https://www.khanacademy.org/science/hs-chemistry/x2613d8165d88df5e:nuclear-
	<u>chemistry-hs</u>
2	https://pubs.acs.org/journal/enfuem
3	https://m.youtube.com/watch?v=8c4urO_h1Ds
4	https://www.energy.gov/nnsa/national-nuclear-security-administration
5	https://en.wikipedia.org/wiki/Molecular_orbital

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

										Marks						
Course Code	Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total					
24UCHS11	SEC - 1 (NM) Foundation Course in Chemistry	NME	1	0	1	0	2	2	25	75	100					
	Learning Objectives															
LO1	To provide a broad foundation in chemistry that stresses scientific reasoning															
LOI	and analytical problem solving with a molecular perspective.															
LO2	To provide students with the skills required to succeed in graduate school, the															
	chemical industry, or professional school.															
LO3	Students will demonstrate scientific understandings of the structure of matter															
	and of its physical and chemical transformations. Students will apply appropriate theories to predict chemical structure,															
LO4		chemi	cal stru	ıcture,												
	reactivity, and physical properties. Aim is long term and provides overall direction, while objectives are short															
LO5	Aim is long-term and provides overall direction, while objectives are short-term and measurable.															
***	term and measurate.															
Unit		Cont	ent							Ho	urs					
	Atomic properties & Periodic Properties: Mendeleev's															
	periodic laws and table - m	•	-						•							
	property and magic number						•									
1	lonic radii) - Metallic rad									6	5					
	radius, Ionization energy,				-											
	affinity - Electronegativity (Pauling, Allred and Rochow's scale, Mulliken), Applications of electronegativity.															
	Nomenclature & Hybridi							Form	nation							
	of sigma and pi bond, Diffe															
2	Homolytic and heterolytic					_		-		6						
	valency of carbon. Hybridiz		_													
	<u> </u>															

	IUPAC system of nomenclature of common organic compounds	
	(upto C-10). Naming of organic compounds with one functional	
	group - Halogen compounds, alcohols, phenol, aldehydes,	
	ketones, carboxylic acids and its derivatives.	
	Solutions & Thermodynamics: Mathematical concepts –	
	Function of a real variable, differentiation – Derivative of a	
	function, integration - Methods of integration; Concentration	
3	units - Normality, molarity, molality, mole ratio; oxidation	
3	number - Oxidation number calculation. Gaseous state - Gas	6
	law - Boyle's Law, Charles law, Avogadro hypothesis.	
	Thermodynamics - Zeroth, first, second, third law -	
	Terminology in thermodynamics	
	Data Analysis: Data analysis - Theory of errors - Idea of	
	significant figures and it's importance with examples -	
4	Difference between precision and accuracy - Methods of	
4	expressing precision and accuracy. Error analysis - Methods of	6
	minimizing errors - Problems related to mean, median, standard	
	deviation, confidence limit.	
	Chromatography: Chromatography - Introduction -	
	Classification of chromatographic method - Paper	
5	Chromatography - Principle, theory, Rf values - TLC -	
3	Principle; Adsorption - Column and Ion exchange	6
	Chromatography - Principle, theory; comparison between	
	partition and adsorption chromatography.	

CO1 Students at the end of the course will have acquired a good knowledge of concepts of atoms and chemical bonds. CO2 They will be able to understand and use the fundamental principles whe characterize the properties of matter and how it reacts. CO3 Students will gain an understanding of chemical reactions and strategies to bala them. CO4 The relative quantities of reactants and products. CO5 The fundamental properties of atoms, molecules, and the various states of matter. Textbooks: 1 John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Moleculor Science", W. H. Freeman & Co., 4th ed., 2010. 2 Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. 3 Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemistry Springer, 2nd ed. 2017. 4 Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-Feducation, 12th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017. 2 Nivaldo I. Tro "Chemistry: A Molecular Approach" Pearson, 4th ed., 2017.	ich
characterize the properties of matter and how it reacts. CO3 Students will gain an understanding of chemical reactions and strategies to bala them. CO4 The relative quantities of reactants and products. CO5 The fundamental properties of atoms, molecules, and the various states of matter. Textbooks: 1 John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Molecu Science", W. H. Freeman & Co., 4th ed., 2010. 2 Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. 3 Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2nd ed. 2017. 4 Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017.	
them. CO4 The relative quantities of reactants and products. CO5 The fundamental properties of atoms, molecules, and the various states of matter. Textbooks: 1 John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Molecu Science", W. H. Freeman & Co., 4th ed., 2010. 2 Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. 3 Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2nd ed. 2017. 4 Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017.	nce
 CO5 The fundamental properties of atoms, molecules, and the various states of matter. Textbooks: John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Molecul Science", W. H. Freeman & Co., 4th ed., 2010. Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2nd ed. 2017. Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12th ed., 2020. Reference Books: David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017. 	
 Textbooks: John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Molecu Science", W. H. Freeman & Co., 4th ed., 2010. Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2nd ed. 2017. Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12th ed., 2020. Reference Books: David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017. 	
 John Moore, Conrad Stanitski, and Peter Fergusson, "Chemistry: The Molecu Science", W. H. Freeman & Co., 4th ed., 2010. Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16th ed., 2017. Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2nd ed. 2017. Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12th ed., 2020. Reference Books: David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017. 	
Science", W. H. Freeman & Co., 4 th ed., 2010. Morris Hein, Susan Arena, "Foundations of College Chemistry", John Wiley Sons, 16 th ed., 2017. Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2 nd ed. 2017. Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12 th ed., 2020. Reference Books: David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	
Sons, 16 th ed., 2017. Stephen J. Benkovic, Stephen C. Harvey, "Basic Mathematics for Chemist Springer, 2 nd ed. 2017. Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12 th ed., 2020. Reference Books: David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	ar
Springer, 2 nd ed. 2017. 4 Jerry Sarquis, Paul C. Sorg, David A. Ucko, "Guided Inquiry Experiments General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-H. Education, 12 th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	&
General Chemistry: Practical Problems and Applications", John Wiley & Sons, ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12 th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	\$'',
ed., 2009. 5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12 th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	
5 Raymond Chang and Kenneth A. Goldsby, "General Chemistry", McGraw-F. Education, 12 th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	1 st
Education, 12 th ed., 2020. Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8 th ed., 2017.	
Reference Books: 1 David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017.	ill
David W. Oxtoby, H. Pat Gillis, and Laurie J. Butler, "Principles of Mode Chemistry", Cengage Learning, 8th ed., 2017.	
Chemistry", Cengage Learning, 8 th ed., 2017.	
2 Nivelde I Tre UChemietry A Melecules Assured III Decree 4th - 1 2017	rn
Nivaldo J. Tro, "Chemistry: A Molecular Approach" Pearson, 4 th ed., 2017.	
David R. Klein, "General Chemistry I as a Second Language: Mastering Fundamental Skills", Wiley, 1st ed., 2007.	
4 John A. Olmsted, Gregory M. Williams, Robert C. Burk, "Chemistry", Pears Canada, 4 th ed., 2015.	on
Theodore L. Brown, H. Eugene LeMay, and Bruce E. Bursten, "Chemistry: T Central Science", Pearson, 14 th ed., 2017.	he
Web resources:	
1 https://www.gutenberg.org/	
2 https://openlibrary.org/	
3 https://webbook.nist.gov/chemistry/	
4 https://www.nist.gov/itl/sed/topic-areas/measurement-uncertainty	
5 https://link.springer.com/	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

										Marks	
Course Code	Course Name		Category		P	S	Credits	Hours	CIA	External	Total
24UCHS12	SEC-2 Chemistry Practical for Physical and Biological Sciences - I SEC 0 0 2 0 2 2 25								75	100	
Learning Objectives											
LO1	Demonstrate accurate use of v volumetric flasks.	Demonstrate accurate use of volumetric glassware, including burettes, pipettes, and volumetric flasks.									
LO2	Differentiate between types of titrations (acid-base, redox, complexometric, and precipitation titrations).										
LO3	Prepare standard solutions and perform standardization procedures to determine the exact concentration of titrants.										
LO4	Calculate the concentration of analytes from titration data using appropriate formulas and stoichiometric relationships.										
LO5	Select suitable indicators for the expected equivalence poin		type	es of	`titra	atio	ns b	ased o	on their	pH ran	ge and
Unit		Cont	ent							Но	urs
1	 Estimation of sodium hyd Estimation of sodium carb 									(6
2	3. Estimation of hydrochloric acid using standard oxalic acid 4. Estimation of ferrous sulphate using standard Mohr's salt 6										
3	5. Estimation of oxalic acid using standard ferrous sulphate 6. Estimation of potassium permanganate using standard sodium hydroxide										
4	7. Estimation of Ca (II) using 8. Estimation of Mg (II) using	_								(6
5	9. Estimation of total hardne 10. Estimation of ferrous ion			enyl	ami	ne a	as in	dicato	r	(6

SCHEME OF VALUATION

24UCHS12 - CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL SCIENCES - I

(For Biochemistry and ND (FSM) – I year/I Semester)

Internal assessment: 25 Marks

External assessment: 75 marks

Total: 100 marks Max. Marks: 75

Record: 15 Marks

Volumetric Analysis: 60 Marks

Volumetric Analysis: 60 Marks (Maximum)

Short Procedure: 10 Marks

Error upto 2 %: 50 Marks

2 to 3 %: 40 Marks

3 to 4 %: 30 Marks

4 to 5 %: 20 Marks

> 5 %: 10 Marks

Arithmetic error: Deduct 1 mark

Wrong calculation: Deduct 20 % of marks scored

No calculation: Deduct 40 % of marks scored

CO	Course Outcomes
CO1	Gain an understanding of the use of standard flask and volumetric pipettes, burette.
CO2	Design, carry out, record and interpret the results of volumetric titration.
CO3	Apply their skill in the analysis of water/hardness.
CO4	Analyze the chemical constituents in allied chemical products.
CO5	Describe the measurable skills, abilities, knowledge in qualitative analysis.
Textb	ooks:
1	Venkateswaran V, Veerasamy R and Kulandaivelu A. R, "Basic Principles of Practical Chemistry", Sultan Chand & Sons, 2 nd ed., 1997.
2	Vogel A. I, Tatchell A. R, Furnis B. S, Hannaford A. J and Smith P. W. G, "Vogel's Textbook of Practical Organic Chemistry", Prentice Hall, 5 th ed., 1989.
3	Donald L. Pavia, Gary M. Lampman, George S. Engel & Roger G. Gries, "Experimental Organic Chemistry", Cengage Learning, 2005.
4	Jerry Mohrig, Craig Hammond & Paul F. Snyder, "Techniques in Organic Chemistry", Macmillan Learning, 4 th ed., 2014.
5	Mann F. G and Saunders B. C, "Practical Organic Chemistry", Pearson Education, 4 th ed., 1975.
Refere	ence Books:
1	Ralph J. Fessenden and Joan S. Fessenden, "Organic Chemistry Laboratory Manual", Brooks/Cole, 3 rd ed., 1982.
2	Middleton H, "Organic Qualitative Analysis", Longmans, Green and Co., 1st ed., 1951.
3	Bansal R. K, "Laboratory Manual of Organic Chemistry", New Age International Publishers, 5 th ed., 2010.
4	John Leonard, Barry Lygo and Garry Procter, "Advanced Practical Organic Chemistry", CRC Press, 3 rd ed., 2013.
5	Lisa Nichols, Organic Chemistry Laboratory Techniques", LibreTexts, 1st ed., 2016.
Web r	resources:
1	https://webbook.nist.gov/chemistry/
2	https://www.organic-chemistry.org/
3	https://www.routledge.com/Advanced-Practical-Organic-Chemistry/Leonard-Lygo-
	Procter/p/book/9781439860977
4	https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_La
	<u>b_Techniques_(Nichols)</u>
5	https://www.academia.edu/43215226/Advanced_Practical_Organic_Chemistry_Thir
	d_Edition

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3	3
Total	15	15	15	15	15	15	15	15	15	15	15
Average	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

										Marks		
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHF11	Foundation Course - Food Chemistry	FC	1	1	0	0	2	2	2	75	100	
	Learning Objectives											
LO1	To understand the food adulte	ration a	nd p	oiso	ns.							
LO2	Relate the properties and structure functional and chemical properties				al co	mp	oner	nts and	l ingred	ients to	the	
LO3	To correlate food additives an	d prese	rvati	on.								
LO4	To understand basic analysis of	of majo	r and	l trac	e fo	od (com	ponen	ts.			
LO5	To correlate physical and chemical interactions between food components and their impact on quality.											
Unit		Cont	ent							Но	urs	
1	Food Adulteration: Source disadvantages. Food adulterate butter etc. with clay stones, adulterants, Ghee adulterants adulterated foods by simple ar	6										
2	adulterated foods by simple analytical techniques. Food Poison: Food poisons - natural poisons (alkaloids - nephrotoxin) - pesticides, (DDT, BHC, Malathion) - Chemical poisons - First aid for poison consumed victims. Materials for food packing - Limitations and advantages.											
3	Food Additives: Food additives - artificial sweeteners – Saccharin - Cyclomate and Aspartate Food flavours -esters, aldehydes and heterocyclic compounds – Food colours Emulsifying agents – preservatives - leavening agents.											
4	Beverages: Beverages - soft beverages - examples. Carbor liver and social problem.	drinks								(6	
5	vegetable oils - preservation. value - role of MUFA and	liver and social problem. Edible Oils: Fats and oils - Sources of oils - production of refined vegetable oils - preservation. Saturated and unsaturated fats - iodine value - role of MUFA and PUFA in preventing heart diseases - determination of iodine value, RM value, saponification value and										

CO	Course Outcomes
CO1	Learn about Food adulteration - Contamination of Wheat, Rice, Milk, Butter.
CO2	Get an awareness about food poisons like natural poisons (alkaloids - nephrotoxin) Pesticides, DDT, BHC and Malathion.
CO3	Get an exposure on food additives, artificial sweeteners, Saccharin, Cyclomate and Aspartate in the food industries.
CO4	Acquire knowledge on beverages, soft drinks, soda, fruit juices and alcoholic beverages examples.
CO5	Study about fats and oils - Sources of oils - production of refined vegetable oils - preservation. Saturated and unsaturated fats - MUFA and PUFA.
Textbo	
1	Chopra H. K. and Panesar P. S. "Food chemistry", Narosa publishing house, 2010.
2	Jayashree Ghosh, "Fundamental Concepts of Applied Chemistry", S. Chand & Co. Publishers, 2 nd ed, 2006.
3	Chopra H. K. and Panesar P. S. "Food Chemistry", Narosa Publishning House, 2010.
4	Rakesh Sharma L. "Food Chemistry", Evincepub Publishing, 2022.
5	Subbulakshmi G, Shobha A Udipi, Padmini S Ghugre. "Food processing and preservation", New Age International Publishers, 2 nd ed, 2021.
Refere	nce Books:
1	Belitz H. D. and Werner Grosch. "Food Chemistry", Springer Science & Business Media, 4 th ed., 2009.
2	Swaminathan M. "Food Science and Experimental Foods", Ganesh and Company, 1979.
3	Hasenhuettl, Gerard, Hartel L. and Richard. W. "Food Emulsifiers and their Applications", Springer, New York, 2 nd ed., 2008.
4	Srilakshmi B, "Food Science", New Age International (P) Ltd., New Delhi, 3 rd ed., 2005.
5	John M. deMan, John W. Finley, W. Jefferey Hurst and Chang Yong Lee,
	"Principles of Food Chemistry", Springer, 4 th ed., 2018.
Web r	esources:
1	https://www.fssai.gov.in/
2	https://www.mayoclinic.org/diseases-conditions/food-poisoning/symptoms-causes/syc-20356230
3	https://www.fda.gov/food/food-additives-and-gras-ingredients-information- consumers/understanding-how-fda-regulates-food-additives-and-gras-
4	ingredients
4	https://www.britannica.com/topic/beverage
5	https://www.catena.ro/ce-este-si-cum-recunoasteti-o-toxiinfectie-alimentara

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

BRIDGE COURSE SYLLABUS 2024-2025

Course Objectives

- To understand basics of chemistry
- To develop working skills with qualitative and quantitative.
- To acquire basic knowledge in atomic structure, periodic tables, organic compounds.

Unit I: Atomic Structure

Structure of an atom, atomic number, atomic weight, stable and unstable atoms, molecules Atomic Orbitals, quantum, numbers – Azimuthal, magnetic and spin Quantum numbers and their significance. Pauli's exclusion principle, Hund's rule & Aufbau principle. Classification of s, p, d & f block elements.

Unit II: Periodic trends & Thermodynamics

Periodic table trends-Electron configuration, atomic radii, Ionization energy, Electronegativity, Electron affinity, Metallic characters. Thermodynamics- definition, types of thermodynamics laws and application of thermodynamics

Unit III: Principles Chemical Analysis

Definition - Molarity, normality and mole fraction-Types of titrimetric reactions acid - base, redox, precipitation and complex metric titrations, Indicators neutralization, redox, adsorption and metal ion indicators, Ionic bond or electrovalent bonds, covalent bonds, Vander Waals bond, Hydrogen bonds, a hydro bond– pH, Effect of change in pH-Buffer system.

Unit IV: Organic Compounds

Carbohydrates, Lipids, Proteins, and Nucleic acids components and its uses.

Unit V: Higher studies & Job opportunities

Bachelor of Education, Post Graduation, Specialized Post Graduation, and Recruitment for Chemistry graduates - Govt Jobs, Private Jobs.

1ST YEAR: SECOND SEMESTER

										Marks	Marks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHC21	Core Course 3 - General Chemistry –II	Core	3	1	2	0	5	6	25	75	100	
	Learn	ning O	bjec	tive	S							
LO1	To understand the different of	definiti	ons	of a	cids	an	d ba	ises (Arrheni	ius, Bro	onsted-	
LOI	Lowry, Lewis), their properties, and their reactions.											
LO2	To calculate pH, pOH, and equilibrium concentrations of acids, bases, and their											
202	salts using the appropriate equations.											
LO3	To apply the principles of ionic equilibria, including solubility product,											
	•	ion effect, and hydrolysis of salts.										
	To describe the properties and reactions of elements in the s- and p- blocks of											
LO4	the periodic table, including alkali metals, alkaline earth metals, and											
	representative elements.											
LO5	To identify and name different types of hydrocarbons (alkanes, alkenes,											
LOS	alkynes, and aromatics), and understand their structures, properties, and reactions.											
Unit		Cont	ent							Но	urs	
	Acids, bases and Ionic equilibria											
	Concepts of Acids and Bases - Arrhenius concept, Bronsted-											
1	Lowry concept, Lewis concept; pH scale, pH of solutions; Degree of dissociation, common ion effect, factors affecting								1	8		
	degree of dissociation; acid base indicators, theory of acid base											
	indicators, Buffer solutions – types, mechanism of buffer action											
	in acid and basic buffer, Henderson- Hasselbalch equation.											
2	Chemistry of s - Block Eler Hydrogen: Position of hydrogensetals: Comparative study	rogen		-						1	8	

	oxides, hydroxides, halides, carbonates and bicarbonates. Diagonal relationship of Li with Mg. Anomalous behaviour of Be. Chemistry of p - Block Elements (Group 13 & 14) preparation and structure of diborane and borazine. Chemistry of borax. Extraction of Al and its uses. Alloys of Al. Comparison of carbon with silicon. Carbon-di-sulphide – Preparation, properties, structure and uses. Percarbonates, per monocarbonates and per dicarbonates.	
3	Chemistry of p- Block Elements (Group 15-18) General characteristics of elements of Group 15; chemistry of H ₂ N-NH ₂ , NH ₂ OH, NH ₃ and HNO ₃ . Chemistry of PH ₃ , PCl ₃ , POCl ₃ , P ₂ O ₅ . General properties of elements of group16 - Structure and allotropy of elements - chemistry of ozone - Classification and properties of oxides - oxides of sulphur SO ₂ , SO ₃ – Oxy acids of sulphur (Caro's and Marshall's acids). Chemistry of Halogens: Group 17 General characteristics of halogen with reference to electro- negativity, electron affinity, oxidation states and oxidizing power. Halogen acids (HF, HCl, HBr and HI) Noble gases: Position in the periodic table. Preparation, properties and structure of XeF ₂ , XeF ₄ , XeF ₆ and XeOF ₄ ; uses of noble gases.	18
4	Hydrocarbon Chemistry-I Alkadienes: Nomenclature - classification – isolated, stability of conjugated dienes; mechanism of electrophilic addition to conjugated dienes - 1, 2 and 1, 4 additions; free radical addition to conjugated dienes – Diels-Alder reactions — polybutadiene, polyisoprene (natural rubber), vulcanisation, polychloroprene. Alkynes: Nomenclature, general methods of preparation, properties; acidic nature of terminal alkynes and acetylene.	18
5	Hydrocarbon Chemistry - II Benzene: Source, structure of benzene, stability of benzene ring, molecular orbital picture of benzene, aromaticity, Huckel's (4n+2) rule and its applications. Electrophilic substitution reactions - General mechanism of aromatic electrophilic substitution - nitration, sulphonation, halogenation, Friedel-Craft's alkylation acylation. Polynuclear Aromatic hydrocarbons: electrophilic substitution reaction, nitration, sulphonation, halogenation, Friedel − Crafts acylation & Diels-Alder reaction and Haworth synthesis.	18

CO	Course Outcomes
CO1	To explain the concept of acids, bases and ionic equilibria; periodic properties of s
	and p block elements, preparation and properties of aliphatic and aromatic
	hydrocarbons.
CO2	To discuss the periodic properties of sand p- block elements, reactions of aliphatic
	and aromatic hydrocarbons and strength of acids.
CO3	To classify hydrocarbons, types of reactions, acids and bases, examine the
	properties s and p-block elements, reaction mechanisms of aliphatic and aromatic
	hydrocarbons.
CO4	To explain theories of acids, bases and indicators, buffer action and important
00.5	compounds of s-block elements.
CO5	To assess the application of hard and soft acids indicators, buffers, compounds of s
	and p- block elements and hydrocarbons.
	oooks:
1	Madan R. D. and Sathya Prakash, "Modern Inorganic Chemistry", 2 nd ed., S.
	Chand and Company, New Delhi, 2003.
2	Sathya Prakash, Tuli G. D, Basu S. K. and Madan R. D, "Advanced Inorganic
	Chemistry", 17 th ed., S.Chand and Company, New Delhi, 2003.
3	Bahl B. S, Arul Bhal, "Advanced Organic Chemistry", 3rd ed., S.Chand and
4	Company, New Delhi, 2003.
4	Tewari K. S, Mehrothra S. N and Vishnoi N. K, "Text book of Organic Chemistry",
5	2 nd ed., Vikas Publishing House, New Delhi, 1998.
)	Puri B. R, Sharma L. R, "Principles of Physical Chemistry", 38th ed., Vishal Publishing Company, Jalandhar, 2002.
Refe	rence Books:
1	Maron S. H and Prutton C. P, "Principles of Physical Chemistry", 4th ed., The
	Macmillan Company, Newyork, 1972.
2	Barrow G. M, "Physical Chemistry", 5th ed., Tata McGraw Hill, New Delhi,
	1992.
3	Lee J. D, "Concise Inorganic Chemistry", 4th ed., ELBS William Heinemann,
	London, 1991.
4	Huheey J. E, "Inorganic Chemistry: Principles of Structure and Reactivity", 4th
	ed., Addison Wesley Publishing Company, India, 1993.
5	Gurudeep Raj, "Advanced Inorganic Chemistry Vol - I", 26th ed., Goel Publishing
	House, Meerut, 2001.
Web	resources:
1	https://onlinecourses.nptel.ac.in
2	http://cactus.dixie.edu/smblack/chem1010/lec_ture_notes/4B.html
3	http://nptel.ac.in/courses/104101090/
4	Lecture 1: Classification of elements and periodic properties
5	http://nptel.ac.in/courses/104101090/
)	https://aklectures.com/lecture/introduction-to-acids-and-bases/arrhenius-bronsted-lowry-and-lewis-acids-and-bases
	10 W1 y-and-10 W15-actus-and-dases

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

									Marks		
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24UCHC22P	Core Course 4 - Qualitative Organic Analysis and Preparation of Organic Compounds - II (Practical)	Core	0	0	4	0	2	4	25	75	100
	Lear	ning O	bjec	tives							
LO1	To recall basic safety rules, symbols, and first-aid procedures in laboratory.										
LO2	To perform qualitative organic compounds.									-	
LO3	To differentiate between aromatic and aliphatic compounds, as well as saturated and unsaturated compounds.										
LO4	To prepare derivatives of specific functional groups to confirm their presence in organic compounds.										
LO5	To prepare organic compounds halogenation, oxidation, and re-						etic 1	metho	ds, inclu	ıding ni	tration,
Unit	Content									Hours	
1	Chemistry Lab Safety Safety rules, symbols and first-aid in chemistry laboratory. Basic ideas about Bunsen burner, its operation and parts of the flame. Chemistry laboratory glassyware, basic information and uses									2	1
2, 3 & 4	Chemistry laboratory glassware – basic information and uses. Qualitative Organic Analysis a) Preliminary examination b) Detection of special elements - nitrogen, sulphur and halogens c) Aromatic and aliphatic nature d) Test for saturation and unsaturation e) Identification of functional groups f) Confirmation of functional groups • monocarboxylic acid, dicarboxylic acid • monohydric phenol, dihydric phenol • Aldehyde								4	0	

	 carbohydrate (reducing or non-reducing sugars) Primary amine monoamide, diamide 	
5	Preparation of Organic Compounds (Any 3) i. Bromination - 2,4,6 tribromo aniline from aniline ii. Bromination - p-bromo acetanilide from acetanilide iii. Oxidation - benzoic acid from Benzaldehyde iv. Preparation of Benzanilide from Aniline v. Salicylic Acid from Methyl Salicylate vi. Preparation of Tribromo Phenol from Phenol vii. Preparation of Benzoic acid from Benzamide	16

SCHEME OF VALUATION 24UCHC22P - QUALITATIVE ORGANIC ANALYSIS AND PREPARATION OF ORGANIC COMPOUNDS (PRACTICAL)

Internal assessment : 25 Marks
External assessment : 75 Marks
Total : 100 Marks
Max. Marks : 75 Marks
Record : 10 Marks
Viva voce : 5 Marks

Preparation : 20 Marks (quantity: 10 & quality: 10)

Organic Analysis : 40 Marks

Organic Analysis : 40 Marks

Preliminary Test : 10 Marks

Aliphatic or Aromatic : 5 Marks

Saturated or Unsaturated : 5 Marks

Tests for Special Elements : 10 Marks

Functional group Tests : 10 Marks

CO	Course Outcomes
CO1	To demonstrate a comprehensive understanding of laboratory safety practices,
	including the ability to identify and respond appropriately to potential hazards.
CO2	To accurately identify the functional groups present in unknown organic compounds using a variety of chemical tests.
CO3	To effectively differentiate between aromatic and aliphatic compounds, as well as
	saturated and unsaturated compounds.
CO4	To successfully prepare and analyze derivatives of specific functional groups to confirm their presence in organic compounds.
CO5	To successfully synthesize a variety of organic compounds using different reaction
	types, including nitration, halogenation, oxidation, and rearrangement reactions.
Texth	000ks:
1	Venkateswaran, V.; Veeraswamy, R.; Kulandaivelu, A.R, "Basic Principles of Practical Chemistry", 2 nd ed.; Sultan Chand: New Delhi, 2012.
2	Manna, A.K, "Practical Organic Chemistry", Books and Allied: India, 2018.
3	Gurtu, J. N; Kapoor, R, "Advanced Experimental Chemistry (Organic)", Sultan Chand: New Delhi, 1987.
4	Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A.R, "Vogel's Textbook of Practical Organic Chemistry", 5th ed.; Pearson: India, 1989.
5	Paquette, Leo A, "Principles of Modern Organic Chemistry: A Laboratory Course", 5 th ed.; Brooks/Cole, 2003.
Refer	ence Books:
1	Mayo, Donald W.; Pike, Ronald M.; Butcher, Sidney L, "Microscale Organic Laboratory Techniques", 4th ed.; Prentice Hall, 2003.
2	Armarego, Wilfred L. F.; Chai, Christina L. L, "Purification of Laboratory Chemicals", 6 th ed.; Butterworth-Heinemann, 2009.
3	Kemp, Thomas J, "Experimental Organic Chemistry", 3rd ed.; Freeman, 2007.
4	Mohrig, James R.; Morrill, Thomas C.; Johnson, David R.; Wilkinson, Helen R, "Techniques in Organic Chemistry: A Microscale Approach", 4 th ed.; Freeman, 2010.
5	Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. V, "Vogel's Textbook of Practical Organic Chemistry", 5th ed.; Pearson: India, 1989.
Web	resources:
1	https://www.masterorganicchemistry.com/
2	https://www.chemtube3d.com
3	https://www.khanacademy.org/
4	https://ocw.mit.edu/
5	https://online.stanford.edu/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	2	3	3	3	3	3	2	3	3	3
Total	14	14	15	14	14	15	15	10	15	15	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

										Marks	Marks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHA21	Elective Course - 2 Chemistry - II	Elective	3	1	0	0	4	4	25	75	100	
	Learning Objectives											
LO1	To understand the mechanisms of polymerisation and their impact on polymer properties.											
LO2	To analyze real-world photochemical reactions to	_		_				undan	nental	princip	les of	
LO3	To apply the concepts of electrochemistry to analyze the behavior of batteries and fuel cells.											
LO4	To encompasses the core concepts of corrosion delves into the application of protective coatings, such as paints, enamels, and lacquers, to safeguard materials from corrosion.											
LO5	To assess various phar anesthetics, antiseptics, and			•			·		·	•	biotics,	
Unit		Cont	ent							Но	urs	
1	Polymer Chemistry - Introduction, classification of polymers, types of polymerisation, addition polymerization - mechanism of free radical polymerization, condensation and copolymerization. Thermoplastic and thermosetting polymers, difference between thermoplastic and thermosetting polymers, preparation, properties and uses of Polythene,										2	
2	PVC, Teflon, Nylon 6,6 and Polyesters. Photochemistry - Grothus-Draper's law and Stark-Einstein's law of photochemical equivalence, Quantum yield - Hydrogen-chloride reaction. Jablonskii diagram - Phosphorescence, fluorescence, chemiluminescence and photosensitization and photosynthesis (definition with examples).											

	Electrochemistry - Electrolytes - Definition and Examples -								
	Classification - Specific and Equivalent Conductance - Ostwald's								
3	Dilution Law and its Limitations. Batteries - primary and secondary	12							
3	batteries - difference between primary and secondary batteries. Lead	12							
	storage battery - cell diagram, cell reaction and uses. Fuel cell H ₂ -O ₂								
	fuel cell - explanation with diagram.								
	Corrosion and Protective Coatings - Corrosion - types, corrosion								
	control methods. Electrochemical corrosion and its prevention - Electroplating and Electroless plating - applications. Paints -								
4	Components of Paint - Requisites of a Good Paint - Pigments -								
	Classification of Pigments based on Colour. Dyes - Definition -								
	Classification based on Constitution and Application – Chromophores								
	and Auxochromes. Enamels and Lacquers - composition and uses.								
	Pharmaceutical Chemistry - Sulpha Drugs - Preparation and uses of								
	Sulphapyridine and Sulphadiazine - mode of action of Sulpha drugs -								
5	Antibiotics - Uses of Penicillin, Chloramphenicol and Streptomycin -	12							
3	Anaesthetics - General and Local Anaesthetics - Antiseptics -								
	Analgesics, Antipyretics, Tranquilizers, Sedatives - Examples and								
	their applications.								

CO	Course Outcomes
CO1	Critically evaluate the properties and applications of different types of polymers to
	select the most suitable materials for specific purposes.
CO2	To explain the laws of photochemistry and calculate quantum yields.
CO3	Construct electrochemical cells, such as batteries and fuel cells, based on theoretical
	principles.
CO4	Ability to design and implement effective corrosion prevention strategies for various
	materials and environments.
CO5	Develop new pharmaceutical compounds with improved efficacy and reduced toxicity.
Textbo	ooks:
1	Fried, J. R, "Polymer Science and Engineering", Prentice Hall, 3rd ed., 2003.
2	Turro, N. J., "Modern Molecular Photochemistry of Organic Molecules", University Science Books, 1991.
3	Newman, J, "Electrochemical Engineering", Prentice Hall", 3 rd ed., 2004.
4	Fontana, M. G., & Staehle, R. H, "Corrosion Engineering", McGraw-Hill, 4 th ed., 2017.
5	Albert, A. A., & Phillips, D. J, "Medicinal Chemistry: An Introductory Text", Wiley, 5 th ed., 2002.
Refere	nce Books:
1	Atkins, P. W., & de Paula, J, "Physical Chemistry", Oxford University Press, 10 th
	ed., 2014.
2	Gilbert, A., & Baggott, J., "Essentials of Molecular Photochemistry", Blackwell
	Scientific Publications, 1991.
3	Shriver, D. F., & Atkins, P. W, "Inorganic Chemistry", W. H. Freeman, 5th ed., 2010.
4	Bardwell, A. J, "Principles of Corrosion Engineering", Butterworth-Heinemann, 2 nd
	ed., 2009.
5	Lehninger, A. L., Nelson, D. L., & Cox, M. M, "Principles of Biochemistry", W. H.
	Freeman, 5 th ed., 2013.
Web r	esources:
1.	https://new.nsf.gov/funding/opportunities/polymers
2.	https://webbook.nist.gov/chemistry/
3.	https://en.wikipedia.org/wiki/Electrochemistry
4.	https://www.sciencedirect.com/science/article/pii/S1452398124001548
5.	https://www.drugs.com/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	2	2	2	2	2	3	2	2	2	2
CO3	3	3	3	2	3	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3	3
Total	15	14	14	13	14	14	15	13	14	14	14
Average	3.0	2.8	2.8	2.6	2.8	2.8	3.0	2.6	2.8	2.8	2.8

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

										Marks	1	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHA22P	Elective Course - 3 Chemistry Practical for Physical and Biological Sciences - II	Elective	0	0	2	0	2	2	25	75	100	
	Learning Objectives											
LO1											erties.	
LO2	To determine the various el	ements in	orga	nic o	com	pou	nds.					
LO3	To identify the various orga	nic functi	onal	grou	ıps.							
LO4	To find the components and	d structure	of a	n un	knov	wn (orga	nic m	olecule.			
LO5	LO5 To solve problems related to the identification of organic molecules through a series of tests and observations.								a series			
Unit		Cont	ent							Hours		
	Systematic Analysis of Org	ganic Con	npou	ınds								
1	The analysis must be carried											
1	(a) Preliminary Tests	6										
	(b) To distinguish between a	aliphatic a	nd a	roma	itic c	com	pou	nds.				
2	To distinguish – Saturated a	nd unsatu	rated	l con	npou	ınds	S.			(6	
3	Detection of special elemen	ts (N, S, H	lalog	gens)						(5	
	Identification of Function	onal gro	up	tests	S (A	Abs	ence	of	special			
4	elements)									(6	
	Phenol, Acids (mono & di), Aldehyde and Carbohydrate											
	Identification of Functional group tests (Presence of specia											
5	elements)										6	
	Presence aromatic primary a	amine, Am	nides	(mc	ono &	& d	i).					

SCHEME OF VALUATION 24UCHA22P - CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL SCIENCES - II

(For Biochemistry and ND (FSM) – I year/II Semester)

Internal assessment : 25 Marks
External assessment : 75 Marks
Total : 100 Marks
Max. Marks : 75 Marks
Record : 10 Marks
Viva voce : 5 Marks
Organic Analysis : 60 Marks

Organic Analysis : 60 Marks

Preliminary Test : 10 Marks
Aliphatic or Aromatic : 5 Marks
Saturated or Unsaturated : 5 Marks
Tests for Special Elements : 10 Marks
Confirmation Tests : 15 Marks
Functional groups Tests : 15 Marks

CO	Course Outcomes
CO1	To gain an understanding of the use of standard flask and volumetric pipettes,
	burette.
CO2	To design, carry out, record and interpret the results of volumetric titration.
CO3	To apply their skill in the analysis of water/hardness.
CO4	To analyze the chemical constituents in allied chemical products.
CO5	To describe the measurable skills, abilities, knowledge in qualitative analysis.
Textb	ooks:
1	Venkateswaran V, Veerasamy R and Kulandaivelu A. R, "Basic Principles of Practical Chemistry", Sultan Chand & Sons, 2 nd ed., 1997.
2	Vogel A. I, Tatchell A. R, Furnis B. S, Hannaford A. J and Smith P. W. G, "Vogel's Textbook of Practical Organic Chemistry", Prentice Hall, 5th ed., 1989.
3	Donald L. Pavia, Gary M. Lampman, George S. Engel & Roger G. Gries, "Experimental Organic Chemistry", Cengage Learning, 2005.
4	Jerry Mohrig, Craig Hammond & Paul F. Snyder, "Techniques in Organic Chemistry", Macmillan Learning, 4th ed., 2014.
5	Mann F. G and Saunders B. C, "Practical Organic Chemistry", Pearson Education, 4 th ed., 1975.
Refere	nce Books:
1	Ralph J. Fessenden and Joan S. Fessenden, "Organic Chemistry Laboratory Manual", Brooks/Cole, 3 rd ed., 1982.
2	Middleton H, "Organic Qualitative Analysis", Longmans, Green and Co., 1st ed., 1951.
3	Bansal R. K, "Laboratory Manual of Organic Chemistry", New Age International Publishers, 5 th ed., 2010.
4	John Leonard, Barry Lygo and Garry Procter, "Advanced Practical Organic Chemistry", CRC Press, 3 rd ed., 2013.
5	Lisa Nichols, "Organic Chemistry Laboratory Techniques", LibreTexts, 1st ed.,
	2016.
Web r	esources:
1	https://webbook.nist.gov/chemistry/
2	https://www.organic-chemistry.org/
3	https://www.routledge.com/Advanced-Practical-Organic-Chemistry/Leonard-
	<u>Lygo-Procter/p/book/9781439860977</u>
4	https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Organic_Chemistry_L
5	ab Techniques (Nichols)
3	https://www.academia.edu/43215226/Advanced_Practical_Organic_Chemistry_Third_Edition

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	2	3	2
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	2	2	3	3	3	2	3	3	3
CO4	3	3	2	3	2	3	3	2	2	3	3
CO5	3	3	3	3	3	3	3	2	3	2	3
Total	14	15	13	14	13	15	15	10	13	14	14
Average	2.8	3.0	2.6	2.8	2.6	3.0	3.0	2.0	2.6	2.8	2.8

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

		_								Marks		
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHS21	SEC-3 Diary Chemistry	SEC	1	0	1	0	2	2	25	75	100	
	Learning Objectives											
LO1	To understand about the ph	ysical pro	perti	es of	fmil	k.						
LO2	To describe the steps involve	ved in past	teuri	zatio	n pr	oce	sses.					
LO3	To identify common adult rancidity.											
LO4	To analyze the manufacturi	ing proces	ses f	or re	cons	titu	ited 1	milk a	nd cond	lensed 1	nilk.	
LO5											ucts.	
Unit		Cont								Но	urs	
1	Composition of Milk: Milk - general composition of milk - constituents of milk - lipids, proteins, carbohydrates, vitamins and minerals - physical properties of milk - colour, odour, acidity - Factors affecting the composition of milk - Adulterants, preservatives with neutralizer - examples. Estimation of fat.								_	6		
2	Processing of Milk: Microbiology of milk - destruction of micro - organisms in milk - physico - chemical changes taking place in milk due to processing - boiling, pasteurization - types of pasteurization - Bottle, Batch and HTST (High Temperature Short Time) - Vacuum pasteurization - Ultra High Temperature Pasteurization.										6	
3	Fermentation and Preservation of Milk Products: Fermentation of milk - cultured milk - butter milk - bulgarious milk - acidophilous milk - Yogurt indigenous products - Khoa and Chhena - Ice cream -										6	
4	Dairy Products and their Packaging: Cream - gravitational and centrifugal methods of separation of cream - estimation of fat in cream. Butter - desi butter - salted butter, estimation of acidity and moisture content in butter. Ghee - rancidity - antioxidants and synergists. Packaging materials for dairy products - packaging materials, functions and design considerations.										6	
5	Specialized Milk Product flow diagram of manufactu vitaminised milk - toned m - humanized milk - condens	ure - Hom iilk - Incita	oger	nized	l mil	k -	flav	oured	milk -	6		

CO	Course Outcomes
CO1	To understand about general composition of milk - constituents and its physical
	properties.
CO2	To acquire knowledge about pasteurization of Milk and various types of pasteurization - Bottle, Batch and HTST Ultra High Temperature Pasteurization.
CO3	To learn about Cream and Butter their composition and how to estimate fat in
	cream and Ghee
CO4	To explain about Homogenized milk, flavoured milk, vitaminised milk and toned milk
CO5	To have an idea about how to make milk powder and its drying process - types of
	drying process
Textb	ooks:
1	K. Bagavathi Sundari, "Applied Chemistry", MJP Publishers, 1st ed., 2006.
2	K. S. Rangappa and K.T. Acharya, "Indian Dairy Products", Asia Publishing
	House New Delhi, 1st ed., 1974.
3	M. P. Mathur, D. Datta Roy and P. Dinakar, "Indian Council of Agricultural
	Research", 1st ed., 2008.
4	Saurav Singh, "A Textbook of Dairy Chemistry", Daya Publishing House, 1st ed.,
	2013.
5	P. L. Choudhary, "A Textbook of Dairy Chemistry", Bio-Green Book Publishers, 1st ed., 2021.
Refere	ence Books:
1	Robert Jenness and S. Patom, "Principles of Dairy Chemistry", S.Wiley, New York, 2005.
2	F. P. Wond, "Fundamentals of Dairy Chemistry", Springer, Singapore, 2006.
3	Sukumar De, "Outlines of Dairy Technology", Oxford University Press, New Delhi, 1st ed., 1980.
4	P. F. Fox and P. L. H. Mcsweeney, "Dairy Chemistry and Biochemistry", Springer,
	2 nd ed., 2016.
5	P. F. Fox, T. Uniacke-Lowe, P. L. H. McSweeney and J. A. OMahony, "Dairy
	Chemistry and Biochemistry", Springer, 2 nd ed., 2015.
Web r	esources:
1	http://repository.ottimmo.ac.id/38/1/Dairy%20Science%20and%20Technology%20
	<u>%28CRC%202005%29.pdf</u>
2	https://www.fda.gov/food/guidance-regulation-food-and-dietary-supplements/food-
	safety-modernization-act-fsma
3	https://ndri.res.in/
4	https://fil-idf.org/
5	https://dairy.unl.edu/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	2	3	3	3
CO2	2	3	3	3	2	3	3	2	3	3	3
CO3	3	3	3	2	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	2	3	3	3
Total	15	15	15	15	15	15	15	15	15	15	15
Average	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

Continuous Internal Assessment (CIA) Test

The following procedure will be followed for the award of internal marks:

CIA Exam I: Three hours duration for 75 marks (First 2 ½ Units)

CIA Exam II cum Model Exam: Three hours duration for 75 marks (Full Syllabus)

Internal Mark Distribution	Theory & Practical
CIA – I (75 Marks)	5
CIA – II (75 Marks)	5
Library Usage in Hours	5
Attendance	5
Assignment / Seminar / Observation	5
Internal Marks	25

Format to Entering in all Continue Internal Assessment (CIA) Tests and Internal Marks

Reg No.	Name	CIA -	CIA -	Marks Conve rsion	Library Usages	Atten dance	Assignment / Seminar / Observation	Total Marks	Remarks

Recommendations for Entering Library Usage:

Library usage for UG in hours	Marks to be awarded		
Minimum 10 Hours	5		

Attendance:

Attendance Earned	Category	Marks to be	
		Awarded	
91% and above	Highly Regular	5	
75% but below 90%	Regular	4	
65% but below 74%	Shortage	3	
55% but below 64%	Detained	2	
Below 54%	Redo	0	

THEORY QUESTION PAPER PATTERN END SEMESTER EXAMINATIONS FOR UG & PG DEGREE PROGRAMMES - 3 HOURS DURATION

Part A	To answer All the 10 Short Questions (Two Questions from each UNIT)	10 X 2 = 20 Marks		
Part B	To answer All the 5 questions (either or, type) (One Question from each UNIT)	5 X 5 = 25 Marks		
Part C	To answer 3 questions (out of 5 questions) (One question from each UNIT)	3 X 10 = 30 Marks		
TOTAL 75 Marks				
(Equal Weightage should be given to each unit)				