

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG Department of Chemistry

for

Postgraduate Programme Master of Science in Chemistry

From the Academic Year 2024-25

CONTENT

- 1. Preamble
- 2. Programme Outcomes
- **3. Programme Specific Outcomes**
- 4. Eligibility for Admission
- 5. Methods of Evaluation and Assessments
- 6. Skeleton & Syllabus

LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION

1. Preamble

Chemistry plays a pivotal role in all aspects of physical & biological sciences, engineering, agriculture, medicine, and allied health disciplines. The knowledge of chemistry is essential for student to make the sustainable development and face the upcoming societal change. To impart the basic knowledge of science to young women community, the Department of Chemistry started B.Sc. Programme in the year 2017 followed by M.Sc. Chemistry Programme at 2020. The department offers Chemistry program with the aim of producing chemists with high professional competence, in carrying out both basic and applied chemistry research. The department has well equipped with the latest instruments required to carry out practical experiments in the laboratories and separate library with all needed books.

The faculty members have contributed research towards publication of several research papers in national and international conferences and peer reviewed journals. The research has been carried out in frontier areas of chemistry such as environmental chemistry, electrochemistry, nano materials, coordination chemistry, synthetic organic chemistry, photochemistry, polymer chemistry, and green chemistry. As extension activities, our faculty members and students visit remote villages and various industries in training them to develop entrepreneurial skills and competencies.

In the forthcoming academic year, B.Sc. & M.Sc. Chemistry syllabus provides an integrated and unified approach towards chemical sciences covering all branches of chemistry and following Choice Based Credit System with Outcome Based Education. The curriculum is rigorous in accord to international standards and covers theory and practical courses with full emphasis to construct intellectual assets. In the final semester, the PG students are encouraged to carry out research project in reputed research institutions to enhance their exposure level and placement abilities.

2. PROGRAMME OUTCOMES (PO)

Programme	M.Sc., Chemistry
Programme Code	24PCH
Duration	2 years [PG]
	PO1: Disciplinary Knowledge: Acquire knowledge in chemistry and apply the knowledge in their day-to-day life for betterment of self and society.
	PO2: Cognitive and Problem-Solving Skills: Develop critical, analytical thinking and problem-solving skills.
	PO3: Societal and Environmental Impact: Address and develop solutions for societal and environmental needs at local, regional, and national levels.
	PO4: Research-Related Skills: Develop research skills in defining problems, formulating and testing hypotheses, analyzing, interpreting, and drawing conclusions from data.
Programme Outcomes	PO5: Employability and Entrepreneurship: Enhance employability and entrepreneurship among students, along with ethical and communication skills.
	PO6: Self-Directed Learning : Work independently and engage in lifelong learning and continuous professional development.
	PO7: Moral and Ethical Awareness/Reasoning: Understand the importance of ethical behavior in professional contexts and be able to recognize and address ethical dilemmas.
	PO8: Lifelong Learning and Adaptability: Be prepared for lifelong learning and professional development, including the ability to adapt to changes in technology, business practices, and economic conditions.

3. PROGRAMME SPECIFIC OUTCOMES (PSO)

	PSO1: Placement: Apply principles of organic, inorganic, and physical
	chemistry to design and synthesize novel compounds, contributing to
	advancements in pharmaceuticals, materials science, and sustainable
	industries.
n	

Programme Specific Outcomes:

PSO2: Research and Development: Develop expertise in Nano Science and Green Chemistry to design and implement sustainable, pollution-free technologies with high accuracy, fostering innovation in environmental protection, industrial applications, and entrepreneurship.

PSO3: Contribution to the Society: Integrate practical expertise in compound analysis to ensure precision in quality control, research, and innovation, contributing to industrial growth and societal well-being.

4. Eligibility for Admission:

Candidate for admission to the first year of M.Sc., Chemistry shall be required to have passed the UG with Chemistry.

5. Methods of Evaluation and Assessments

Methods of Evaluation								
Internal Evaluation	ı	25 Marks						
External	End Semester Examination	75 Marks						
Evaluation								
	Total	100 Marks						
	Methods of Assessment							
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions							
Understand /	MCQ, True/False, Short essays, Concept explanations, short summary or							
Comprehend (K2)	overview							
Application (K3)	Application (K3) Suggest idea/concept with examples, suggest formulae, solve problems, Observe, Explain							
Analyze (K4)	Analyze (K4) Problem-solving questions, finish a procedure in many steps, Differentiate Between various ideas, Map knowledge							
Evaluate (K5)								
Create (K6) Check knowledge in specific or offbeat situations, Discussion, Debating or Presentations								

6. Skeleton & Syllabus

	Semester - I						
Code	Course Title	I	C				
		L	T	P	S		
24PCHC11	CC – 1 Organic Reaction Mechanism-I	3	1	2	0	5	
24PCHC12	CC – 2 Structure and Bonding in Inorganic Compounds	3	1	2	0	3	
24PCHC13P	CC - 3 Organic Chemistry Practical	0	0	4	0	3	
24PCHE11	EC - 1 Nanomaterials and Nanotechnology	3	1	1	0	3	
24PCHE12	EC – 2 Molecular Spectroscopy	3	1	1	0	3	
24PCHA11	AECC – 1 Chemistry in Consumer Products	1	1	0	0	2	
24PCHR11	VE - 1 Human Rights	1	1	0	0	2	
					30	21	

Semester - II							
Code	Course Title	I	С				
		L	T	P	S		
24PCHC21	CC – 4 Organic Reactions Mechanism-II	3	1	2	0	4	
24PCHC22	CC – 5 Physical Chemistry – I	3	1	2	0	4	
24PCHC23P	CC - 6 Inorganic Chemistry Practical	0	0	4	0	3	
24PCHC24	CC – 7 Bio-Inorganic Chemistry	2	1	1	0	3	
24PCHE21 24PCHE22	EC – 3 Medicinal Chemistry EC – 4 Green Chemistry	2	1	1	0	3	
24PCHE23 24PCHE24	EC – 5 Industrial Chemistry EC – 6 Materials Science	2	1	1	0	3	
24PCHS21	SEC - 1 (NME) Cosmetic Chemistry	1	1	0	0	2	
					30	22	

L-Lecture T-Tutorial P-Practical S-Seminar C-Credit

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Naan Mudhalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

		_								Marks	5
Course Code	Course Name	Category	L	T	P	S	Credits	Hours	CIA	External	Total
24PCHC11	Core Course 1 - Organic Reaction Mechanism – I	Core	3	1	2	0	5	6	25	75	100
	Leari	ning O	bjec	tive	S						
LO1	To understand the feas reactions.	sibility	an	d th	ne 1	med	chan	ism	of var	ious o	organic
LO2	To comprehend the mechanisms.	technic	ques	in	tŀ	ne	de	termi	nation	of re	eaction
LO3	To understand the concompounds.	ncept	of	ster	eoc	her	nistı	y in	volved	in o	organic
LO4	To correlate and apprecia organic reaction mechanis		diffe	renc	es i	nvo	olve	d in t	he vario	ous typ	es of
LO5	To design feasible syncompounds.	nthetic	ro	utes	fo	r	the	prep	aration	of o	organic
Unit		Cont	tent							Ho	urs
1	Methods of Determination intermediates. The transdiagrams, Thermodynam reactions: Hammond position mechanism: non-kinetic determination of intermediates are trapping. Effect of structure equations.	sition ic an ostulate metl ediates	sta d l e. M nods	te, kine /leth - isola	Reatic ods	re coroo	on quire of d duct dete	coor emen letern an	dinate ts of nining alysis, , and	1	8
2	Aromatic and Aliphatic Electrophilic Substitution: Aromaticity: Aromaticity in benzenoid, non- benzenoid, heterocyclic compounds and annulenes. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation;								1	8	

	Halogen electrophiles: chlorination and bromination; Carbon	
	electrophiles: Friedel-Crafts alkylation, acylation and	
	arylation reactions. Aliphatic electrophilic substitution	
	Mechanisms: SE ₂ and SE _i , SE ₁ - Mechanism and evidences.	
	Aromatic and Aliphatic Nucleophilic Substitution: Aromatic	
	nucleophilic substitution: Mechanisms - SNAr, SNi and	
	Benzyne mechanisms - Evidences. Reactivity of nucleophile,	
	Effect of structure, leaving group and attacking nucleophile.	
3	Reactions: Oxygen and Sulphur - nucleophiles, Bucherer and	18
	Rosenmund reactions, Von Richter, Sommelet-Hauser and	
	Smiles rearrangements. SN ₁ and SN ₂ mechanisms and	
	evidences. Aliphatic nucleophilic substitutions at an allylic	
	carbon, aliphatic trigonal carbon and vinyl carbon.	
	Stereochemistry-I: Racemic modifications: Racemization by	
	thermal, anion, cation, reversible formation, epimerization,	
	mutarotation. D, L system, Cram's and Prelog's rules: R, S	
,	notations, proR, proS, absolute and relative configurations.	
4	Chiral shift reagents and chiral solvating reagents. Criteria for	18
	optical purity: Resolution of racemic modifications,	
	asymmetric transformations and asymmetric synthesis.	
	Stereoselective and stereospecific synthesis.	
	Stereochemistry-II: Conformation and reactivity of acyclic	
	systems, intramolecular rearrangements, neighbouring group	
	participation, chemical consequence of conformational	
	equilibrium - Curtin-Hammett Principle. Stability of five and	
5	six-membered rings: mono-, di- and poly substituted	18
	cyclohexanes, conformation and reactivity in cyclohexane	
	systems. Fused and bridged rings: bicyclic, poly cyclic systems,	
	decalins and Brett's rule. Optical rotation and ORD curves,	
	Cotton effect.	

CO1 To recall the basic principles of organic che	emistry.
reactions.	n of reaction intermediates of organic
organic compounds.	organic reactions and stereochemistry of
CO4 To apply the principles of kinetic an mechanism of reactions.	d non-kinetic methods to determine the
CO5 To design and synthesize new organic corroganic compounds.	npounds by correlating the stereochemistry
Textbooks:	
1 March J. and Smith M. "Advanced Organi ed., 2001.	c Chemistry", John-Wiley and Sons. 5 th
Gould E. S. "Mechanism and Structure i Winston Inc., 5 th ed., 1959.	n Organic Chemistry", Holt, Rinehart and
3 Kalsi P. S. "Stereochemistry of Carbon Co Publishers, 8 th ed., 2015.	mpounds", NewAge International
4 Bruice P. Y. "Organic Chemistry", Prentic	e Hall, 7 th ed., 2013.
	Organic Compounds", Oxford University
Reference Books:	
Carey F. A. and Sundberg R. J. "Advar Kluwer Academic / Plenum Publishers, 5 th	nced Organic Chemistry Part-A and B", ed., 2007.
2 Morris D. G. "Stereochemistry", RSC Tute	orial Chemistry Text 1, 2001.
3 Isaacs N. S. "Physical Organic Chemistry"	, ELBS, Longman, UK, 1987.
4 Eliel E. L. "Stereochemistry of Carbon Co	
5 Finar I. L. "Organic chemistry", Vol-1 &	2, 6 th ed., Pearson Education Asia, 2004.
Web resources:	
1 https://www.masterorganicchemistry.com/	
2 <u>https://www.khanacademy.org/science/org</u> compounds/reactions-benzene/v/electroph	
3 https://m.youtube.com/watch?v=Efh5GkV	bhEc
4 https://chem.libretexts.org/Courses/Sacran	nento_City_College/SCC%3A_Chem_420
Organic Chemistry I/Text/06%3A Stere %3A Chirality	cochemistry_at_Tetrahedral_Centers/6.01
5 https://www.masterorganicchemistry.com/	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

				70			Marks				
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHC12	Core Course 2 - Structure and Bonding in Inorganic Compounds	Core	3	1	2	0	3	6	25	75	100
	Lear	ning O	bjec	tives							
LO1	To understand the Structural p	ropertie	es of	maiı	ı gro	oup	com	pound	ds and c	lusters.	
LO2	To gain fundamental knowledg	ge on st	ructi	ıral a	ispe	cts	of io	nic cr	ystals.		
LO3	To familiarize various diffract	ion and	mic	rosc	opic	tec	hniq	ues.			
LO4	To understand the effect of po	int defe	cts a	nd li	ne d	efe	cts in	n ioni	c crystal	s.	
LO5	To evaluate the structural aspe	ects of s	solid	S.							
Unit		Cont	ent							Ho	urs
1	Molecular Geometry: Structure of main group compounds and clusters: VB theory – Effect of lone pair and electronegativity of atoms (Bent's rule) on the geometry of the molecules; Structure of silicates – applications of Pauling's rule of electrovalence – isomorphous replacements in silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three-dimensional silicates.						1	8			
2	Boron Compounds and Clusters: Chemistry of boron – Preparation, properties and structure of boranes, higher boranes - types of boranes closo, nido, arachno. (B ₂ H ₆ , B ₄ H ₁₀ , B ₅ H ₁₁ , B ₆ H ₁₀ , B ₁₀ H ₁₄) linear and cyclic borazines (B ₃ N ₃ H ₆), boron nitrides (BN) _x and borates ions — STYX numbers, Wade's rules. Metal clusters: Chemistry of low molecularity metal clusters only – Structure of Re ₂ C ₁₈ ; multiple metal – metal bonds.							1	8		

	Solid State Chemistry: Structural features of the crystal systems:					
	Rock salt, Zinc blende & Wurtzite, fluorite and anti-fluorite, rutile					
3	and anatase, cadmium iodide and nickel arsenide; Spinels - normal					
	and inverse types and perovskite structures.					
	Techniques in Solid State Chemistry: X-ray diffraction technique:					
	Bragg's law, Powder diffraction method - Principle and					
	Instrumentation; Electron microscopy – difference between					
4	optical and electron microscopy, theory, principle,	18				
	instrumentation, sampling methods and applications of SEM and					
	TEM.					
	Band Theory and Defects in Solids: Band theory – features and its					
	application of conductors, insulators and semiconductors, Intrinsic and					
_	extrinsic semiconductors; Defects in crystals – point defects (Schottky,					
5	Frenkel, metal excess and metal deficient) and their effect on the	18				
	electrical and optical property, laser and phosphors; Linear defects					
	and its effects due to dislocations.					

СО	Course Outcomes
CO1	Predict the geometry of main group compounds and clusters.
CO2	Explain about the packing of ions in crystals and apply the radius ratio rule to predict the
	coordination number of cations.
CO3	Understand the various types of ionic crystal systems and analyze their structural
	features.
CO4	Explain the crystal growth methods.
CO5	To understand the principles of diffraction techniques and microscopic techniques.
Text	books:
1	West A. R, "Solid state Chemistry and its Applications", 2 nd ed., (Students Edition), John Wiley & Sons Ltd., 2014.
2	Bhagi A. K. and Chatwal G. R, "A Textbook of Inorganic Polymers", Himalaya Publishing House, 2001.
3	Smart L. and Moore E, "Solid State Chemistry – An Introduction", 4th ed., CRC
	Press, 2012.
4	Purcell K. F. and Kotz J. C, "Inorganic Chemistry", W.B. Saunders Company, Philadelphia, 1977.
5	Huheey J. E, Keiter E. A. and Keiter R. L, "Inorganic Chemistry", 4 th ed., Harper and Row, NewYork, 1983.
Refe	rence Books:
1	Douglas D. E, McDaniel D. H. and Alexander J. J, "Concepts and Models in Inorganic Chemistry", 3 rd ed., John Wiley, 1994.
2	Tilley R. J. D, "Understanding Solids - The Science of Materials", 2 nd ed., Wiley Publication, 2013.
3	Rao C. N. R. and Gopalakrishnan J, "New Directions in Solid StateChemistry", 2 nd
	ed., Cambridge University Press, 1986.
4	Moeller T, "Inorganic Chemistry: A Modern Introduction", John Wiley & Sons Ltd., New York, 1982.
5	Shriver D. F, Atkins P. W. and Langford C. H, "Inorganic Chemistry", 3 rd ed., Oxford
Wah	University Press, London, 2001. resources:
1	https://webbook.nist.gov/chemistry/
2	https://ocw.mit.edu/courses/3-091sc-introduction-to-solid-state-chemistry-fall-2010/
3	https://nptel.ac.in/courses/104104101
4	https://foundry.lbl.gov/about/facilities/the-national-center-for-electron-microscopy-ncem/
5	https://ocw.mit.edu/courses/3-185-transport-phenomena-in-materials-engineering-fall-2003/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

		>					70	Hours		Marks						
Course Code	Course Name	Category	L	Т	P	S	Credits		CIA	External	Total					
24PCHC13P	Core Course 3 - Organic Chemistry Practical	Core	0	0	4	0	3	4	25	75	100					
	Learning Objectives															
LO1	To understand the concept organic compounds.	of sepa	ratio	on, q	ualit	ativ	e ar	nalysis	s and pr	eparatio	on of					
LO2	To develop analytical skill i binary and ternary organic n			ing o	of cl	nem	ical	reage	nts for s	separatio	on of					
LO3	To analyze the separated organic components systematically and derivative them suitably.															
LO4	To construct suitable experimental setup for the organic preparations involving two stages.															
LO5	To experiment different pu processing.	ırificati	on a	nd o	dryir	ng 1	techr	niques	for the	e comp	ound					
Unit		Cont	tent							Hours						
1	Separation and analysis: a) Two component mixtur	es. Tem	nary	com	pone	ent ((Den	no)		1:	2					
	Estimations: a) Estimation of Phenol (B	romina	tion)													
2	b) Estimation of Aniline (E		ĺ							1:	2					
	Estimations:															
	a) Estimation of Glucose (I	Redox)														
3	b) Estimation of Glycine (A	Acidime	etry)							12						
	c) Estimation of Amino gro	oup (Ac	etyla	ition)											

	Preparation of Organic Compounds (Single stage):	
	a) Methyl-m-nitro benzoate from ethyl benzoate (nitration)	
	b) Benzo phenone oxime from benzophenone (addition)	
4	c) o-Chlorobenzoic acid from anthranilic acid (Sand mayer reaction)	12
	d) p-Benzoquinone from hydroquinone (oxidation)	
	e) Phenylazo-2-naphthol from aniline (diazotization)	
	Preparation of Organic Compounds (Two stages):	
	a) p-Bromoacetanilide from aniline	
	b) p-Nitroaniline from acetanilide	
5	c) Acetyl salicyclic acid from methyl salicylate	12
	d) Benzilic acid from benzoin	
	e) m-Nitrobenzoic acid from methyl benzoate	

SCHEME OF VALUATION 24PCHC13P - ORGANIC CHEMISTRY PRACTICAL

Internal assessment : 25 Marks

External assessment : 75 Marks

Total : 100 Marks

Max. Marks : 75 Marks

Estimation : 30 Marks

Preparation of Organic Compounds: 30 Marks

Record : 10 Marks

Viva voce : 5 Marks

CO	Course Outcomes
CO1	To recall the basic principles of organic separation, qualitative analysis ar preparation.
CO2	To explain the method of separation and analysis of separated organic mixtur and convert them as derivatives by suitable preparation method.
CO3	To determine the characteristics of separation of organic compounds by vario chemical reactions.
CO4	To develop strategies to separate, analyze and prepare organic compounds.
CO5	To formulate a method of separation, analysis of organic mixtures and designitude procedure for organic preparations.
Textb	ooks:
1	Mohan, "Organic Analytical Chemistry: Theory and Practice", Narosa, 2003.
2	Ahluwalia V. K, Bhagat ., and Agarwal R, "Laboratory Techniques in Organic Chemistry", I. K. International, 2005.
3	Gnanaprakasam N. S. and Ramamurthy G, "Organic Chemistry Lab Manual", S. Printers, 1987.
4	Vogel A. I, Tatchell A. R, Furniss B. S, Hannaford A. J. and Smith P. W. G, "Voge Textbook of Practical Organic Chemistry", 5 th ed., Prentice Hall, 1989.
5	Jonathan Clayden, Nick Greeves and Stuart Warren, "Organic Practical: Techniquand Transformations", Oxford University Press, 2014.
Refer	ence Books:
1	Tatchell A. R, Furniss B. S, Hannaford A. J, Smith P. W. G. and Tatchell A.
	"Vogel's Textbook of Practical Organic Chemistry", Pearson Education Ltd., 2009.
2	Hayden-McNeil, "Organic Chemistry Laboratory Notebook", Hayden-McN Publishing, 2010.
3	John C. Gilbert and Stephen F. Martin, "Experimental Organic Chemistry:
	Miniscale & Microscale Approach", Cengage Learning, 2015.
4	Jerry R. Mohrig, David Alberg, Gretchen Hofmeister, and Paul F. Scha
	"Techniques in Organic Chemistry", W. H. Freeman, 2010.
5	James W. Zubrick, "Organic Chemistry: A Laboratory Manual", Wiley, 2001.
Web	resources:
1	https://www.ncbi.nlm.nih.gov/books/NBK547700/
2	https://webbook.nist.gov/chemistry/
3	https://www.nist.gov/publications/certification-standard-reference-materialr-917d-dglucose-dextrose
4	https://chem.libretexts.org/Courses/Sonoma State University/SSU Chem 335B/Merial for Exam 3/Chapter 18%3A Electrophilic Aromatic Substitution/18.4 Nitron and Sulfonation
	LAND AND AND AND AND AND AND AND AND AND

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

		>								Marks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHE11	Elective Course 1 - Nanomaterials and Nanotechnology	Elective	3	1	1	0	3	5	25	75	100
	Lo	earning O	bjec	tives							
LO1	To learn about the synthe	esis and che	emic	al pr	oces	ss o	f nar	oscie	nce.		
LO2	To understand the variou	To understand the various types of nano materials and their properties.									
LO3	To analyse the various application of nanotechnology in remediation of pollution.										
LO4	To apply principles and o TEM.	To apply principles and characterization of nanoscience by XRD, SEM, EDAX, TEM.									
LO5	To understand the applications of synthetically important nano materials.										
Unit	Content									Ho	urs
	Synthesis of Nanomate	rials by C	hem	ical	Pro	ces	ses:	Introd	luction		
	to nanomaterials and nar		_				-	-			
	co-precipitation, polyol -										
1	synthesis; Microemuls	•	nthes		_			therm		1	5
	Solvothermal synthesis in Sonochemical assisted										
	Quantum dot (QDs) synt	•	- '	COIC	-SIIC	/11	Hanc	isti uc	iuic –		
	Structural Properties o		teria	ıls: E	Bond	ling	and	struc	ture of		
	the nano materials, pred					_					
2	crystal structure. Metal	lic nano ₁	parti	cles,	sur	fac	es o	f ma	terials,	1	5
_	nanoparticle Size. Techniques to study the following properties of								1	15	
	nanomaterials - Thermal,	mechanic	al an	d ele	ectri	cal	prop	erties			
	Nanotechnology - I	Environme	ental	l a	nd	Н	ealt	h E	ffects:		
3	Environmental pollutant	l toxic	1	5							
	wastes – application of 1	nanotechno	ology	in 1	reme	dia	tion	of po	llution		

	- The challenge to occupational health and hygiene - toxicity of						
	nanoparticles - effects of inhaled nanosized particles - skin						
	exposure to nanoparticles – impact of CNTs on respiratory systems						
	- hazards and risks of exposure to nanoparticles - monitoring						
	nanoparticles in workplace and sensors.						
	Nanostructured Materials Characterization Techniques: X-ray						
	diffraction (XRD) – SEM – EDAX – TEM – Elemental mapping –						
4	FTIR – UV Visible spectrophotometer – Laser Raman Spectroscopy						
	- Thermo gravimetric Analysis (TGA), Differential Scanning	15					
	Calorimeter (DSC) – Differential Thermal Analyzer (DTA) – X-ray						
	Photoelectron Spectroscopy (XPS).						
	Nanocomposite Materials and Nanolubricants						
	Nanocomposites - Types of nanocomposites - Organic and						
	Inorganic hybrid nanocomposites -Polymer matrix composites,						
	metal matrix composites, ceramic matrix composites; Applications						
5	of composites in drug delivery, automobiles and aerospace	15					
	industries.						
	Nanolubricants - Classification, properties and mechanism of						
	different types of nanolubricants.						

СО	Course Outcomes						
CO1	To explain methods of fabricating nanostructures.						
CO2	To relate the unique properties of nanomaterials to reduce dimensionality of the material.						
CO3	To understand the health and safety related to nanomaterials.						
CO4	To familiar with analytical techniques used to characterize nanomaterials, such as SEM, TEM, XRD), and spectroscopic methods (UV-Vis, FTIR, Raman).						
CO5	To discuss applications of nanocomposites and nanolubricants						
	oooks:						
1	Sanjay Mathur and Mrityunjay Singh, "Nanostructured Materials and						
	Nanotechnology", 2 nd ed., Willey, 2008.						
2	Carl C. Koch, "Nanostructured Materials", Noyes Publications, New York, 2002.						
3	Nazri G. A. and Pistoia G, "Science and Technology", Kulwer Acdemic Publishers,						
	Dordrecht, Netherlands, 2004.						
4	Brown P. and Stevens K, "Nanofibers and Nanotechnology in Textiles", Woodhead						
	publication London, 2006.						
5	Altmann J. and Routledge, "Military Nanotechnology: Potential Applications and						
	Preventive Arms Control", Taylor and Francis Group, 2006.						
Refe	rence Books:						
1	Chattopadhyay K, "An Introduction to Nanoscience and Nanotechnology", Prentice Hall Learning Pvt. Ltd, 2009.						
2	Shi D, Aktas B, Pust L. and Mikailov F, "Nanostructured Magnetic Materials and their Applications", Springer, 2002.						
3	Victor E. Borisenko, "A Handbook on Nanoscience and Nanotechnology", Wiley VCH, 2008.						
4	Pradeep T, "A Textbook of Nanoscience and Nanotechnology", McGraw Hill Education, 2017.						
5	Hari Singh Nalwa, "Encyclopedia of Nanoscience and Nanotechnology", American Scientific Publishers, 2004.						
Web	resources:						
1	https://www.nano.gov/						
2	https://ocw.mit.edu/courses/3-091sc-introduction-to-solid-state-chemistry-fall-2010/						
3	https://pubmed.ncbi.nlm.nih.gov/						
4	https://www.thermofisher.com/us/en/home/materials-science/learning-center/scanning-						
	electron-microscopy.html						
5	https://www.asminternational.org/asm-handbook-volume-21-composites/results/-						
	/journal_content/56/06781G/PUBLICATION/						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

		>					740			Marks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHE12	Elective Course – 2 Molecular Spectroscopy	Elective	3	1	1	0	3	5	25	75	100
	Learning Objectives										
LO1	To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.										
LO2	Understand the princip	oles of vibra	tion	al sp	ectr	osc	ору.				
LO3	To highlight the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions.										
LO4	Gain knowledge of the NMR, fine structure of ESR absorption, Hyperfine structure, double resonance in ESR and techniques of ESR spectroscopy.										
LO5	To carry out the structural elucidation of molecules using different spectral techniques.										
Unit		Cont	ent							Hours	
1	ellipsoids, quantum theory of the Raman effect, Stokes and anti- Stokes lines. Vibrational Raman spectra, Raman activity of							5			
2	anharmonic oscillators - diagram. Diatomic vibra diatomic molecules, P Oppenheimer approxima	Wibrations, rule of mutual exclusion. Wibrational Spectroscopy: Vibrations of molecules, harmonic and anharmonic oscillators - vibrational energy expression, energy level diagram. Diatomic vibrating rotor, vibrational-rotational spectra of diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer approximation. Vibrations of polyatomic molecules — symmetry properties, overtone and combination frequencies.									

3	Electronic Spectroscopy: Electronic spectroscopy of diatomic molecules, Frank-Condon principle, dissociation and predissociation spectra. $\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$ transitions and their selection rules. Photoelectron Spectroscopy: Basic principles, photoelectron spectra of simple molecules. Lasers: Laser action, population inversion properties of laser radiation, examples of simple laser	15
4	NMR and ESR Spectroscopy: Spin-spin interactions: Homonuclear coupling interactions - AX, AX ₂ , AB types. ¹³ C NMR and structural correlations, Satellites. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; The g value and the hyperfine coupling parameter. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling.	15
5	Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation. EPR spectra of anisotropic systems - anisotropy in g value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Practice: Structural elucidation of simple organic molecules by UV-Visible, FT-IR, NMR, and Mass spectral data.	15

СО	Course Outcomes
CO1	To understand the importance of rotational and Raman spectroscopy.
CO2	To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.
CO3	To evaluate different electronic spectra of simple molecules using electronic spectroscopy.
CO4	To perform the most commonly used NMR and ESR spectroscopy to interpret the chemical compounds and their characteristics.
CO5	To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass, EPR and Mossbauer Spectroscopy.
Textbo	ooks:
1	Banwell C. N. and McCash E. M, "Fundamentals of Molecular Spectroscopy", 4th Ed., Tata
	McGraw Hill, New Delhi, 2000.
2	Silverstein R. M. and Webster F. X, "Spectroscopic Identification of Organic Compounds",
	6 th ed., John Wiley & Sons, New York, 2003.
3	Kemp W, "Applications of Spectroscopy", English Language Book Society, 1987.
4	Williams D. H. and Fleming I, "Spectroscopic Methods in Organic Chemistry", 4th ed., Tata
	McGraw-Hill Publishing Company, New Delhi, 1988.
5	Straughan B. P. and Walker S, "Spectroscopy", Vol.3, Halstead Press, Sydney, 1978.
Refere	nce Books:
1	Barrow G. M, "Introduction to Molecular Spectroscopy", McGraw Hill, NewYork, 1964.
2	Sharma Y. R, "Elementary Organic Spectroscopy–Principles and Chemical
	Applications, S.Chand, New Delhi, 1992.
3	Rahman A, "Nuclear Magnetic Resonance-Basic Principles", Springer-Verlag, New York,
	1986.
4	Nakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds -
	PartB", 5th ed., John Wiley & Sons Inc., New York, 1997.
5	Weil J. A, Bolton J. R. and Wertz J. E, "Electron Paramagnetic Resonance", Wiley
	Interscience, 1994.
Web r	esources:
1	https://www.nist.gov/spectroscopy
2	https://cccbdb.nist.gov/
3	https://webbook.nist.gov/chemistry/
4	https://nationalmaglab.org/user-facilities/nmr-mri-s/
5	https://acsanalytical.org/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

		x					S			Marks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHA11	Ability Enhancement Compulsory Course 1 - Chemistry in Consumer Products	AEC	1	1	0	0	2	2	25	75	100
	Learning Objectives										
LO1	T. 1										
LO2	To explore the formulation a	ınd dev	elop	ment	t of o	dete	ergen	t prod	lucts.		
LO3	To gain knowledge of community waxes, colors, preservatives				als ı	use	d in	cosme	etics, in	cluding	oils,
LO4	To understand the cosmetic formulation principles, including the selection of active ingredients, excipients, and additives to achieve desired skincare effects.										
LO5	To identify common toxic products.	chemic	al in	gred	ients	s fc	ound	in sk	incare a	nd toil	etries
Unit		Cont	ent							Ho	urs
1	Soaps: Types of Soaps, man soaps – different ingredient herbal soaps and antibacteria	its used	1 - :		-					(5
2	Detergents: Types of detergents - anionic detergents and cationic detergents - manufactures and applications; detergent performance; Green detergents - sustainable alternatives.										6
3	Cosmetics: Cosmetics - Introduction about raw materials in cosmetics - (oil, waxes, color, preservative and fragrance). Shampoo - different kinds shampoo – anti-dandruff, anti-lice, herbal and baby shampoo, hair dye – manufacture of conditioners (raw materials and uses only).										6
4	Skin Care Products: Preparation of cosmetics - skin and hair - skin lighteners, sun screen lotions - skin toners anti wrinkling creams. Lip care - lip gloss - lipsticks - lip liners, moisturizers - crack creams, Sun cream and UV rays protecting cream.										
5	Toxicity: Toxic chemical in products – carcinogens; p releasing agents, fragrances sulfate, and colorants - coal	gredien reserva - phtha	ts – tives lates	skind - p	care arab	pro ens	s, fo	rmald	ehyde-	(6

CO	Course Outcomes
CO1	To learn about various soap making techniques.
CO2	To understand the structure-property relationships of surfactants in detergents.
CO3	To apply the knowledge to develop cosmetic products with desired properties.
CO4	To understand the cosmetic formulation principles, including the selection of active
	ingredients, excipients, and additives to achieve desired skincare effects for both skin
	and hair products.
CO5	To explore the adverse health effects associated with harmful chemicals found in skincare
	and toiletries products.
Textbo	
1	David A. Katz and Richard A. Lawton, "Chemistry of Household Products", Thomson
	Learning, 2001.
2	Richard J. Farn, "Chemistry and Technology of Surfactants", Blackwell Publishing, 2006.
3	NIIR Board, "Modern Technology of Cosmetics", Asia Pacific Business Press Inc., New
	Delhi, 2004.
4	Ernest W. Flick, "Cosmetic and Toiletry Formulations", Noyes Publications, 2001.
5	D. F. Williams and W. H. Schmitt, "Chemistry and Technology of Cosmetics and
	Toiletries", Blackie Academic & Professional, 1992.
Refere	nce Books:
1	André O. Barel, Marc Paye, and Howard I. Maibach, "Handbook of Cosmetic Science and
	Technology", CRC Press, 2001.
2	Charles S. Sell, "Chemistry of Fragrances: From Perfumer to Consumer", Royal Society of
	Chemistry, 2006.
3	Michael Showell, "Handbook of Detergents, Part F: Production", CRC Press, 2009.
4	Romanowski P. and Schueller R, "Beginning Cosmetic Chemistry: Practical Knowledge for
	the Cosmetic Industry", Allured Books, 3 rd ed., 2009.
5	John Toedt, Darrell Koza, and Kathleen Van Cleef-Toedt, "Chemical Composition of
	Everyday Products", Greenwood, 2005.
Web r	esources:
1	https://www.gutenberg.org/
2	https://openlibrary.org/
3	https://www.cleaninginstitute.org/
4	https://www.aad.org/
5	https://www.ewg.org/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	3	3	3	3	3	3
CO2	2	3	3	3	3	2	3	3	3	3	3
CO3	3	3	2	3	3	3	3	2	3	3	3
CO4	2	3	3	3	3	2	3	3	3	3	3
CO5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	15	15	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

1ST YEAR: SECOND SEMESTER

Course Code Course Name Core 1	External 27	Lotal Total
Learning Objectives LO1 To understand the concept of aromaticity in benzenoid, non heterocyclic and annulene compounds.	75	100
LO1 To understand the concept of aromaticity in benzenoid, not heterocyclic and annulene compounds.		
evidences. LO3 To understand the applications of synthetically important reagents. LO4 To correlate the reactivity between aliphatic and aromatic compounds. LO5 To design synthetic routes for synthetically used organic reactions. Unit Content Elimination and Free Radical Reactions: Mechanisms: E2, E1, E1cB mechanisms. Syn- and anti-eliminations. Orientation of the dot bond: Hoffmann and Saytzeff rules. Reactivity: Effect of substrattacking bases, leaving group and medium. Long lived and short-li radicals – Production of radicals by thermal and photochemical reaction. Detection and stability of radicals, characteristics of free rad reactions - Reactions of radicals: Polymerization, addit halogenations, aromatic substitutions, rearrangements. Reactiv Reactivity on aliphatic, aromatic substrates, reactivity in the attack radical, effect of solvent. Oxidation and Reduction Reactions: Mechanism of oxida reactions: Dehydrogenation by quinones, selenium dioxides, ferricyan permanganate, osmium tetroxide, oxidation of saturated hydrocarbalcohols, halides and amines. Reactions involving cleavage of C-C be - oxidative decarboxylation, allylic oxidation, oxidation by chrom trioxide-pyridine, DMSO-Oxalyl chloride (Swern oxidation) and Co Kim oxidation, dimethyl sulphoxide- dicyclohexyl carbodiimide (DM	and uble rate, ived ons, lical cion, vity: king tion nide, ons, onds cium orey-	

3	Rearrangements: Rearrangements to electron deficient carbon: Pinacol pinacolone and semi-pinacolone rearrangements - applications and stereochemistry, Wagner-Meerwein, Demjanov, Dienone-phenol, Baker-Venkataraman, Benzilic acid and Wolff rearrangements. Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin							
	rearrangements. Rearrangements to electron rich atom: Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Intramolecular rearrangements – Claisen, Cope, Oxy-Cope, Benzidine rearrangements.							
	Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to							
4	carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, Wittig reaction, Prins reaction. Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates – Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.	18						
	Reagents and Modern Synthetic Reactions: Lithium diisopropylamine							
5	(LDA), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Heck reaction, Negishi reaction, Baylis-Hillman reaction.	18						

CO	Course Outcomes
CO1	To recall the basic principles of aromaticity of organic and heterocyclic compounds.
CO2	To understand the mechanism of various types of organic reactions.
CO3	To predict the suitable reagents for the conversion of selective organic compounds.
CO4	To correlate the principles of substitution, elimination, and addition reactions.
CO5	To design new routes to synthesis organic compounds.
Textb	pooks:
1.	J. March and M. Smith, " <i>Advanced Organic Chemistry</i> ", 5 th ed., John-Wiley and Sons. 2001.
2	E. S. Gould, " <i>Mechanism and Structure in Organic Chemistry</i> ", 1 st ed., Holt, Rinehart and Winston Inc., 1959.
2	P. S. Kalsi, "Stereochemistry of carbon compounds", 8th ed., New Age International Publishers, 2015.
4.	P. Y. Bruice, "Organic Chemistry", 7th ed., Prentice Hall, 2013.
5	R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee, "Organic Chemistry", 7th ed., Pearson Education, 2010.
Refe	rence Books:
1	S. H. Pine, "Organic Chemistry", 5 th ed, McGraw Hill International Edition, 1987.
2	L. F. Fieser and M. Fieser, "Organic Chemistry", 4 th ed., Asia Publishing House, Bombay, 2000.
3	O. P. Agarwal, "Organic Chemistry: Reactions & Reagents", 53 rd ed., Krishna Prakashan Media (P) Ltd., 2015.
4.	T. L. Gilchrist, "Heterocyclic Chemistry", 2 nd ed., Longman Press, 1989.
5.	J. A. Joule and K. Mills, "Heterocyclic Chemistry", 4th ed., John-Wiley, 2010.
Web r	'esources:
1.	https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic
2.	https://www.organic-chemistry.org/
3.	https://www.masterorganicchemistry.com/
4.	https://onlinecourses.nptel.ac.in/
5.	https://www.masterorganicchemistry.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	2	3	3
CO 3	3	3	2	3	3	3	3	2	3	3	2
CO 4	3	2	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	3	3	2	3	3	3
Total	13	14	13	15	14	12	15	13	13	15	14
Average	2.6	2.8	2.6	3.0	2.8	2.6	3.0	2.6	2.6	3.0	2.8

3-Strong, 2-Medium, 1-Low

1ST YEAR: SECOND SEMESTER

										Ma	ırks
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHC22	Physical Chemistry - I	Core	3	1	2	0	4	6	25	75	100
	Learning Objectives										
LO1	To recall the fundamentals of thermodynamics and the composition of part quantities.										
LO2	To understand the classical				•						
LO3	To compare the significationstein.										
LO4	thermodynamic parameters	S.		reac			tes	for	the		luation of
LO5	To study t	the mec	hani	sm a	nd k	ıneti	cs of	reac	ctions.		
Unit		Co	nte	nt							Hours
1	Classical Thermodynamics: Partial molar properties - Chemical potential, Gibb's- Duhem equation-binary and ternary systems. Determination of partial molar quantities. Thermodynamics of real gases - Fugacity- determination of fugacity by graphical and equation of state methods. Thermodynamics of ideal and non-ideal binary mixtures, Duhem - Margulus equation applications of ideal and non-ideal mixtures.									- e 18	
	Activity and activity coeffic						1	1			1
2	Statistical thermodynamics: Concepts of thermodynamic and mathematical probabilities. Assemblies, ensembles, canonical particles. Maxwell - Boltzmann, Fermi Dirac & Bose-Einstein Statistics-comparison and applications. Partition functions - evaluation of translational, vibrational and rotational partition functions for monoatomic ideal gases. Statistical approach to Thermodynamic properties: pressure, internal energy, entropy, enthalpy, Gibb's function, Helmholtz function, residual entropy, equilibrium constants and equipartition principle.										f 18
3	Irreversible Thermodynan energy, entropy production flow, force and flux conceronsager reciprocal relation effects-Applications of its systems.	in open pts. On aships.	n sy sage Elec	stem r the	s by eory- tinet	heavalic	it, m dity nd th	atter and nerm	and verifi	currer cation nanica	18 18

	Kinetics of Reactions: Theories of reactions, collision theory of	
	reaction rates, Effect of temperature on reaction rates, Unimolecular	
	reactions-Lindeman reactions, Transition state theoryapplications of	
4	ARRT to reactions between atoms and molecules - primary salt effect	18
	and secondary salt effect, homogeneous catalysis- acid- base catalysis-	
	mechanism of acid base catalyzed reactions- Bronsted catalysis law,	
	enzyme catalysis-Michelis-Menton catalysis.	
	Kinetics of complex and fast reactions: Kinetics of complex reactions,	
	reversible reactions, consecutive reactions, parallel reactions, chain	
	reactions. Chain reactions-chain length, kinetics of H ₂ - Cl ₂ & H ₂ - Br ₂	
5	reactions (Thermal and Photochemical reactions). Study of fast reactions-	18
	relaxation methods- temperature and pressure jump methods electric and	
	magnetic field jump methods - stopped flow flash photolysis methods	
	and pulse radiolysis.	

CO	Course Outcomes
CO1	To explain the classical and statistical concepts of thermodynamics.
CO2	To compare and correlate the thermodynamic concepts to study the kinetics of chemical
	reactions.
CO3	To discuss the various thermodynamic and kinetic determination.
CO4	To evaluate the thermodynamic methods for real gases ad mixtures.
CO5	To compare and correlate the thermodynamic concepts to study the kinetics of chemical
	reactions.
Textboo	ks:
1.	J. Rajaram and J. C. Kuriacose, "Thermodynamics for Students of Chemistry", 2nd
	ed., S.L.N.Chand and Co., Jalandhar, 1986.
2.	I. M. Klotz and R. M. Rosenberg, "Chemical thermodynamics", 6th ed., W.A.
	BenjaminPublishers, California, 1972.
3.	M. C. Gupta, "Statistical Thermodynamics", 1st ed., New Age International Pvt. Ltd., New
	Delhi, 1995.
4.	K. J. Laidler, "Chemical Kinetics", 3rd ed., Pearson, Reprint - 2013.
5.	J. Rajaram and J. C. Kuriokose, "Kinetics and Mechanisms of chemical transformation",
	1 st ed., Macmillan India Ltd, Reprint - 2011.
Referen	ce Books:
1.	D. A. Mcqurrie And J. D. Simon, "Physical Chemistry - A Molecular Approach", 2 nd ed.,
	Viva Books Pvt. Ltd., New Delhi, 1999.
2.	R. P. Rastogi and R. R. Misra, "Classical Thermodynamics", 3rd ed., Vikas Publishing,
	Pvt. Ltd., New Delhi, 1990.
3.	S. H. Maron and J. B. Lando, "Fundamentals of Physical Chemistry", 5th ed., Macmillan
	Publishers, New York, 1974
4.	L. B. Ytsiimiriski, "Kinetic Methods of Analysis", 2 nd ed., Pergamom Press, 1996.
5.	Gurdeep Raj, "Phase rule", 1st ed., Goel Publishing House, 2011.
Web res	sources:
1.	https://nptel.ac.in/courses/104/103/104103112/
2.	https://nptel.ac.in/courses/112103016
3.	https://onlinecourses.nptel.ac.in/noc24_ch34/preview
4.	https://www.youtube.com/watch?v=zVEKh_mCGqw
5.	https://nptel.ac.in/courses/112103016

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	3	2	3
CO 3	3	3	2	3	3	3	3	2	3	2	3
CO 4	2	3	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	14	13	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	2.8	2.6	3.0

3 – Strong, 2 – Medium, 1 - Low

										Mark	S		
Course Code	Course Name	Category	Т	P	S	Credits	Hours	CIA	External	Total			
24PCHC23P	Inorganic Chemistry Practical	Core	0	0	4	0	3	4	25	75	100		
		earning	g Ob	ject	ives		ı		I				
LO1	To understand and enhance the	visual	obse	ervat	ion a	as ar	ana	lytic	al tool	for the	;		
	quantitative estimation of ions												
LO2	To recall the principle and theory in preparing standard solutions.												
LO3	To train the students for improv	nount o	fion										
	accurately present in the soluti												
LO4	To estimate metal ions, present	To estimate metal ions, present in the given solution accurately without											
	instruments.												
LO5	To determine the amount of ior	ıs, prese	ent ii	n a b	inar	y mi	xtur	e acc	curately	•			
Unit		Conter	ıt							Н	ours		
	Analysis of Mixture of Ca	f four											
	cations containing two common cations and two rare cations. Cations												
	to be tested.												
	Group-I : W and Pb												
1, 2 & 3	Group-II : Mo, Cu, Bi and Co	d									36		
	Group-III : Ce, Zr, V, Cr, Fe	and Ti											
	Group-IV : Zn, Ni, Co and Mr	ı											
	Group-V : Ca, Ba and Sr												
	Group-VI: Li and Mg												
	Quantitative Analysis of the f	ollowin	g M	ixtu	res ((by							
	Volumetric/Gravimetric meth	od)											
4 & 5	1. Estimation of Zinc and Mag		24										
. 55 6	2. Estimation of Copper and N	lickel in	a m	nixtu	re					27			
	3. Determination of Nickel in	the pres	sence	e of l	Iron								
	4. Determination of Magnesius	m in the	e pre	senc	e of	Tron	1						

SCHEME OF VALUATION 24PCHC23P - INORGANIC CHEMISTRY PRACTICAL

Internal assessment : 25 Marks

External assessment : 75 Marks

Total : 100 Marks

Max. Marks : 75 Marks

Analysis of Mixture of Cations : 40 Marks

Estimation : 20 Marks

Record : 10 Marks

Viva voce : 5 Marks

CO1 To identify the anions and cations present in a mixture of salts. CO2 To apply the principles of semi micro qualitative analysis to categorize basic radicals. CO3 To acquire the qualitative analytical skills by selecting suitable confirmation.	matory tests and
basic radicals. CO3 To acquire the qualitative analytical skills by selecting suitable confirmation.	matory tests and
CO3 To acquire the qualitative analytical skills by selecting suitable confirmation.	•
	•
and tasts	nd cations.
spot tests.	nd cations.
CO4 To choose the appropriate chemical reagents for the detection of anions are	
CO5 To synthesize coordination compounds in good quality.	
Textbooks:	
1 A. JeyaRajendran, "Microanalytical Techniques in Chemistry: Inorg	ganic Qualitative
Analysis", 1st ed., United Global Publishers, 2021.	
2 V. V. Ramanujam, "Inorganic Semimicro Qualitative Analysis", 3rd ed	l., The National
Publishing Company, Chennai, 1974.	
3 G. Svehla, "Vogel's Text book of Inorganic Qualitative Analysis", 4th ed., F	ELBS, London.
4 G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, "Vogel's Textboo	k of Quantitative
Inorganic Analysis", 6th ed., Wiley, 2002.	
5 Gary D. Christian, "Analytical Chemistry: Principles and Techniques"	, 9th ed., Wiley,
2021.	
Reference Books:	
1 G. Pass, and H. Sutcliffe, "Practical Inorganic Chemistry", 1st ed., Chapm	nan Hall, 1965.
W. G. Palmer, "Experimental Inorganic Chemistry", 1st ed., Cambridge	University Press,
1954.	
3 A. I. Vogel, "Qualitative Inorganic Analysis", 3 rd ed., Longmans, 1961.	
4 F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry",	6 th ed., Wiley-
Interscience, 1988.	
5 Gary L. Miessler and Donald A. Tarr, "Inorganic Chemistry", 5th ed.,	Pearson Prentice
Hall, 2010.	
Web resources:	
1 https://www.masterorganicchemistry.com/	
2 https://nptel.ac.in/	
3 https://ocw.mit.edu/	
4 https://www.google.com/url?sa=E&source=gmail&q=https://www.jstor.or	g/
5 https://www.google.com/url?sa=E&source=gmail&q=https://www.science	edirect.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	3	3	3
CO 2	2	3	3	3	3	2	3	3	3	3	2
CO 3	3	3	2	2	3	3	3	2	2	3	3
CO 4	3	3	3	2	3	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	2	2	3	3
Total	14	15	13	13	14	12	15	13	13	15	14
Average	2.8	3.0	2.6	2.6	2.8	2.4	3.0	2.6	2.6	3.0	2.8

3-Strong, 2-Medium, 1-Low

1ST YEAR: SECOND SEMESTER

		_					Mar <u>\$\frac{1}{2}</u> \sqrt{2}		rks					
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total			
24PCHC24	Bio-Inorganic Chemistry	Core	2	1	1	0	3	4	25	75	100			
	L	earnin	g Ol	ject	ives					1				
LO1	To understand the role of essential trace elements in biological systems.													
LO2	To understand the structure, function, and properties of oxygen carriers a transport proteins.													
LO3	To study the process of nitrogen fixation and photosynthesis.													
LO4	To assess the toxicity and t	To assess the toxicity and therapeutic applications of metals in medicine.												
LO5	To apply the properties, kinetics, and factors affecting enzyme activity.													
Unit		Co	nte	ıt							Hours			
1	Essential Trace Elements: Selective transport and storage of metal ions: Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signaling proteins. Metalloenzymes: Zinc enzymes—carboxypeptidase and carbonic anhydrase. Iron enzymes—catalase, peroxidase. Copper enzymes — superoxide dismutase, Plastocyanin, Ceruloplasmin, Tyrosinase. Coenzymes - Vitamin-B ₁₂ coenzymes.													
2	Structure and oxygenation Myoglobin and Hemoglol Classification, Cytochr Hemerythrin and hemocysterredoxin- Structure and oxygenation	Bohr bin. Bic ome I anin. It	Effeolog P-45 con-s	ct. I ical). I ulph	Bind redo Non-	ing x sy hem	of C /sten e o	O, 1 n: C xyge	NO, C ytoch en ca	CN— to romes arriers	12			
3	Nitrogen Fixation: In microorganisms. Nitrogen redox property - Dinitrogen dinitrogen - nitrogen fixationitrogen to ammon	ntroduc ase enzen comp ation vi ia. P	tion, zyme plexe a ni hoto	ty e - les - tride syntl	Meta trans for hesis	l cl sition mati	uster n me on a	tal c	nitro omple	exes o	f 12			
4	Therapeutic compounds: Containing anticancer ag Diagnostic agents: Techn imaging agents. Temperatu	Metals in Medicine: Metal Toxicity of Hg, Cd, Zn, Pb, As, Sb. Therapeutic compounds: Vanadium-based diabetes drugs; Platinum-Containing anticancer agents. Chelation therapy: Cancer treatment. Diagnostic agents: Technetium imaging agents, Gadolinium MRI imaging agents. Temperature and critical magnetic field.												
5	Enzymes: Introduction and Enzyme kinetics, free ener Michelis - Menton equations. Factors contribute	rgy of a on - E	activ ffect	atior of	and pH,	the tem	effe pera	ects (ture	of cata	alysis.	12			

CO	Course Outcomes
CO1	To explain the role of essential trace elements in biological systems, including their transport, storage, and function in metalloenzymes.
CO2	To describe the structure, function, and properties of oxygen carriers and other transport proteins involved in redox reactions.
CO3	To understand the process of nitrogen fixation and photosynthesis, including the role of nitrogenase enzymes and photosystems.
CO4	To evaluate the toxicity and therapeutic applications of metals in medicine, such as chelation therapy and diagnostic agents.
CO5	To explain the properties, kinetics, and factors affecting enzyme activity, as well as the Michaelis-Menten equation.
Textbooks	
1	I. Bertini, A. Sigel, and H. Sigel, "Metal Ions in Biological Systems: Volume 42:
	Transport and Storage of Metal Ions: Ferritins, Transferrins, and Siderophores", 1st
	ed., Springer, 2004.
2	R. E. Dickerson and I. Geis, "Emoglobin: Structure, Function, and Evolution, 1st ed.,
	Benjamin/Cummings Publishing Company, 1983.
3	B. K. Burgess and D. J. Lowe, "Nitrogenase: A Molybdenum-Iron Enzyme", 1st ed.,
	Wiley-VCH, 1996.
4	C. F. Meares, "Metal Ions in Biological Systems: Volume 28: Chemistry and
	Biological Applications of Vanadium", 1st ed., Springer, 1990.
5	A. Fersht, "Structure and Mechanism in Protein Science: A Guide to Enzyme
	Catalysis and Protein Engineering", 3rd ed., W. H. Freeman, 2003.
Reference	Books:
1	J. J. R. Fraústo da Silva and R. J. P. Williams, "The Biological Chemistry of
	Elements: The Inorganic Chemistry of Life", 2 nd ed., Oxford University Press, 2009.
2	L. Stryer, "Biochemistry", 5th ed., W. H. Freeman, 2002.
3	R. H. Burris, "Nitrogen Fixation: Principles and Practice", 1st ed., Chapman & Hall,
	1990.
4	E. A. Liberles, "Medicinal Inorganic Chemistry: A Bioinorganic Approach", 2 nd ed.,
	John Wiley & Sons, 2009.
5	D. E. Koshland Jr., "Enzyme Catalysis", 1st ed., W. H. Freeman, 1970.
Web resou	irces:
1	https://www.google.com/url?sa=E&source=gmail&q=https://pubchem.ncbi.nlm.nih.gov/
2	https://www.google.com/url?sa=E&source=gmail&q=https://www.rcsb.org/
3	https://www.britannica.com/summary/nitrogen-fixation
4	https://www.google.com/url?sa=E&source=gmail&q=https://www.ncbi.nlm.nih.gov/pmc/
	articles/PMC3584006/
5	https://www.google.com/url?sa=E&source=gmail&q=https://www.enzyme.com/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	2	3	3	3	2	3	3
CO 2	2	3	3	3	3	2	3	3	3	2	3
CO 3	3	3	2	3	3	3	3	2	3	2	3
CO 4	2	3	3	3	3	2	3	3	2	3	3
CO 5	2	3	2	3	3	2	3	2	3	3	3
Total	12	15	13	15	14	12	15	13	13	13	15
Average	2.4	3.0	2.6	3.0	2.8	2.4	3.0	2.6	2.6	2.6	3.0

3-Strong, 2-Medium, 1-Low

		Þ.					70			Mar	·ks		
Course Code	Course name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total		
24PCHE21	Medicinal Chemistry	Elective 3	2	1	1	0	3	4	25	75	100		
Learning of	ectives												
LO1	To study the chemi	To study the chemistry behind the development of pharmaceutical materials.											
LO2	To gain knowledge	on mechan	ism aı	nd acti	on o	f dru	ıgs.						
LO3	To understand the no	eed of antil	biotics	and u	ısage	of d	rugs.						
LO4	To apply knowledge	of CNS p	harma	colog	y to 1	he ti	eatme	nt of var	ious di	isord	ers.		
LO5	To identify and appl	y the actio	n of v	arious	antil	oiotio	cs.						
Unit			(Conten	ıt						Hours		
1	Introduction to receptors: Introduction, targets, Agonist, antagonist, partial agonist. Receptors, Receptor types, Theories of Drug receptor interaction, Drug synergism, Drug resistance, physicochemical factors influencing drug action.												
2	Antibiotics: Introd antibiotics, enzyme tetracyclins, clinic trends in antibiotic t	-based me al applic	echani	sm of	act	ion,	SAR		cillins	and	12		
3	Antihypertensive agents, introduction antihypertensive agents. Furosemide, Hydrod	n to hyp ents, classi	ertens fication	ion, on and	etiol l med	ogy,	types	s, classi	ficatio	on of			
4	Furosemide, Hydrochlorothiazide, Amiloride. Central Nervous System (CNS) Drugs: Introduction to the CNS, CNS Disorders - Anxiety, depression, schizophrenia, Parkinson's disease, Alzheimer's disease, epilepsy. Classes of CNS Drugs - Antidepressants, Antipsychotics, Anxiolytics, Anticonvulsants, Analgesics, Stimulants. Mechanisms of action, Drug metabolism and Pharmacokinetics, Therapeutic applications, various adverse effects.										12		
5	Analgesics, Antipy mechanism of infl Paracetamol, Ibu Phenylbutazone and Introduction, types classification, med Chemistry of insulir	ammation, uprofen, Meperidir of diabet chanism o	, class Dicl ne. Me ics, di of act	sificat ofenace dicinate rugs t tion,	ion c, ıl che ısed	and Nap emist for	mech proxen cry of a the tr	anism o , Ind antidiabe reatment,	of action omethetic age	on - acin, ents - nical	12		

CO	Course Outcomes
CO1	To predict a drugs properties based on its structure.
CO2	To describe the factors that affect its absorption, distribution, metabolism, and excretion,
	and hence the considerations to be made in drug design.
CO3	To explain the relationship between drug's chemical structure and its therapeutic properties.
CO4	To critically evaluate the mechanisms of action, therapeutic applications, and potential
	adverse effects of various CNS drugs.
CO5	To identify different targets for the development of new drugs for the treatment of
	infectious and GIT.
Textbo	ooks:
1	Jayashree Ghosh, "A text book of Pharmaceutical Chemistry", 1st ed., S. Chand and Co.
	Ltd, 1999.
2	Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William,
	"Wilson's Comprehensive Textbook of Ophthalmology", 12th ed., Lippincott Williams &
	Wilkins, 2011.
3	Graham L. Patrick, "An Introduction to Medicinal Chemistry", 5th ed., Oxford University
	Press, 2013.
4	O. LeRoy, "Natural and synthetic organic medicinal compounds", 1st ed., Ealemi, 1976.
5	S. Ashutosh Kar, "Medicinal Chemistry", 1st ed., Wiley Eastern Ltd, New Delhi, 1993.
Refer	ence Books:
1	Lipincott Williams, "Foye's Principles of Medicinal Chemistry", 7th ed., 2012.
2	Donald J. Abraham, David P. Rotella, Alfred Burger, "Burger's Medicinal Chemistry,
	Drug Discovery and Development", 6th ed., Academic press, 2010.
3	John M. Beale Jr and John M. Block, "Wilson and Gisvold's Textbook of Organic
	Medicinal and Pharmaceutical Chemistry", 12th ed., Wolters Kluwer, 2011.
4	P. Parimoo, "A Textbook of Medical Chemistry", 1st ed., CBS Publishers, New Delhi,
	1995.
5	S. Ramakrishnan, K. G. Prasannan and R. Rajan, "Textbook of Medical
	Biochemistry", 3rd ed., Orient Longman. Hyderabad, 1993.
Web	resources:
1	https://www.ncbi.nlm.nih.gov/books/NBK482447/
2	https://reference.medscape.com/drugs/antimicrobials
3	https://www.classcentral.com/course/swayam-medicinal-chemistry-
4	https://www.webmd.com/drugs/2/drug-15964-3/analgesic-oral/aspirin-oral/details
5	https://hopkinsdiabetesinfo.org/type-2-meds/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	2	3	3	2	3	3	3	3	3	3
CO 2	3	3	3	3	3	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	2	2	3	3	3
CO 4	3	2	3	3	2	2	3	3	3	3	3
CO 5	3	3	2	3	3	2	3	2	3	3	3
Total	15	12	13	15	13	12	13	13	13	12	13
Average	3.0	2.4	2.6	3.0	2.6	2.4	2.6	2.6	2.6	2.4	2.6

3 – Strong, 2 – Medium, 1 - Low

1ST YEAR: SECOND SEMESTER

		>								Ma	rks	
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24PCHE22	Green Chemistry	Elective 4	2	1	1	0	3	4	25	75	100	
	Learning objectives											
LO1	To discuss the principles of green chemistry.											
LO2	To propose green so	o propose green solutions for chemical energy storage and conversion.										
LO3	To understand soil 1	properties a	nd n	nicrob	ial rol	es in	soil p	process	es.			
LO4	Propose solutions for	or pollution	prev	ention	n in In	dusti	rial ch	emical	and fu	el pr	oduction,	
	Automotive industr	y and Shipp	oing	indust	tries.							
LO5	Propose green solu	utions for	indu	strial	prod	uctio	n of	Surfac	tants,	Orga	anic and	
	Inorganic chemicals	S.										
Unit			Co	ntent	-						Hours	
1	Limitations Green	Introduction to Green Chemistry: Introduction - Need, Goals and Limitations Green Chemistry - Chemical accidents, terminologies, International green chemistry organizations - Twelve principles of Green										
2	Green Synthesis a catalysts and solve green synthesis - methods of prepara dioxide - Green syn	nd Reagen nts - Green Green reagn tion, effect	n che	emisti - Gr	ry in een so	ever olver	yday nts -	life - l Criteria	Design a, gen	ning eral	12	
3	Soil Chemistry: So soil temperature, s formation - Types ureases - Role of a matter decomposition	oil mineral of soil e enzymes in	s, b	ufferii nes -	ng of Deh	soil ydro	, soil genas	fertilit es, ph	y and osphat	soil	12	
4	Phase Transfer Catalysis and Green Synthesis: Phase transfer										12	
5	Green Synthesis green synthesis Sonochemistry – microwave and sor benefits of green sy	Principle Instrumentation	t, In	nstrun ı - C	nentat Cavita	ion tion	and theor	applic y - C	ations Combin	- ned	12	

CO	Course Outcomes
CO1	To recall the basic chemical techniques used in conventional industrial preparations and in
	green innovations.
CO2	To understand the various techniques used in chemical industries and in laboratory.
CO3	To gain knowledge of soil chemistry for agricultural and environmental management.
CO4	To apply the principles of PTC, microwave and ultrasonic assisted organic synthesis.
CO5	To design and synthesize new organic compounds by green methods.
Textbo	oks:
1	V. K. Ahluwalia and M. R. Kidwai, "New Trends in Green Chemistry", 1st ed.,
	Anamalaya Publishers, 2005.
2	W. L. McCabe, J. C. Smith and P. Harriott, "Unit Operations of Chemical
	Engineering", 7th ed., McGraw-Hill, New Delhi, 2005.
3	J. M. Swan and D. St. C. Black, "Organometallics in Organic Synthesis", 1st ed.,
	Chapman Hall, 1974.
4	V. K. Ahluwalia and R. Aggarwal, "Organic Synthesis: Special Techniques", 1st ed.,
	Narosa Publishing House, New Delhi, 2001.
5	A. K. De, "Environmental Chemistry", 1st ed., New Age Publications, 2017.
Refere	ence Books:
1	P. T. Anastas and J. K. Warner, "Oxford Green Chemistry -Theory and Practical", 1st
	ed., University Press, 1998.
2	A. S. Matlack, "Introduction to Green Chemistry", 1st ed., Marcel Dekker, 2001.
3	M. C. Cann and M. E. Connely, "Real-World Cases in Green Chemistry", 1st ed.,
	American Chemical Society, Washington, 2000.
4	M. A. Ryan and M. Tinnesand, "Introduction to Green Chemistry", 1st ed.,
	American Chemical Society Washington, 2002.
5	Chandrakanta Bandyopadhyay, "An Insight into Green Chemistry", 1st ed., Books and
	Allied (P) Ltd, 2019.
Web r	esources:
1	https://www.acs.org/greenchemistry.html
2	https://www.rsc.org/journals-books-databases/about-journals/green-chemistry/
3	https://www.acs.org/greenchemistry.html
4	https://www.nsf.gov/div/index.jsp?div=CHE
5	https://chemistry.berkeley.edu/topics/green-chemistry

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	2	2	3	3	3	3	3	3
CO 2	2	3	3	3	2	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	3	3	3	3	2
CO 4	2	3	2	3	2	2	2	3	3	3	3
CO 5	2	2	2	3	3	2	3	3	3	3	3
Total	12	13	12	14	12	12	13	15	15	15	14
Average	2.4	2.6	2.4	3.0	2.4	2.4	2.6	3.0	3.0	3.0	2.8

3 – Strong, 2 – Medium, 1 - Low

		_								Ma	rks
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHE23	Industrial Chemistry	Elective 5	2	1	1	0	3	4	25	75	100
Learning Objectives											
LO1	LO1 To recall basic statistical concepts, control chart types, and quality as principles.									assurance	
LO2	To explain the concept	To explain the concept of relative volatility in distillation.									
LO3	To calculate the materia	ıl balance for	a fi	ltrat	ion p	oroc	ess.				
LO4	To break down the steps	s involved in	exti	racti	ng a	met	tal fr	om i	ts ore		
LO5	To judge the effectivene	ess of differe	nt po	erso	nal p	rote	ective	e equ	iipme	nt.	
Unit		Con	tent								Hours
1	Statistical Quality Control Techniques: Statistical treatment of data - Control charts. Quality Assurance: Elements of quality Assurance, Quality Management System: ISO 9001:2000 QMS and ISO 14000 Series of Standards. Six Sigma Approach to Quality: Applying Six Sigma to chemical Industries. Good Laboratory Practices: Principles of GLP, GMP in Chemical and Pharmaceutical Industries.									12	
2	Distillation Unit Process : Types of distillation processes, concept of batch and continuous distillation, simple steam distillation - advantages, disadvantages and application. Evaporation and Drying - factors affecting the rate of evaporation and choice of evaporators, application of evaporation, equipment- climbing film evaporator, drying process, free moisture, bound moisture and equilibrium moisture content, purpose of drying, equipment- rotary dryer.									, s f 12	
3	Purification and Filtra of ideal filter aids, fact filter media, equipment steady and unsteady sta flow/block diagrams engineering operations	tors affecting - bag filters ate of flow 1 for various	g the and proces in	e rat can esse ndus	te of dle f s, m trial	filt ilter ater	rations. Minimum	n ar ateri	nd cho	oice o lance uation	f - 12

	Metallurgical Operations: Crushing and pulverization, concentration	
	methods, gravity separation, magnetic concentration, froth flotation	
	process, chemical methods - calcination and roasting, reduction using	
4	carbon and carbon monoxide, Alumino thermite reduction, auto	12
	reduction, refining methods - polling, parting and electrolyte refining.	
	Metallurgical Extraction - Lead from galena, Aluminum from bauxite	
	and Zinc from Zinc blende.	
	Industrial Hygiene & Safety: Personal protective equipments.	
	Industrial hazards and Safety: Process hazards checklists, hazard	
	surveys, safety program, Hazop safety reviews. Industrial pollution:	
5	Classification of hazardous chemicals, storage, transportation, handling,	12
	risk assessments, challenges/solutions. Eco-friendly effluents disposal:	
	advanced waste water treatment, effluent quality standards and laws.	
	Sensors: Concept of molecular sensors its properties and applications.	
1		

CO	Course Outcomes
CO1	Able to use statistical tools to analyze process data and identify quality issues.
CO2	To design and optimize distillation processes for various applications.
CO3	To select appropriate purification and filtration techniques for different materials.
CO4	To evaluate the feasibility of extracting metals from different ores.
CO5	To implement effective industrial hygiene and safety practices.
Textboo	ks:
1	Douglas C. Montgomery, "Statistical Quality Control: A Modern Introduction, 9th ed.,
	John Wiley & Sons, 2018.
2	J. D. Perry, "Distillation: Principles and Applications", 5th ed., McGraw-Hill Education,
	2015.
3	Warren L. McCabe, Julian C. Smith, and Peter Harriott, "Unit Operations of Chemical
	Engineering", 8th ed., McGraw-Hill Education, 2016.
4	J. C. Agarwal, "The Extractive Metallurgy of Copper", 3rd ed., Elsevier, 2013.
5	Kenneth R. Holness and David H. Slone, "Industrial Hygiene: Principles and
	Practices", 3rd ed., John Wiley & Sons, 2015.
Referen	ce Books:
1	George E. P. Box, William G. Hunter, and J. Stuart Hunter, "Statistical Methods for
	Engineers and Scientists", 3rd ed., John Wiley & Sons, 2005.
2	J. M. Coulson and J.F. Richardson, "Separation Processes in Chemical Engineering", 3rd
	ed., Pergamon Press, 1991.
3	Robert H. Perry, Don W. Green, and James O. Maloney, "Perry's Chemical Engineers'
	Handbook", 9th ed., McGraw-Hill Education, 2019.
4	A. K. Biswas and W.G. Davenport, "Extractive Metallurgy: Principles and Practice", 4th
	ed., Elsevier, 2013.
5	Clayton W. Hoyle, Jr., and Kenneth R. Holness, "Industrial Hygiene: A Comprehensive
	Textbook", 4th ed., John Wiley & Sons, 2013.
Web res	ources:
1	https://www.projectmanager.com/blog/quality-assurance-and-testing
2	https://www.britannica.com/summary/distillation
3	https://www.britannica.com/dictionary/filtration
4	https://en.wikipedia.org/wiki/Metallurgy
5	https://www.osha.gov/

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	2	3	3	2	3	2	3	3	3	2
CO 2	3	3	3	2	3	2	2	3	3	3	3
CO 3	3	2	2	3	3	3	3	3	3	3	3
CO 4	3	3	3	3	3	2	2	3	2	3	3
CO 5	3	3	2	3	3	2	2	3	3	3	3
Total	15	13	13	14	14	12	11	15	14	15	14
Average	3.0	2.6	2.6	2.8	2.8	2.4	2.2	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Course										Ma	rks
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24PCHE24	Materials Science	Elective 6	2	1	1	0	3	4	25	75	100
		Learning									
LO1	To understand the cry	stal structure,	grow	vth n	neth	ods	and	X-ra	y scat	tering	•
LO2	To explain the optical	o explain the optical, dielectric and diffusion properties of crystals.									
LO3	To recognize the b	To recognize the basis of semiconductors, superconductivity materials magnets.									erials and
LO4	To study the synthesis	s, classification	n and	l app	olica	tion	s of	nanc	mater	ials.	
LO5	To learn about the im	portance of ma	ateria	ıls u	sed :	for 1	enev	vable	e ener	gy cor	version.
Unit	Content										Hours
1	systems - Bravais la diffraction-Laue equapplication to geomet single crystal applied diffraction-method an Crystal Growth Metastable state. Sin	Crystallography: Symmetry - unit cell and Miller indices - crystal systems - Bravais lattices - point groups and space groups - Xray diffraction-Laue equations-Bragg's law-reciprocal lattice and its application to geometrical crystallography. Crystal structure—powder and single crystal applications. Electron charge density maps, neutron diffraction-method and applications. Crystal Growth Methods: Nucleation—equilibrium stability and metastable state. Single crystal —Low and high temperature, solution								12	
2	growth– Gel and equilibrium stability Stockbarger, Czochi chemical vapour transsecondary extinctions	and metastab ralski method sport. Lorentz	le st ls.	rate. Flux pola	Me te	lt g echn tion	rowt	h - , pl or -	Bridg nysica prima	eman- l and	12
3	(qualitative) refractive and opacity. Types luminescence, LEDs Applications. Dielectorientation, and spandielectric constant,	roperties of Crystals: Optical studies - Electromagnetic spectrum qualitative) refractive index - reflectance - transparency, translucency and opacity. Types of luminescence - photo-, electro-, and injection aminescence, LEDs - organic, Inorganic and polymer LED materials -								12	

	Special Materials: Superconductivity: Meissner effect, Critical	
	temperature and critical magnetic Field, Type I and II superconductors,	
	BCS theory-Cooper pair, Applications. Soft and hard magnets – Domain	
	theory Hysteresis Loop-Applications. Magneto and giant	
4	magnetoresistance. Ferro, ferri and antiferromagnetic materials	12
	applications, magnetic parameters for recording applications. Ferro-,	
	Piezo-, and pyro electric materials – properties and applications. Shape	
	memory Alloys-characteristics and applications, Non-linear optics	
	Second Harmonic Generators.	
	Materials for Renewable Energy Conversion: Solar Cells: Organic,	
	bilayer, bulk heterojunction, polymer, perovskite based. Solar energy	
	conversion: lamellar solids and thin films, dye-sensitized photo voltaic	
5	cells, coordination compounds anchored onto semiconductor surfaces -	12
3	Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and	12
	splitting of water, CO ₂ and N ₂ . Manganese based photo systems for	
	water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical	
	generation of hydrogen from alcohol.	

CO	Course Outcomes
CO1	To understand and recall the synthesis and characteristics of crystal structures,
	semiconductors, magnets, nanomaterials and renewable energy materials.
CO2	To integrate and assess the structure of different materials and their properties.
CO3	To analyse and identify new materials for energy applications.
CO4	To explain the importance of crystal structures, piezoelectric and pyroelectric materials,
	nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED
	uses, structures and synthesis.
CO5	To design and develop new materials with improved property for energy applications.
Textbook	s:
1	S. Mohan and V. Arjunan, "Principles of Materials Science", 2nd ed., MJP Publishers,
	2016.
2	Arumugam, "Materials Science", 2 nd ed., Anuradha Publications, 2007.
3	Giacavazzo et. al., "Fundamentals of Crystallography", 2nd ed., International Union of
	Crystallography, Oxford Science Publications, 2010.
4	Woolfson, "An Introduction to Crystallography", 3rd ed., Cambridge University Press,
	2012.
5	James F. Shackelford and Madanapalli K. Muralidhara, "Introduction to Materials
	Science for Engineers", 6th ed., Pearson Press, 2007.
Reference	e Books:
1	M. G. Arora, "Solid State Chemistry", 2 nd ., Anmol Publications, New Delhi, 2001.
2	Q. K. Puri and V. K. Babbar, "Solid State Physics", 5th ed., S Chand and Company Ltd,
	2001.
3	C. Kittel, "Solid State Physics", 5th ed., John-Wiley and Sons, NY, 1966.
4	E. P. Meyers, "Introductory Solid State Physics", 1st ed., Viva Books Private Ltd.,
	1998.
5	A. R. West, "Solid State Chemistry and Applications", 2nd ed., John-Wiley and Sons,
	1987.
Web reso	urces:
1	https://en.wikipedia.org/wiki/Crystal_structure
2	https://en.wikipedia.org/wiki/Czochralski_method
3	https://en.wikipedia.org/wiki/Dielectric
4	https://en.wikipedia.org/wiki/Superconductivity
5	https://en.wikipedia.org/wiki/Solar_cell

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	2	2	3	3	2	2	3	2
CO 2	2	2	3	3	3	3	3	3	3	3	3
CO3	3	3	2	2	3	3	3	2	3	3	3
CO 4	3	3	3	2	3	3	2	3	3	3	2
CO 5	2	2	2	3	3	3	3	3	3	3	3
Total	13	13	13	12	14	15	14	13	14	15	13
Average	2.6	2.6	2.6	2.4	2.8	3.0	2.8	2.6	2.4	3.0	2.6

3 – Strong, 2 – Medium, 1 - Low

		Ma	ırks									
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24PCHS21	Cosmetic Chemistry	SEC-1 (NME)	1	0	1	0	2	2	25	75	100	
	Learning Objectives											
LO1	To understand formulations of various types of cosmetics.											
LO2	To understand the makeup	o understand the makeup preparations and personal grooming.										
LO3	To knowledge about regul	atory boo	lies	and 1	ules	gov	erni	ng p	ersona	al care	products.	
LO4	To understand the import industries.	tance an	d h	ealth	bei	nefit	s of	ess	ential	oils	in cosmetic	
LO5	To understand beauty treat	ments.										
Unit		Coı	nten	t							Hours	
1	powder – ingredients; cre purpose, shaving and sun and advantages.	Skin Care: Nutrition of the skin, skincare and cleansing of the skin; face powder – ingredients; creams and lotions – cleansing, moisturizing all purpose, shaving and sunscreen (formulation only); Gels – formulation and advantages. Lab Practice: Prepare a hand sanitizer.									ı11	
2	Hair Care and Dental liquid, gel – ingredients; c ingredients – mouthwash. Lab Practice: Formulate a mouthwash.	onditione	er — 1	ypes	s — i1	ngre	dien	ts. T	oothp	astes -	6	
3	Make Up: Base – found mascara, eye shadow, cond Lab Practice: Synthesize a	cealers, re	ouge	.	ngre	dien	ts; 1	ipsti	ck, ey	veliner	6	
4	the plant used, chief const characteristics – esters – al	Perfumes: Classification of perfumes - Natural – plant origin – parts of the plant used, chief constituents; synthetic – classification emphasizing characteristics – esters – alcohols – aldehydes – ketones. Lab Practice: Prepare a customized perfume of body spray.										
5	Beauty Treatments: Fa facemasks – types; bleach the eyebrows; hair colorin disadvantages. Lab Practice: Prepare a cla	- types - g and dye	– ad eing;	vant ped	ages icur	-c	lisad	vant	ages;	shapii	ng	

CO	Course Outcomes
CO1	Know about the composition of various cosmetic products.
CO2	Understand chemical aspects and applications of hair care and dental care and
	skincare products.
CO3	Understand chemical aspects and applications of perfumes and skincare products.
CO4	To understand the methods of beauty treatments their advantages and disadvantage.
CO5	Understand the hazards of cosmetic products.
Textbo	ooks:
1	Thankamma Jacob, "Foods, Drugs and Cosmetics – A consumer guide", Macmillan
	Publication, London, 1997.
2	Zoe Diana Draelos (Editor) and Lauren Thaman (Editor), "Cosmetic Formulation of
	Skin Care Products", CRC Press, 2 nd ed., 2006.
3	Meyer R and Rosen (Editor), "Harry's Cosmeticology", Chemical Publishing
	Company, 9th ed., 2019.
4	André O, Barel (Editor), Marc Paye (Editor), Howard I and Maibach (Editor),
	"Handbook of Cosmetic Science and Technology", CRC Press, 3 rd ed., 2014.
5	Maison G and deNavarre, "The Chemistry and Manufacture of Cosmetics", Van
	Nostrand Reinhold, 2 nd ed., 2009.
Refere	nce Books:
1	Wilkinson J. B. E. and Moore R. J, "Harry's Cosmeticology", 7 th ed., Chemical Publishers, London, 1997.
2	George Howard, "Principles and Practice of Perfumes and Cosmetics", 1987.
3	Milady, "Milady Standard Cosmetology", Cengage Learning Publishers, 13 th ed., 2016.
4	Hiroshi Iwata, "Formulas, Ingredients and Production of Cosmetics: Technology of Skin- and Hair-Care Products in Japan", Springer, 1 st ed., 2016.
5	Zoe Diana Draelos, "Cosmetic Dermatology: Products and Procedures", Wiley-Blackwell Co., 2 nd ed., 2016.
Web r	esources:
1	https://www.paulaschoice.com/ingredient-dictionary
2	https://www.thespruce.com/about-us-4776800
3	https://www.makeupalley.com/categories/foundation-makeup
4	https://perfumesociety.org/
5	https://www.aad.org/public/everyday-care

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO 1	3	3	3	3	3	3	3	2	2	3	3
CO 2	2	3	3	3	2	3	3	2	2	3	3
CO 3	3	3	3	2	3	3	3	2	3	2	3
CO 4	3	3	3	3	3	3	3	2	3	3	3
CO 5	3	2	3	3	3	3	3	2	3	2	3
Total	14	14	15	14	14	15	15	10	13	13	15
Average	2.8	2.8	3.0	2.8	2.8	3.0	3.0	2.0	2.6	2.6	3.0

3 – Strong, 2 – Medium, 1 - Low

Continuous Internal Assessment (CIA) Test

The following procedure will be followed for the award of internal marks:

CIA Exam I: Three hours duration for 75 marks (First 2 ½ Units)

CIA Exam II cum Model Exam: Three hours duration for 75 marks (Full Syllabus)

Internal Mark Distribution	Theory & Practical
CIA – I (75 Marks)	5
CIA – II (75 Marks)	5
Library Usage in Hours	5
Attendance	5
Assignment / Seminar / Observation	5
Internal Marks	25

Format to Entering in all Continue Internal Assessment (CIA) Tests and Internal Marks

.	Reg No.	Name	CIA -	CIA -	Marks Conve rsion	Library Usages	Atten dance	Assignment / Seminar / Observation	Total Marks	Remarks

Recommendations for Entering Library Usage:

Library usage for UG in hours	Marks to be awarded
Minimum 10 Hours	5

Attendance:

Attendance Earned	Category	Marks to be	
		Awarded	
91% and above	Highly Regular	5	
75% but below 90%	Regular	4	
65% but below 74%	Shortage	3	
55% but below 64%	Detained	2	
Below 54%	Redo	0	

THEORY QUESTION PAPER PATTERN END SEMESTER EXAMINATIONS FOR UG & PG DEGREE PROGRAMMES - 3 HOURS DURATION

Part A	To answer All the 10 Short Questions (Two Questions from each UNIT)	10 X 2 = 20 Marks		
Part B	To answer All the 5 questions (either or, type) (One Question from each UNIT)	5 X 5 = 25 Marks		
Part C	To answer 3 questions (out of 5 questions) (One question from each UNIT)	3 X 10 = 30 Marks		
TOTAL 75 Marks				
(Equal Weightage should be given to each unit)				