

MARUDHAR KESARI JAIN COLLEGE FOR WOMEN (AUTONOMOUS)

Vaniyambadi – 635 751

PG Department of Chemistry

for

Undergraduate Programme Bachelor of Science in Chemistry

From the Academic Year 2025-26 (Third Semester)

	Semester - I					
Code	Course Title	D	Ho istri	ours buti		С
		L	T	P	S	
24UFTA11	Tamil - 1	4	1	0	0	3
24UFEN11	English - 1	4	1	0	0	3
24UCHC11	CC - 1 General Chemistry -I	3	1	2	0	5
24UCHC12P	CC - 2 Quantitative Inorganic Estimation (Titrimetry) & Inorganic Preparation – I (Practical)	0	0	4	0	3
24UBCA11	EC - 1 AL Biochemistry - I	3	1	0	0	3
24UBCS11	SEC - 1 Health and Nutrition	1	0	1	0	2
24UBCS12P	SEC - 2 Biochemistry Practical - I	0	0	2	0	2
24UCHF11	FC- Food Chemistry	1	1	0	0	2
					30	23

	Semester - II					
Code	Course Title	D	n	c		
		L	T	P	S	
24UFTA21	Tamil - 2	4	1	0	0	3
24UFEN21	English - 2	4	1	0	0	3
24UCHC21	CC – 3 General Chemistry-II	3	1	2	0	5
24UCHC22P	CC - 4 Qualitative Organic Analysis and Preparation of Organic Compounds – II (Practical)	0	0	4	0	2
24UBCA21	EC - 2 AL Biochemistry - II	3	1	0	0	4
24UBCA22P	EC - 3 Biochemistry Practical - II	0	0	2	0	2
24UCHS21	SEC – 3 Dairy Chemistry	1	0	1	0	2
24UCHA21	AEC – 1 Life Skills through Yoga	1	1	0	0	2
					30	23

	Semester - III					
24UFTA31	Tamil - 3	4	1	0	0	3
24UFEN31	English - 3	4	1	0	0	3
24UCHC31	CC – 5 General Chemistry-III	3	1	2	0	5
24UCHC32P	CC – 6 Qualitative Inorganic Analysis (Practical)	0	0	4	0	2
24UPHA31	EC - 4 AL Physics -I	3	1	0	0	4
24UPHA32P	EC - 5 AL Physics (Practical)	0	0	2	0	2
24UCHS31 24UCHS32	SEC - 4 Entrepreneurial Skills in Chemistry SEC - 5 Pesticide Chemistry	0	0	2	0	2
24UCHA31	AEC – 2 Human Values and Ethics	1	1	0	0	2
					30	23

	Semester - IV					
24UFTA41	Tamil - 4	4	1	0	0	3
24UFEN41	English - 4	4	1	0	0	3
24UCHC41	CC – 7 General Chemistry -IV	3	1	2	0	5
24UCHC42P	CC - 8 Physical Chemistry Practical – I (Practical)	0	0	4	0	2
24UBCA41	EC - 6 AL Physics -II	3	1	0	0	4
24UBCA42P	EC - 7 AL Physics (Practical)	0	0	2	0	2
24UCHS41	SEC – 5 Instrumental methods of Chemical Analysis	1	0	1	0	2
24UCHA41	AEC – 3 Environmental Studies	1	1	0	0	2
					30	23

Semester - V					
CC -9 Organic Chemistry -I	4	1	0	0	4
CC- 10 Organic Chemistry–I (Practical)	0	0	4	0	4
CC - 11 Inorganic Chemistry - I	2	1	1	0	4
CC - 12 Inorganic Chemistry - I (Practical)	0	0	3	0	2
EC - 8 Industrial Chemistry	4	1	0	0	4
EC - 9 Biochemistry	4	1	0	0	4
AEC – 4 Social	1	1	0	0	2

Semester - VI										
CC - 13 Physical Chemistry- II	4	1	0	0	4					
CC - 14 Physical Chemistry Practical - II (Practical)	0	0	5	0	3					
CC - 15 - Project	0	0	0	5	4					
EC - 10 Fundamentals of Spectroscopy	4	1	0	0	4					
EC - 11 Nano Science/ Polymer Science/ Pharmaceutical Chemistry	4	1	0	0	4					
PEC - 1Communicative Skills	1	1	0	0	2					
SLC - 1Chemistry in				3	2					

	Responsibilities and Upliftment					Everyday Life			
	Internship		2	2					
			30	26				30	23
								141	+2*

Students must complete at least one online course (MOOC) from platforms like SWAYAM, NPTEL, or Nanmudalvan within the fifth semester. Additionally, engaging in a specified Self-learning Course is mandatory to qualify for the degree, and successful participation will be acknowledged with an extra credit of 2*.

Part – 1 &	Tamil & English	8	SEC	Skill Elective Course	5
2					
CC	Core Course	15	FC	Foundation Course	1
EC-AL	Elective Course – Allied	7	AEC	Ability Enhancement	4
				Course	
EC	Elective Course– Major	4	SLC	Self-Learning Course	1

										Marks	S		
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total		
24UCHC31	Core Course 5 - General Chemistry –III	Core	3	1	2	0	5	6	25	75	100		
	Learr	ning O	bjec	tive	S				•				
LO1	To explain gas behavior usin state.	ıg kine	tic tl	neor	y, d	istr	ibut	ion la	ws, and	d equat	ions of		
LO2	To describe and differential crystal structures and their cl		_	_		of	liqu	ids a	nd soli	ds, inc	cluding		
LO3	To analyze radioactive decarenergy, including the design									ons of 1	nuclear		
LO4	To evaluate the structure, r halogen compounds and alco	eactivi hols	ty,	and	syn	the	sis (of ali	phatic				
LO5	To justify the selection of re by analyzing reaction mecha	_								ohol sy	nthesis		
Unit		Cont	ent							Hours			
1	Gaseous State: Kinetic Mo and derivation from the kir Boltzmann distribution of frequency, collision diamete gases. Real gases: Deriva (Andrew's and Amagat's ple van der Waal's equation.	netic g f spec er, mea ations	as e ed o in fi froi	quat of ree p m i	tion; moleoath deal	Tiecu an	he N les, d vi	Maxw coll iscosi beha	rell – lision ty of viour	1	8		
2	Liquid and Solid State: Properties of Liquids - Surface tension, viscosity and their applications. Crystalline and amorphous – differences - geometry, isotropy and anisotropy, melting point, isomorphism, polymorphism. Crystals - size and shape; laws of crystallography; symmetry elements - plane, centre and axis; Miller indeces, unit cells ads space lattices; X-ray diffraction -									1	8		
3	Nuclear Chemistry: Natural gamma rays, half-life period law, Geiger-Nattal rule; inuclei, nuclear isomerism, numbers; Units – Curie, Rut	Bragg's equation. Nuclear Chemistry: Natural radioactivity - alpha, beta and gamma rays, half-life period, Fajan-Soddy group displacement law, Geiger-Nattal rule; isotopes, isobars, isotones, mirror nuclei, nuclear isomerism, radioactive decay series, magic numbers; Units – Curie, Rutherford, Roentgen. Nuclear energy - fission, fusion and nuclear reactor - components and its											
4	Halogen Derivatives: Nomenclature, preparation, CHCl ₃ and CCl ₄ . Aromatic l		ertie	s ar	nd 1	use	s o	f CH		18			

	halides: Nomenclature, preparation, properties and uses of benzyl chloride. Mechanism of nucleophilic aromatic substitution – benzyne intermediate. Alcohols: Nomenclature, classification, preparation, properties and uses.	
5	Aromatic Alcohols: Phenol, resorcinol, quinol, picric acid and benzyl alcohol - nomenclature, classification, preparation, properties and uses. Important methods of preparation - hydrolysis, reduction of benzaldehyde, Cannizzaro reaction, Grignard synthesis. Electrophilic substitution reactions: Reimer-Teimen, Kolbe, Schmidt, Gatermann synthesis, Libermann, nitro reaction, phthalein reaction.	18

CO	Course Outcomes
CO	Students will be able to
CO1	Predict and explain the behavior of ideal and real gases using kinetic theory, distribution laws, and equations of state.
CO2	Characterize and differentiate the properties of liquids and solids, including crystal structures.
СОЗ	Analyze radioactive decay processes and evaluate the applications of nuclear energy, including reactor design and function.
CO4	Evaluate the structure, reactivity, and synthesis of aliphatic and aromatic halogen compounds and alcohols.
CO5	Justify synthetic strategies for aromatic alcohols by analyzing reaction mechanisms and outcomes.
Textb	
1.	B.R. Puri, L.R. Sharma and M.S. Pathania, "Principles of Physical Chemistry", 46 th ed., Vishal Publishing, 2020.
2.	B.R. Puri, L.R. Sharma and K.C. Kalia, "Principles of Inorganic Chemistry", 30 th ed., Milestone Publishers and Distributors, New Delhi, 2009.
3.	P.L. Soni and Mohan Katyal, "Textbook of Inorganic Chemistry", 20th ed., Sultan Chand & Sons, 2006.
4.	M.K. Jain and S.C. Sharma, "Modern Organic Chemistry", 4 th ed., Vishal Publishing, 2003.
5.	Jerry March, "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 6th ed., John Wiley & Sons, 2007.
Refer	ence Books:
1.	P.W. Atkins & Julio de Paula, "Atkins' Physical Chemistry", 11 th ed., W. H. Freeman and Company, 2017.
2.	A. Carey Francis, "Organic Chemistry", 7 th ed., Tata McGraw-Hill Education Pvt., Ltd., New Delhi, 2009.
3.	Loveland, W. D., Morrissey, D. J., & Seaborg, G. T, "Modern Nuclear Chemistry", 2nd ed., John Wiley & Sons, 2017.
4.	P.L. Soni, and H.M.Chawla, "Text Book of Organic Chemistry", 29th ed., Sultan Chand & Sons, New Delhi, 2007.
5.	J.D. Lee, "Concise Inorganic Chemistry", 5th ed., Blackwell Science, 2005.
	resources:
1.	https://unacademy.com/content/wp-content/uploads/sites/2/2022/10/Gaseous-State-Notes-1.pdf
2.	https://www.toppr.com/guides/chemistry/states-of-matter/the-gaseous-state
3.	https://www.google.com/url?sa=E&source=gmail&q=https://chem.libretexts.org/
4.	https://www.google.com/url?sa=E&source=gmail&q=https://www.khanacademy.org/science/chemistry
5.	https://www.google.com/url?sa=E&source=gmail&q=https://ocw.mit.edu/courses/chemistry/

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	2	2	2	3	3	3
CO2	3	3	3	2	3	2	2	2	3	3	3
CO3	3	3	3	2	3	2	2	2	3	3	2
CO4	3	3	3	2	3	1	2	2	3	2	3
CO5	3	3	3	2	3	1	2	2	2	3	3
Total	15	15	15	10	15	08	10	10	14	14	14
Average	3.0	3.0	3.0	2.0	3.0	1.6	2.0	2.0	2.8	2.8	2.8

3 – Strong, 2- Medium, 1- Low

										Marks	5
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24UCHC32P	Core Course 6 - Qualitative Inorganic Analysis (Practical)	Core	0	0	4	0	2	4	25	75	100
	Learn	ing Ob	ject	ives	}						
LO1	To accurately observe and i of specific anions.	nterpre	et re	actio	on r	esu	ılts	to det	termine	the pr	esence
LO2	To effectively apply method	s to ren	nov	e int	erfe	rin	ıg ic	ns fro	om a tes	st solution.	
LO3	To correctly categorize basic	c radica	als ii	nto t	heir	re	spec	ctive ;	groups.		
LO4	To precisely identify individ	lual cat	ions	thro	ougl	ı s	yste	matic	testing		
LO5	To successfully determine mixture.	the co	mpl	ete	ion	ic	con	posit	ion of	an un	known
Unit		Conto	ent							Ho	urs
1	Semi - Micro Qualitative A A. Analysis of simple sulphate, chloride, bro	acid r	adic		Са	ırbo	onat	e, su	ılphide,	1	2
2	B. Analysis of interferi borate, phosphate.	ng aci	d ra	adica	als:	Fl	uori	ide, o	oxalate,	1	2
3	C. Elimination of interfering acid radicals and Identifying the group of basic radicals.										
4	D. Analysis of basic radicals (group wise): Lead, copper, bismuth, cadmium, tin, antimony, iron, aluminium, zinc, manganese, nickel, cobalt, calcium, strontium, barium, magnesium, ammonium ions.										
5	E. Analysis of a mixture two anions (of which of							catio	ons and	1	2

SCHEME OF VALUATION QUALITATIVE INORGANIC ANALYSIS (PRACTICAL)

Internal assessment	25 Marks
External assessment	75 Marks
Total	100 Marks
Max. Marks	75 Marks
Each radical with procedure	20 Marks
(Spotting for each radical - 5 Marks; Fixing the group - 5 Marks)	
Analysis	40 Marks
Record	10 Marks
Viva voce	5 Marks

CO	Course Outcomes
CO	Students will be able to
CO1	Perform and interpret qualitative tests to accurately identify common and interfering anions in a solution.
CO2	Systematically group and classify acid radicals based on their chemical properties and reactions.
СОЗ	Demonstrate the ability to recognize, manage, and eliminate interfering anions to ensure accurate analysis.
CO4	Conduct group-wise qualitative analysis to identify specific cations in a solution.
CO5	Design and execute a comprehensive qualitative analysis procedure to determine the composition of unknown mixtures containing both common and interfering ions.
Textbo	
1.	V. Venkateswaran, R. Veeraswamy and A.R. Kulandivelu, "Basic Principles of Practical Chemistry", 2 nd ed., Sultan Chand & Sons, New Delhi, 1997.
2.	G.S. Turpin, "Practical Inorganic Chemistry", 1st ed., Wentworth Press, 2016.
3.	J. Derek Woollins, " <i>Inorganic Chemistry: A Textbook</i> ", 1 st ed., Oxford University Press, 2010.
4.	H.K. Sharma, "An Advanced Course in Practical Chemistry", 1st ed., Vikas Publishing House, 2007.
5.	K.R. Mahajan and A.G. K. Gogia, "Experiments in Inorganic Chemistry", New
D - C	Age International Publishers, 2010.
1.	C Symble "Vegal's Qualitative Inerganic Analysis" 7th ed Degreen Education
	G. Svehla, "Vogel's Qualitative Inorganic Analysis", 7th ed., Pearson Education India, 1996.
2.	R. A. Day & A. L. Underwood, "Quantitative Analysis", Reprint, Prentice Hall, 1999.
3.	I. L. Marr & B. W. Rockett, "Practical Inorganic Chemistry", Reprint, Van Nostrand Reinhold, 1977.
4.	J. L. Sharma, "A Textbook of Qualitative Inorganic Analysis", 1st ed., Laxmi Publications, 2013.
5.	F. A. Cotton, G. Wilkinson, C. A. Murillo & M. Bochmann, "Advanced Inorganic Chemistry", 6th ed., Wiley, 1999.
Web re	sources:
1.	https://www.vlab.co.in/broad-area-chemical-sciences
2.	https://egyankosh.ac.in/bitstream/123456789/79535/1/Unit-1.pdf
3.	mgywomenscollege.ac.in/templateEditor/kcfinder/upload/files/Vogel%27s%20Textbook% 20Of%20Macro%20And%20SemiMicro%20Qualitative%20Inorganic%20Analysis%205th %20ed%20-%20G.Svehla.pdf
4.	https://allen.in/jee/chemistry/qualitative-analysis
5.	https://ncert.nic.in/pdf/publication/sciencelaboratorymanuals/classXII/chemistry/lelm107.pdf

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	2	3	3	2	3	2	2	3	3	3	3
CO2	3	2	2	2	3	2	2	2	3	3	2
CO3	3	2	3	2	3	2	2	2	3	3	2
CO4	3	3	3	2	3	2	2	3	3	3	3
CO5	2	2	3	2	3	2	2	2	2	2	3
Total	13	13	14	10	15	10	10	12	14	14	13
Average	2.6	2.6	2.8	2.0	3.0	2.0	2.0	2.2	2.8	2.8	2.6

3 – Strong, 2- Medium, 1- Low

										Marks	Marks			
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total			
24UCHA31	Allied Chemistry - I	EC-3	3	1	0	0	4	4	25	75	100			
	Learning Objectives													
LO1	To predict molecular properties	es using	g MC) the	ory a	and	anal	yze n	uclear p	rocesse	S.			
LO2	To classify and discuss fuel ga	ases and	d sili	cone	pro	per	ties/a	applic	ations.					
LO3	To relate structure/bonding to													
LO4	To apply thermodynamic prin	ciples a	nd ii	nterp	ret p	has	se di	agran	ıs.					
LO5	To perform volumetric calcula	ations a	nd s	elect	sepa	arat	ion 1	netho	ds.					
Unit		Cont	ent							Hours				
1	Chemical Bonding and Nuclear Chemistry: Chemical Bonding: Molecular Orbital Theory - bonding, antibonding and non-bonding orbitals. Molecular orbital diagrams for Hydrogen, Helium, Nitrogen; discussion of bond order and magnetic properties. Nuclear Chemistry: Fundamental particles - Isotopes, Isobars, Isotones and Isomers. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences - Applications of radioisotopes.										2			
2	Industrial Chemistry Fuels: water gas, carbureted water gas, (manufacturing details not reand uses of silicones.	Fuel gas, proc	ases:	Nat r gas	ural s, CN	gas VG,	s, wa	iter ga G and	s, semi oil gas	1	2			
3	Fundamental Concepts in Organic Chemistry Hybridization: Orbital overlap, hybridization and geometry of CH ₄ , C ₂ H ₂ and C ₆ H ₆ . Electronic effects: Inductive effect and consequences on K _a and K _b of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric- examples.										2			
4	Thermodynamics and Phase Equilibria: Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and second law of thermodynamics. Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system.										12			
5	Analytical Chemistry: Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. Separation and purification										12			

СО	Course Outcomes
	Students will be able to
CO1	Apply MO theory to predict molecular properties such as bond order and magnetism,
	and analyze nuclear processes including radioactive decay and nuclear reactions.
CO2	Classify various fuel gases and discuss the properties and applications of silicones in
	industrial and consumer contexts.
CO3	Correlate molecular structure and bonding with physical and chemical properties by
	analyzing electronic effects such as inductive, resonance, and hyperconjugation.
CO4	Utilize thermodynamic principles to analyze chemical systems and interpret phase
	diagrams to understand phase equilibria.
CO5	Conduct accurate volumetric calculations and select appropriate separation methods
	based on the physical and chemical properties of mixture components.
Textbo	
1.	F. Albert Cotton, Geoffrey Wilkinson, Paul L. Gaus, "Basic Inorganic Chemistry", 3rd
	ed., Wiley, 1995.
2.	B.K. Sharma, "Industrial Chemistry", 16th ed., Goel Publishing House, 2017.
3.	Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers, "Organic Chemistry",
	2 nd ed., Oxford University Press, 2012.
4.	P.W. Atkins, J. de Paula, "Atkins' Physical Chemistry", 11th ed., Oxford University
	Press, 2017.
5.	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch,
	"Fundamentals of Analytical Chemistry", 9th ed., Cengage Learning, 2013.
-	nce Books:
1.	James E. Huheey, Ellen A. Keiter, Richard L. Keiter, "Inorganic Chemistry: Principles
	of Structure and Reactivity", 4th ed., Pearson, 1997.
2.	M.G. Fontana, "Industrial Chemistry", 3rd ed., McGraw-Hill, 2005.
3.	Paula Yurkanis Bruice, "Organic Chemistry", 8th ed., Pearson, 2016.
4.	J. Rajaram, J.C. Kuriacose, "Thermodynamics for Chemists", 1st ed., S Chand, 1999.
5.	Gary D. Christian, "Analytical Chemistry", 7th ed., Wiley, 2003.
	esources:
1.	www.khanacademy.org/science/chemistry
2.	https://chem.libretexts.org
3.	https://chem.libretexts.org/Bookshelves/Organic_Chemistry
4.	https://ocw.mit.edu/courses/chemistry/
5.	https://chem.libretexts.org/Bookshelves/Analytical_Chemistry

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	1	2	2	3	3	3
CO2	3	3	3	2	3	1	2	3	2	3	3
CO3	3	3	3	2	2	1	2	2	3	3	3
CO4	3	3	3	2	2	1	2	2	3	2	3
CO5	3	3	3	2	3	1	2	3	2	3	2
Total	15	13	13	10	13	05	10	12	13	14	14
Average	3.0	3.0	3.0	2.0	2.6	1.0	2.8	2.4	2.6	2.8	2.8

3 – Strong, 2- Medium, 1- Low

										Marks	}	
Course Code	Course Name	Category	L	Т	Γ P S		Credits	Hours	CIA	External	Total	
24UCHA32P	Allied Chemistry									75	100	
Learning Objectives												
LO1	To perform standard titration 1	-										
LO2	To demonstrate proficiency volumetric flask) and other lal										pipette,	
LO3	To perform stoichiometric cal solution using titration data.	culation	is to	dete	rmir	ne tl	he co	oncen	tration o	of an un	known	
LO4	To explain the underlying chemical principles of the specific type of titration being performed (acid-base, redox, or complexometric).											
LO5	To analyze titration data, inc precision and accuracy of thei			tifyii	ng s	our	ces	of err	or and	evaluati	ing the	
Unit		Cont	ent							Hours		
1	Estimation of sodiur carbonate. Estimation of hydrochlogen in the carbonate.	n hydi									6	
2	3. Estimation of ferrous su4. Estimation of oxalic aci	•	•	_						(6	
3	5. Estimation of potassium permanganate using standard sodium hydroxide.											
4	6. Estimation of magnesium using EDTA.									5		
5	7. Estimation of zinc using8. Estimation of ferrous io			neny	l am	ine	as in	ndicat	or.	(6	

SCHEME OF VALUATION ALLIED CHEMISTRY PRACTICAL-I

(For Physics – II year/III Semester)

Internal assessment: 25 Marks

External assessment: 75 marks

Total: 100 marks

Max. Marks: 75

Record: 15 Marks

Volumetric Analysis: 60 Marks

Volumetric Analysis: 60 Marks (Maximum)

Short Procedure: 10 Marks

Error upto 2 %: 50 Marks

2 to 3 %: 40 Marks

3 to 4 %: 30 Marks

4 to 5 % : 20 Marks

> 5 %: 10 Marks

Arithmetic error: Deduct 1 mark

Wrong calculation: Deduct 20 % of marks scored

No calculation: Deduct 40 % of marks scored

CO	Course Outcomes
CO	Students will be able to
CO1	Design, carry out, record and interpret the results of volumetric titration.
CO2	Gain an understanding of the safe use of standard flask and volumetric pipettes, burette.
CO3	Perform stoichiometric calculations to determine the concentration of unknown solutions using data obtained from titration experiments.
CO4	Explain the underlying chemical principles governing various types of titrations, including acid-base, redox, and complexometric titrations, and their applications.
CO5	Analyze titration data, identify potential sources of error, and evaluate the precision and accuracy of experimental results.
Textb	ooks:
1.	A.I. Vogel, "A Textbook of Quantitative Inorganic Analysis", 5 th ed., Longman, 1989.
2.	J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, "Vogel's Textbook of Quantitative Chemical Analysis", 6th ed., Pearson, 2000.
3.	Douglas A. Skoog, Donald M. West, F. James Holler, Stanley R. Crouch, "Fundamentals of Analytical Chemistry", 9th ed., Cengage Learning, 2013.
4.	Daniel C. Harris, "Quantitative Chemical Analysis", 9th ed., W. H. Freeman, 2015.
5.	R.A. Day & A.L. Underwood, "Quantitative Analysis", 6th ed., Prentice Hall, 1991.
	ence Books:
1.	Gary D. Christian, "Analytical Chemistry", 7th ed., Wiley, 2013.
2.	Douglas A. Skoog, F. James Holler, Stanley R. Crouch, "Principles of Instrumental Analysis", 7th ed., Cengage Learning, 2017.
3.	G. Svehla, "Vogel's Qualitative Inorganic Analysis", 7th ed., Pearson, 1996.
4.	Douglas A. Skoog, Donald M. West, F. James Holler, " <i>Analytical Chemistry: An Introduction</i> ", 7 th ed., Saunders College Publishing, 2000.
5.	David Harvey, "Modern Analytical Chemistry", 1st ed., McGraw-Hill, 2000.
Web r	resources:
1.	https://www.wiredchemist.com/chemistry/instructional/laboratory-
	tutorials/volumetric-analysis?utm_source=chatgpt.com
2.	https://www.coursesidekick.com/chemistry/1516334?utm_source=chatgpt.com
3.	https://www.youtube.com/watch?v=INN9pdpHte0&utm_source=chatgpt.com
4.	https://en.wikipedia.org/wiki/Titration?utm_source=chatgpt.com
5.	https://geo1.tcu.edu/richards/Lab%204.pdf?utm_source=chatgpt.com

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	2	2	2	3	3	3
CO2	3	3	3	2	2	2	2	3	2	3	3
CO3	3	3	3	2	3	2	2	3	3	2	3
CO4	3	3	3	2	3	2	2	2	3	3	3
CO5	3	3	3	2	2	2	2	2	3	3	3
Total	15	15	15	10	13	10	10	12	14	14	14
Average	3.0	3.0	3.0	2.0	2.6	2.0	2.0	2.4	2.8	2.8	2.8

3 – Strong, 2- Medium, 1- Low

										Marks		
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total	
24UCHS31	Entrepreneurial Skills in Chemistry	SEC-	0	0	2	0	2	2	25	75	100	
	Learning Objectives											
LO1	To identify food adulterants classify food additives and evoluin the											
LO2	To conduct food adulteration	n tests	and	inte	rpre	et re	esult	s.				
LO3	To develop entrepreneur sk	ills in s	stude	ents.								
LO4	To provide hands on experi	ence to	pre	pare	e an	d d	evel	op pr	oducts.			
LO5	To develop start ups.											
Unit		Cont	ent							Hours		
1-2	Food Chemistry Food adulteration - contamination of food items with clay stones, water and toxic chemicals - common adulterants. Food additives, natural and synthetic anti-oxidants, glazing agents (hazardous effect), food colourants, preservatives, leavening agents, baking powder and baking soda, yeast, MSG, vinegar. Dyes Classification – natural, synthetic dyes and their characteristics									2		
3-5	Hands on Experience (Students can choose any four) 1. Detection of adulterants in food items like coffee, tea, pepper, chilli powder, turmeric powder, butter, ghee, milk, honey etc., by simple techniques. 2. Preparation of jam, squash and jelly, gulkand, cottage cheese. 3. Preparation of products like candles, soap, detergents, cleaning powder, shampoos, pain balm, tooth paste/powder and disinfectants in small scale. 4. Extraction of oils from spices and flowers. 5. Testing of water samples using testing kit. 6. Dyeing — cotton fabrics with natural and synthetic dyes. Printing — tie and dye, batik.											

SCHEME OF VALUATION ENTREPRENEURIAL SKILLS IN CHEMISTRY (PRACTICAL)

Internal assessment	25 Marks
External assessment	75 Marks
Total	100 Marks
Max. Marks	75 Marks
Experiment Execution	20 Marks
Presentation of Product Outcome	40 Marks
Record	10 Marks
Viva voce	5 Marks

CO	Course Outcomes
CO	Students will be able to
CO1	Identify common food adulterants and contaminants, classify food additives, explain
	their functions and potential risks, and interpret relevant regulations.
CO2	Gain practical skills in formulating and preparing food and household products,
	understanding ingredient functions, processing, and quality control.
CO3	Learn and apply basic entrepreneurial principles, including opportunity identification,
~~.	market analysis, and product development, to create a basic business plan.
CO4	Perform and interpret simple food adulteration tests, understanding the implications
005	for food safety.
CO5	Develop product concepts, prototypes, and marketing plans, exploring the potential
Textb	for startup ventures.
1 extb	S. George and V. Muralidharan, "Fibre to Finished Fabric – A Simple Approach",
1.	1st ed., Publication Division, University of Madras, Chennai, 2007.
2.	H.D. Belitz, W. Grosch and P. Schieberle, "Food Chemistry", 4th ed., Springer,
2.	2009.
3.	Vibha A. Joshi, "Food Adulteration and Safety", 1st ed., Oxford Book Company,
	2011.
4.	David S. Clydesdale, "Food Chemistry: Principles and Applications", 2nd ed.,
	Aspen Publishers, 2004.
5.	S.S. Bhattacharya and A.R. Patel, "Natural Dyes: Sources, Chemistry, and
	Applications", 1st ed., Woodhead Publishing, 2017.
Refer	ence Books:
1.	A. Larry Branen, P.M. Davidson and S. Salminen, "Food Additives", 2 nd ed., CRC
	Press, 2001.
2.	Yeshajahu Pomeranz and Clifton E. Meloan, "Food Analysis: Theory and
2	Practice", 3 rd ed., Springer, 2000.
3.	Leo M.L. Nollet, "Handbook of Food Analysis", 2nd ed., CRC Press, 2004.
4.	Asim Kumar Roy Choudhury, "Principles of Textile Finishing and Dyeing", 1st ed., CRC Press, 2017.
5.	John Shore, "Dyeing: History, Science and Practice", Revised ed., Society of Dyers
	and Colourists, 2013.
	resources:
1.	https://librarysearch.ohsu.edu/discovery/fulldisplay?adaptor=Local+Search+Engine
	&context=L&docid=alma99332551176001451⟨=en&mode=advanced&offset
	=0&query=sub%2Cexact%2C+Food+composition+%2CAND&search_scope=Ever
	ything&tab=Everything&vid=01ALLIANCE_OHSU%3AOHSU&utm_source=cha
2.	tgpt.com https://pmc.ncbi.nlm.nih.gov/articles/PMC9818512/?utm_source=chatgpt.com
3.	https://rosemaryandpinesfiberarts.de/natural-dyeing-
٥.	resources/?utm_source=chatgpt.com
4.	https://spinoffmagazine.com/dyeing-resources-for-the-beginner-
"	dyer/?utm_source=chatgpt.com
5.	https://researchguides.library.tufts.edu/dyes?utm_source=chatgpt.com

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	2	3	3	3	3	3	3	3
CO2	3	3	3	3	2	3	2	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3	3
CO4	3	3	3	3	2	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	3	3	3
Total	15	15	15	14	13	15	13	14	15	15	15
Average	3.0	3.0	3.0	2.8	2.6	3.0	2.6	2.8	3.0	3.0	3.0

3 – Strong, 2- Medium, 1- Low

										Marks	S
Course Code	Course Name	Category	L	Т	P	S	Credits	Hours	CIA	External	Total
24UCHS32									75	100	
	Learning Objectives										
LO1	To understand the historical context of pesticide use and gain a foundational knowledge of the chemical nature of pesticides.										
LO2	To gain in-depth know degradation, metabolism, a	and form	ıulat	tions	of	key	ins	ectici	de clas	ses.	
LO3	To learn the sources, path residues.										
LO4	To assess the effects of methods for their analysis.										
LO5	To understand the princial alternatives to synthetic pe			, an	ıd a	ipp]	licat	ions	of bio	pesticio	des as
Unit		Cont	ent							Ho	urs
1	Pesticides Chemistry and Toxicity: History of pesticides. Chemistry of Pesticides: Brief introduction to classes of pesticides, structures, chemical names, physical and chemical properties. Toxicity of pesticides: Acute and chronic toxicity in mammals, birds, aquatic species etc. Methods of analysis of										
2	Insecticides: Study of following insecticides with respect to structure, chemical name, properties, synthesis, degradation, metabolism, formulations. Organophosphates and Phosphothionates: Monocrotophos, and parathion-methyl. Organochlorine – Endosulfan, heptachlor; Carbamate: Methomyl, Propoxur.									6	
3	Pesticides Residues: Application of agrochemicals, dissemination pathways of pesticides, causes of pesticide residues, remedies. Pesticides residues in atmosphere, water and soil. Absorption, retention and transport in soil, effects on								6		
4	and soil. Absorption, retention and transport in soil, effects on microorganism, soil condition and fertility. Pesticide Residues Effect and Analysis: Effects of pesticides residue on human life, birds and animals - routes for exposure to pesticides, action of pesticides on living system. Analysis of pesticides residues - sample preparation, extraction of pesticides residues simple methods and schemes of analysis, multi-residue analysis.										6

	Biopesticides: Pheromones, attractants, repellents	_
	Introduction, types and application (8- Dodecen-1-ol, 10-cis-12 hexadecadienoic, Trimedlure, Cue- lure, methyl eugenol, N,N	
5	Diethyl-m-toluamide, Dimethyl phthalate, Icaridin). Baits	6
	Metaldehyde, Iron (II) phosphate, Indoxacarb, Zinc Phosphide Bromadiolone.	; ,

CO	Course Outcomes
CO	Students will be able to
CO1	Describe the history of pesticide use and explain the basic chemical structures and properties of common pesticide classes.
CO2	Identify, classify, and describe the chemical properties, synthesis, degradation, metabolism, and formulations of major insecticide classes.
CO3	Explain the sources, pathways, environmental fate, and ecological impacts of pesticide residues.
CO4	Assess the effects of pesticide residues on living organisms and perform basic analytical techniques for their detection and quantification.
CO5	Explain the principles, classify the types, and describe the applications of biopesticides as alternatives to synthetic pesticides.
Textb	ooks:
1.	R. Krieger, "Hayes' Handbook of Pesticide Toxicology", 3 rd ed., Academic Press, 2010.
2.	N. N. Melnikov, "Chemistry of Pesticides", 1st ed., Springer, 1971.
3.	M. Stoytcheva, "Pesticides - Formulations, Effects, Fate", 1st ed., InTechOpen, 2011.
4.	P. D. Larkin, "Analytical Methods for Pesticide Residues", 1st ed., Wiley, 2013.
5.	Opender Koul, "Microbial Biopesticides: Opportunities and Challenges", 1 st ed., CRC Press, 2013.
Refer	ence Books:
1.	J. R. Plimmer, "Pesticide Chemistry and Bioscience: The Food-Environment Challenge", 1 st ed., Springer, 2001.
2.	C. Tomlin, "The Pesticide Manual: A World Compendium", 17th ed., BCPC, 2015.
3.	J. C. Varela, "Pesticide Residues in Food and Drinking Water", 1st ed., Wiley, 2005.
4.	G. J. Hall, "Pesticides and Human Health", 1st ed., Springer, 2020.
5.	H. Schmutterer, "The Neem Tree: Source of Unique Natural Products for Integrated Pest Management", 2 nd ed., Wiley-VCH, 2002.
Web 1	resources:
1.	https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks
2.	https://www.epa.gov/caddis/insecticides
3.	https://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/code/pesticide-residues/en/
4	
4.	https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food
5.	https://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	2	3	3	3	3	2	2
CO3	3	3	2	2	3	3	3	3	3	3	2
CO4	3	3	3	3	3	3	3	3	3	2	3
CO5	3	3	3	3	3	3	3	3	2	3	3
Total	15	15	14	14	14	15	15	15	14	13	13
Average	3.0	3.0	2.8	2.8	2.8	3.0	3.0	3.0	2.8	2.8	2.8

3 – Strong, 2- Medium, 1- Low

Continuous Internal Assessment (CIA) Test

The following procedure will be followed for the award of internal marks:

CIA Exam I: Three hours duration for 75 marks (First 2 ½ Units)

CIA Exam II cum Model Exam: Three hours duration for 75 marks (Full Syllabus)

Internal Mark Distribution	Theory & Practical
CIA – I (75 Marks)	5
CIA – II (75 Marks)	5
Library Usage in Hours	5
Attendance	5
Assignment / Seminar / Observation	5
Internal Marks	25

Format to Entering in all Continue Internal Assessment (CIA) Tests and Internal Marks

Re No	Na	ame	CIA -	CIA - 2	Marks Conve rsion	Library Usages	Atten dance	Assignment / Seminar / Observation	Total Marks	Remarks

Recommendations for Entering Library Usage:

Library usage for UG in hours	Marks to be awarded		
Minimum 10 Hours	5		

Attendance:

Attendance Earned	Category	Marks to be Awarded
91% and above	Highly Regular	5
75% but below 90%	Regular	4
65% but below 74%	Shortage	3
55% but below 64%	Detained	2
Below 54%	Redo	0

THEORY QUESTION PAPER PATTERN END SEMESTER EXAMINATIONS FOR UG & PG DEGREE PROGRAMMES - 3 HOURS DURATION

Part A	10 X 2 = 20 Marks					
Part B	5 X 5 = 25 Marks					
Part C	(One Question from each UNIT) To answer 3 questions (out of 5 questions) (One question from each UNIT)	3 X 10 = 30 Marks				
TOTAL 75 Marks						
(Equal Weightage should be given to each unit)						