MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI
PG & RESEARCH DEPARTMENT OF PHYSICS
E-NOTES

CLASS : Il MSC PHYSICS
SUBJECT: MICROPROCESSOR (8085) & MICROCONTROLLER (8051)
SUBJECT CODE: GPH33

SYLLABUS

Unit-3: Basic of Microcontroller 8051

8051 Micro-controller hardware: 8051 oscillator and clock - Program counter and
data pointer - A and B CPU register - Flags and PSW - Internal memory - Internal
RAM - Stack and stack pointer - Special function registers - Internal ROM-Input /
output pin, ports and circuits - External memory.

Counter and Timer: Counter / Timer interrupts - Timing - Timer modes of
operation — Counting-Serial data input / Output: Serial data interrupt - Data

transmission - Data reception - serial data transmission modes.

> Winwvo G L\JiLLC' S A Al JAaLoe UL Ao lJLU
o 4 L.

[or requcing programniel tillc (Lielio

gram generated
o O

.3

Four-Bit to Thirty-Two-Bit Microcontrollers

Everv application demands a microcontroller that offers the right amount of
functionalitv at the minimum cost. Applications vary from controlling an ap-
pliance to controlling an automobile. No single microcontroller design can ecp-
nomically meet these demands, so semiconductor manufacturers offer an arri

of microcontrollers designed to handle data in 4-. 8-. 16- and 32-bit wor@sl.
Bits are not the only thing that increase as word length grows. Addition

functions are also added to meet market needs. Some of the more popular a
ditional functions are
Analog-to-digital (A/D) converters. which change external analog sig-
nals to digital bits
Counter arrays. used to count and generate pulses
Watchdog timers (WDTs). which reset the controller if program execuf
tion hangs up
Serial data, both asynchronous (UART) and svnchronous
Pulse width modulation (PWM). used. among other things. for motor
speed control
Phase-locked-loops (PLLs). used for synchronous communications
External bus controllers for static (RAM/ROM) and dyvnamic (SDRAM
memories

al

d-

S’

If the market is large enough. say for automotive dashboard control and display,
a high-end microcontroller will be designed and marketed by numerous com-

panies just to meet that single application,

Four-Bit Microcontrollers

In terms of sheer volume, 4-bjt microcontrollers may be used more than apy

other type. For a commodity microcontrol]er, Cost depends as much on the v¢

i

;rne of the Package and the number of Pins as on the amount of silicon inside.
In count, in turn, depenfis on the number of dats bits commonly handled by

st

st
0-

4-bl2tSRAM 10-bit ROM Counters 1/0 Pins Other Features
0 H 2 14 A/D, WDT

4ight-Bit Microcontrollers

Eigh" bit mlcrqcontrollers are perhaps the most popular microcontrollers in
use tqday,]_udglng from the number of semiconductor companies making them.

Eight bits have proven to be a very useful word size for everyday controller
tasks. Capable of 256 decimal values, or quarter-percent resolution, the 1-byte
data word is adequate for many control and monitoring applications. Serial
ASF]H code is also byte size, making 8 bits the natural choice for data communi-
cation applications. In addition, most low-cost RAM and ROM memories store
1 byte per memory location for easy interfacing to an 8-bit microcontroller.

One indication of the popularity of 8-bit microcontrollers is the fact that
some 44 manufacturers produce over 600 models based on the 8051 architecture
alone! Other popular microcontrollers, such as those designed by Microchip,
Motorola, and Zilog, add hundreds of additional choices to the 8-bit menu. Here

is what the 8051 offers when mounted in a 40-pin DIP:

ROM ROM Counters 1/0 Pins Other Features
128 bytes 4K 2 32 UART

Variations on a design occur when manufacturers offer models that include ap-
plication-specific extras such as A/D and D/A converters, counter arrays
UARTs, WDT, and different memory configurations. On-chip ROM memory
size may be increased, or ROMless models made that use off chip EPROM:s fo
prototyping purposes. Flash and EEPROM memories may also be incorporateq

into the design.

’/0 ° °
i Sixteen-Bit Microcontrollers

Sixteen-bit microcontrollers offer much of the generality of 8-bit models, b
with greatly increased memory size and speed. Sixteen-bit microcontrollers 4
also much better suited for programming in high-level languages, such as C.

Applications for 16-bit microcontrollers are calculation and data ilnﬁe
sive and include disk drives, modems, printers, scanners, pattern recognitic
and automotive and servomotor control. A typical 16-bit microcontroller,
Motorola 68HC16Z3, has these attributes when mounted in a 144-lead LQ

package:

RAM ROM Counters 1/0 Pins Other Features

3

—

j =1

ut

e

n-

n,
he
FP

4K 8K 2 24 Eount , A/D. WOT

| Thirty-two-bit microcontrollers are

lving away from gener].
Clltgl;zn;ll}llc}fvgs PI%AS, GPS, automotiyg
r

purpose applications to targeted ma inment/game boxes, digita]

i enterta
control, communication networks, I‘O.bOUCS;i ses. As an example, the Sharp
cameras, cell phones, and similar high-end uses.

LH79 ff ing features, most
0 housed in F ers the following
in a 176-pin LQFP package o . e
of \Zrhslih coulsg b:a uased to implement a notebook computer: 32K RA olor

ial, two PWMs, 64 1/0 pins, foy;
UARTS, synchronous.serla . |
o tccglztr\(/)\/l%)e"l{, igg‘fiime clock, PLL, and dlreqt merpory acccless (E)Dl\‘//lvf;xl)l_g}a%a;h&
f}?: Izleve,loprma;nt of 32-bit microcontrollers is dr.lven by large, o
markets, and must be studied on an individual basis.

(®)

software is the minimum number,

the prototype device, Many of
ROMless version, an EPR

mable read only memory (EEPROM)

A_a.n_al-—d""l"“
-
o]
4
%’ .
D
(@)
A
ab]
=
@D
ab)
o
w
o

=
=
g
=
8
w
Z
=
g
@
7
=
@
@
B,
@
~
o
o
]
aQ
=
&

Development Systems for Microcontrollers

What is needed to be able to apply a microcontroller to your product? That is
what package of hardware and software will allow the microcontroller to bg

programmed and connected to your application? A package commonly called 5
development system is required.

First, trained personnel must be available

either on your technical staff o1
as consultants. One person who is versed in

digital hardware and computer

Second, a device capable of Programming EPROMs must be available to test

the microcontroller families discussed have &
OM Version, or an electrical]

UpJECiiveD

l‘ \ (‘ }

‘ he 8051 microcontroller and their functiong,
o List the internal registers of the 801

; icrocontroller.
o Draw the machine cycle for the 8051 microcontrol .
‘ i ' 2, and ! Ins.
o State the physical differences between the Port 0, 1, 2, ¢) p »
B l ' ‘ ' s and associatec
+ Describe the various operating modes of the timer/counters ‘
control registers. | |
| ' iiated contro]
+ Describe the various operating modes of the UART, and assoc
registers.

. i g
¢ List the types of interrupts, the interrupt program addresses, and the inter
rupt control registers.

=

Introduction

The first task faced when learning to use a new computer is to become familiar
with the capability of the machine. The features of the computer are best learneq
by studying the internal hardware design, also called the architecture of the de.
vice. to determine the type, number, and size of the registers and other circuitry,

The hardware is manipulated by an accompanying set of program instruc-

tions, or software, which is usually studied next. Once familiar with the hardA
ware and software, the system designer can then apply the microcontroller tg
the problems at hand.

A natural question during this process is “What do [d
Similar to attempting to write a poem in a foreign language before you have ¢
vocabulary and rules of grammar, writing meaningfu| programs is not possiblg
until you have become acquainted with both the hardware and the software o
d computer,

This chapter provi
subsequent chapters,
hardware and the

0 with all this stuff?

software.

—

=4

e
8051 Mlcrocontroller Hardware

The 8051 micy
of microconty
able in N-Chg

Ocontroller gen
ollers that have

eric part number actually includes a who]e famil]
nnel Metal Oxiq

numbers ranging from 8031 to
e Silicon (NMOS) and

8751 and are gvail-

/

AS =S LW}

Compiementary Metal Oxide

architecture. This galaxy of parts, the result of desires by the manufacturers to

leave no-market miche unfilled, would require many chapters to Cover. I this
chapter, we will study a “generic” 8051, housed in a 40-pin DIP, and direct the
investigation of a particular type to the data books. The block diagram of the
8051 in Figure 3.1a shows all of the features unique to microcontrollers:

Internal ROM and RAM

I/0O ports with programmable pins
Timers and counters

Serial data communication

The figure also shows the usual CPU components: program counter, ALU,
working registers, and clock circuits.!

The 8051 architecture consists of these specific features:

+ Eight-bit CPU with registers A (the accumulator) and B
+ Sixteen-bit program counter (PC) and data pointer (DPTR)
+ Eight-bit program status word (PSW)
« Eight-bit stack pointer (SP)
¢ Internal ROM or EPROM (8751) of 0 (8031) to 4K (8051)
+ Internal RAM of 128 bvtes:

« Four register banks, each containing eight registers

« Sixteen bytes, which may be addressed at the bit level

« Eighty bytes of general-purpose data memory
« Thirty-two input/output pins arranged as four 8-bit ports: PO —P3
» Two 16-bit timer/counters: TO and T1
+ Full duplex serial data receiver/transmitter: SBUF
+ Control registers: TCON, TMOD, SCON, PCON, IP, and IE
+ Two external and three internal interrupt sources

¢ Oscillator and clock circuits

‘Knowledge of the details of circuit operation that cannot be affected bv anv instruction or extern:
data, although intellectually stimulating, tends to confuse the student new to the 8051. For this re:
son, this text concentrates on the essential features of the 8051; the more advanced student mas
wish to refer to manutacturers’ data books for additional information. -

Nee LCaAaAricn 7

T -
P o — /O
Special' o g f— AO_A7
] Function r——‘—_ e (s R SN DO-D7
Arithmetic Registers L
and " RAM I
Logic Uni .
— | [_]
g-Bit Data and S % — /0
Address Bus « a |
A ’______J |
]
s 5 — o
- & — A8-A15
[T
16-Bit Address Bus r‘—— — 10
i o [Interrupt
= S — Counter
_— Special- =4 L e — S_eri_ai)ata
EA Sysiorti Byte/Bit Function .| L rowr
ALE Tty Addresses Registers :
PSEN i = I
XTAL1 ystem . ,
XTAL2 Interrupts ey - |
RESET Timers an PCON :
Voo Data Buffers Register SBUF : oo 3
GND Memory Control Bank 2 SCON , Po
T TCON I Memory
,' Register TMOD : Control
I Bank 1 TLO |
| | THO :
" Register TL1 I
I
i Bank 0 TH1 |
I
" Internal RAM Structure :
IGURE 3.1A « 8051 Block Diagram
The programming model of the 8051 in Figure 3.1b shows the 8051 as a
collection of 8- and 16-bit registers and 8-bit memory locations. These registers
and mer_nory locations can be made to Operate using the software instructions
th_E:’L al‘}(la Incorporated as part of the design. The program instructions have to do
with the control of the registers and digital data paths that are physically con-

. 8 188"l | g Tag=l g Tgg 888"
- E | | T™™oD | | TcoN FrF
— = 3 | For &te"_‘ 1 Register ! Register Register
A B ? Interrupt Registers Timer Control Registers
: . |
Register Register | .
/;—ffﬂ‘—tm—'MB 8C| | 8 [8A 8 | 8D 8 | 8B
Math Regis | THO | TLO TH1 U
Counter | | Counter Counter Counter
Timer/Counter Registers
8 198" | 8[99] [8 er 8 | Do
SCON | | sBUF | | PcoN PSW
Register Register | | Register Register
-£ Serial Data Registers Flags
General-
Purpose 8 | 81
Area SP
0 i Register
2F Bit 7F Stack Pointer Register
Address Bit Addresses for This RAM Area Only
" Area
20 00 ‘|
1F Register
Bank \
18 3 - . |
17 Register 8 | 83 | 8 | 8 16 No Address(|
Bank Data Pointer ‘
: Program Counter
” 2 DPH DPL g | \
OF Register Data and Code Addressing Registers |
Bank [
o8 1 |
07 R7 | 8 80" 8 | 90" | | 8 | A0 8 [BO"| |
N 3? R6 Port 0 Port 1 Port 2 E Port 3 l
s il S Latch Latch | | Laten | Latch |
Sank 04 R4 SE—
° o[RS | \
02 R2 Number of Direct Byte Address |
01 Rl Bits | “Indicates Bit Addressable |)
00 RO 000 et
Byte Internal Internal
Addresses RAM e
IGURE 3 1B + 8051 Programming Model

wveically 1A

de the 8051, as well as memory locations that are piysicdt ¥-locargy
e number of special-purpose regiSt‘?rs e
uter a microcontroller. A cursory inspgq,
the first-time viewer; return to the mq dy)
he remainder of the text.

¢ function; those that do occupy an ing,
0 or PC. Others, which, "
d in a larger block, sugh

tained insl

ide the 8051. .
OUtS’i"ie model 18 comphcatgd by th
must be present to make a microcomp

i e model is recommended for
:soge(:efdtéld while progressing throug}'l ﬁt
Most of the registers haye a specl ———
sidual block with a symbolic name, suc has et
enerally indistinguishable from each other, are g

. ternal ROM or RAM memory. |
s 11;;tsch register, with the exception of the program counter, has an interng)

-byte address assigned to it. Some registers (mark.ed \I/IVlth E::Il as‘geilSk; in Fip.
re 3.1b) are both byte and bit addressable. Tha’f is, t' e en 1.re yte of datg 5
uch register addresses may be read or altered, or 1nd1v1d_ual bits may be r.ead -
ltered. Software instructions are generally able to specify a register by itg ad.
ess, its symbolic name, or both. o

A pinout of the 8051 packaged in a 40-pin DIP is shown in Figure 3.2 wig,
the full and abbreviated names of the signals for each pin. It is important {,
ote that many of the pins are used for more than one function (the alternate
nctions are shown in parentheses in Figure 3.2). Not all of the possible 8057
features may be used at the same time.
Programming instructions or physical pin connections determine the use of
any multifunction pins. For example, port 3 bit 0 (abbreviated P3.0) may be useg
a5 a general-purpose I/O pin, or as an input (RXD) to SBUF, the seria] data r
ceiver register. T.he system designer decides which of these two functions ig f(;
be used and designs the hardware and software affecting that pifi aceor gl

.

¥
D

The 8051 Oscillator and Clock

minji

€rate aboye g minim

t

" :
blO(':k Tate to yig]q stan.dard

Co

(@]
h’
9%
8
=
7]
D
O
—
=
D

Port1Bit0 | 1 P10 U Vee 40
Port1Bit1 | 2 P14 (ADO)P0.0 39
Port1Bit2 | 3 p12 (AD1)P0.1 38
Port1Bit3 | 4 p13 (AD2)P0.2 37
Port1Bit4 | 5 P14 (AD3)P0.3 36
Port 1Bit5 [6 P1.5 (AD4)P0.4 35
Port1Bit6 | 7 P16 (AD5)P0.5 34
Port1Bit7 | 8 P17 (AD6)P0.6 33
Reset Input | 9 RST (AD7)P0.7 32
Port 3Bit0 | 10 P3.0(RXD) (Vpp)/EA 31

(Receive Data)

Port 3Bit1 | 11 P3.1(TXD) (PROG)ALE 30
(XMIT Data)

Port 3Bit2 | 12 P3.2(INTO) PSEN 29
(Interrupt 0)

Port 3Bit3 | 13 P3.3(INT1) (A15)P2.7 28
(Interrupt 1)

Port 3Bit4 | 14 P3.4(T0) (A14)P2.6 27

(Timer O Input)

Port 3Bit5 | 15 P3.5(T1) (A13)P2.5 26

(Timer 1 Input)

Port 3Bit6 | 16 P3.6(WR) (A12)P2.4 25
(Write Strobe)
Port 3Bit7 | 17 P3.7(RD) (A11)P2.3 24
(Read Strobe)
Crystal Input 2 | 18 XTAL2 (A10)P2.2 23
Crystal Input 1 | 19 XTAL1 (A9)P2.1 22
Ground | 20 Vss (A8)P2.0 21

+ 5V

Port 0 Bit 0
(Address/Data 0)

Port 0 Bit 1
(Address/Data 1)

Port 0 Bit 2
(Address/Data 2)
Port 0 Bit 3
(Address/Data 3)
Port 0 Bit 4
(Address/Data 4)
Port 0 Bit 5
(Address/Data 5)
Port 0 Bit 6
(Address/Data 6)

Port 0 Bit 7
(Address/Data 7)

External Enable
(EPROM Programming Voltage)

Address Latch Enable
(EPROM Program Pulse)

Program Store Enable

Port 2 Bit 7
(Address 15)

Port 2 Bit 6
(Address 14)

Port 2 Bit 5
(Address 13)

Port 2 Bit 4
(Address 12)

Port 2 Bit 3
(Address 11)

Port 2 Bit 2
(Address 10)

Port 2 Bit 1
(Address 9)

Port 2 Bit 0
(Address 8)

Note: Alternate functions are shown below the port name (in parentheses). Pin numbers

1
C‘ 18 XTAL2
1[}—“_——_{"

Crystal
or
Ceramic Resonator

19 XTAL1
|
. |

c2

AL

8051 DIP

£

Crystal or Ceramic Resonator Oscillator Circuit
ry

P2 P1
PP P2 P P2 P1 P2 P1 P2 P -
P2

1] [‘Iii[i‘
= Uy U UL L LY

| | Stat
f ot 7 ’ — | State 3 ’ State4 | State5 | e6
One Machine Cycle
lr#

Address Latch | ‘ B) —_—
Enable (ALE) 8051 Timing

S— _—
FIGURE 3.3 « Oscillator Circuit and Timing

Ceramic resonators may be used as
onators. However, decreases in frequenc
ramic resonator a poor choice if high-s
other systems, or critical timing, is to be

The oscillator formed by the cry
generates a pulse train at the frequen

a low-cost alternative to crystal resd
v stability and a uracy make the ce
peed serial data communication wit!
done.

stal, capacitors, and an on-chip inverter
as shown in Figure 3.4
erval of time within the
» smallest interval of time to a(-

X instruction, however, |

byte, decod Operations of the microcontroller such #8
) a data byte, T : €0ding an opcode. executing an opcode, or writifg
) Proo +0 oscillator pulses define each state) ‘
rogram Instructio ; :
*/ executed, dependine Oistﬁl:ivre;]ulgg one, two, or four Mmachine cycles to pe
. S 0 : g ‘ %3 i
executed by the microcontrollép . nstructions are fetched ape

I @utomatica]]y. beginp;

g With the instruction

crystal, although seemingly an odd value, _vielas a cvcle frequency of 921.6 kilo-

hertz, which can be divided evenly by the standard communication baud rates
of 19200, 9600, 4800, 2400, 1200, and 300 hertz.

Note, in Figure 3.3, there are two ALE pulses per machine cycle. The ALE
pulse, which is primarily used as a timing pulse for external memory access.
indicates when everv instruction byte is fetched. Two bytes of a single instruc-
tion may thus be fetched, and executed, in one machine cvcle. Single-byte in-
structions are not executed in a half cycle, however. Single-bvte instructions
“throw-away” the second byte (which is the first byte of the next instruction).
The next instruction is then fetched in the following cvcle.

Program Counter and Data Pointer —

The 8051 contains two 16-bit registers: the program counter (PC) and the data
pointer (OPTR). Each is used to hold the address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are
addressed by the PC. Program ROM may be on the chip at addresses 0000h to
OFFFh. external to the chip for addresses that exceed OFFFh, or totallv external
for all addresses from 0000h to FFFFh. The PC is automatically incremented af-
ter every instruction byte is fetched and may also be altered by certain instruc-
tions. The PG is the only register that does not have an internal address.

The DPTR register is made up of two 8-bit registers. named DPH and DPL.
which are used to furnish memory addresses for internal and external code ac-
cess and external data access. The DPTR is under the control of program in-
structions and can be specified by its 16-bit name, DPTR. or by each individual
byte name, DPH and DPL. DPTR does not have a single internal address: DPH
and DPL are each assigned an address.

L

A and B CPU Registers

The 8051 contains 34 general-purpose, or working, registers. Two of these. reg-
isters A and B, hold results of many instructions, particularlyv math and logical

-

H

SI}

ha

-
=
5
P)
=
o
=
ot
5
a9
(@]
o
8

Tins. The 8051

o
5
.
: B
9]
=)
S
<
(@]
jeb]
=]
o

. it (CPU). The other 32 are arranged
ntral processing unit () " ;i
operations, Ofthelglgfxi/lc?n fOl.lII‘) banks, BO —B3, of eight registers and COmprig
interna
as part of in

the mathematical C?Zf(.)r) register is the most versatile of the two CPU registq
The A (accumu

ions, including addition, subtraction, integer |\’

rations, including a . . i i
i, ol b o 10 A Tt
tlphcatlonlag ta transfers between the 8051 al}d any o 3 divisiss o G;r t.e
SR for. al ?j with the A register for multiplication an be pt fod
re%lshter ISouost(;’ier function other than as a location where data may be s ored,
and has n

Flags and the Program Status Word (PSW) -~

Flags are 1-bit registers provided to store the resultil ofﬂcertaindprogll(‘z;n; in.St.I‘u
; i i dition of the flags and m €cCisig;

t . Other instructions can test the con ; _

bl:sI:i on the flag states. In order that the flags may be conveniently addresgg ’

they are grouped inside the program status word (PSW) and the power conty

PCON) registers. .

(The 80g51 has four math flags that respond automatically to the outcomeg
math operations and three general-purpose user flags that can be set to q
cleared to 0 by the programmer as desired. The math flags include Carry (),
Auxiliary Carry (AC), Overflow (OV), and Parity (P). User flags are nameq H
GFO0, and GF1; they are general-purpose flags that may be used by the progray

mer to record some event in the program. Note that all of the flags can be 4

and cleared by the programmer at will. The math flags, however, are also af.
fected by math Operations.

The program status word is shown in Fi

math flags, user program flag F0, and the reoj
of the four general

The remaining two user flags . *d 1n PCON, which |;
shown in Figure 3.13.

e discussed in chap-
at affect the flags. The us S can be set or cleard
§ covered in Chapter 5.

I

ytes, commonly
d as the program

T

The Program Status Word (PSW) Special Function R

Bit

W s 0o

—

6 A
CY > K 3 2 1 0
s RS1 | Rso '| Y I — 1 @

egister
Symbol Function
CcY Carry flag; used in ari ic i
! AUXiIiawgéarreydf|l29a-r:::21e:lc‘ gjmp, rotate, and Boolean instructions
; o) ' '

o Useriasg r BCD arithmetic
RS1 Register bank select bit 1
RSO Register bank select bit 0

RS1 RS0

0 0 Select register bank 0

0 1 Select register bank 1

1 0 Select register bank 2

1 1 Select register bank 3
oV Overflow flag; used in arithmetic instructions

— Reserved for future use
Parity flag; shows parity of register A: 1 = Odd Parity

o

Bit addressable as PSW.0 to PSW.7

FIGURE 3.4 « PSW Program Status Word Register

rie

the nature of the operation in progress.

Internal RAM

Th

tail in Figure 3.5. 18 0

i

s. for code and data. Internal circuitry accesses the correct memory based on

' ‘hich is show -in Figure 3.1 and in dg
e 128-bvte internal RAM, which is bho“.n.generall_\ in Figure 3
reanized into three distinct areas:

Thirtv-two bvtes from address 00h to 1 Eh that make up ?Q \\‘ork'mtg re;)g;ic
ters o.rganizehd as four banks of eight registers each. The four 391%105 teOrR_ :
are numbered 0 to 3 and are made up of eight registers ’n‘zfmel - or/b'\- i
Each register can be addressed by name .(‘\\'hen its E)an}? is Sf-e«céleécted] S
RAM address. Thus R0 of bank 3 is RO (if bank 3 is current '\dbksi o
address 18h (whether bank 3 is selected or not). Blt.S ‘R80qar;t e
PSW determine which bank of registers 1s currenth in uzieCan s
when the program 1s running. Register banks not selecte
general-purpose RAM. Bank 0 is selecteq on reset. ———
A bit-addressable area of 16 bytes occupies RAM (Ii)_(t{?e fls able; bithma\‘ e
2Fh, forming a total of 128 addressable bits. An addres ~

[S

Byte

Address
Byte 7F x
Address
BT R7
1D Ii R5
A 1C I R4
§ 1B _ _ Rs
1A | R2
19 | R1
18 RO
T R7
16| Re
15 | R5
S 14| R4 j
& 18] R3]
12 Rz |
11| Ri Byte Bit
10 RO Address Addresses
________ oF (7 78
2E | 77 70 |
2D | 6F 68 | i
% 2C | 67 60 '\\\
5 28 [5F og W
2A | 57 &9 i
20 | 4F 45
N : 28 | 47 a0
=
% la anl
o 25 | oF o5
£ 3
@ 28 [1F g
217 57
20 [oF
T Sl I
7 - s — —

Bit Addreccani.

botioode a8 B ol B &F O ¢

specified by its bit address of 00h to 7Fh, or 8 bits may form any byte ad-'
dress from 20h to 2Fh. Thus, for example, bit address 4Fh is also bit 7 of
byte address 29h. Addressable bits are useful when the program need only
remember a binary event (switch on, light off, etc.). Internal RAM is in short
supply as it is, so why use a byte when a bit will do?

A general-purpose RAM area above the bit area, from 30h to 7Fh, address-
able as bytes.

The Stack and the Stack Pointer AT

The stack refers to an area of internal RAM that is used in conjunction with cer-
tain opcodes to store and retrieve data quickly. The 8-bit Stack Pointer (SP) reg-
ister is used by the 8051 to hold an internal RAM address that is called the top
of the stack. The address held in the SP register is the location in internal RAM

where the last byte of data was stored by a stack operation.
When data is to be placed on the stack, the SP increments before storing

data on the stack so that the stack grows up as data is stored. As data is re-
trieved from the stack, the byte is read from the stack, and then the SP decre-

ments to point to the next available byte of stored data.
Operation of the stack and the SP is shown in Figure 3.6. The SP is set to
07h when the 8051 is reset and can be changed to any internal RAM address by

the programmer, using a data move command from Chapter 5.
The stack is limited in height to the size of the internal RAM. The stack has

the potential (if the programmer is not careful to limit its growth) to overwrite
valuable data in the register banks, bit-addressable RAM. and scratch-pad RAM

areas. The programmer is responsible for making sure the stack does not grow

beyond predefined bounds!
The stack is normally placed high in internal RAM. by an appropriat

choice of the number placed in the SP register, to avoid conflict with the regis
ter, bit, and scratch-pad internal RAM areas.

<

[4%)

e

Special Function Registers
The 8051 operations that do not use the internal 128-byte RAM addresses fro

00h to 7Fh are done by a group of specific internal registers, each called a Spe-

cial-Function register (SFR), which may be addressed much like internal RAN

using addresses from 80h to FFh.
Some SFRs (marked with an asterisk* in Figure 3.1b) are also bit addres

able, as is the case for the bit area of RAM. This feature allows the programmer

o change only what needs to be altered, leaving the remaining bits in that S}
unchanged,

t Not all of the addresses from 80h to FFh are used for SFRs, and attempti
0 1 . h I 11 a |
use an address that is not defined, or em Pty results i unpredictabte resul

|97 B

CPU oo
Action
t Data
SP =0A i Store Data Address 0A Ge
| Get Dat2
09
SP =09 Store Data
| Get Datéd
08
SP =08 Store Data @
ﬂ\
7
Address 0
e ement
the Stack Internal RAM (Get ot W)
Storing Data on the

(Increment then store)

FIGURE 3.6 Stack Operation

: icht corner of each
[n Figure 3.1b, the SFR addresses are shown 1n the lﬁpec;drrleg:qes R
block. The SFR names and equivalent internal RAd ha i i{nernal L e
Table 3.1. Note that the PC is not part of the SFR and has
dress. See also Appendix F.

SFRs are named in certain opcodes by their functional names, such as A or
THO, and are referenced by other opcodes by their addresses, such as OEOh or
8Ch. Note that any address used in the program must start with a number: thus
ddress EOh for the A SFR begins with 0. Failure to use this number conve
ill result in an assembler error when the program is assembled.

ntion

nternal ROM

he 8051 is organized so t

D two entirely different p

hat data memor
hysical memory
anges.

y and program code me

mory can be
entities. Each h

as the same address

2 Wi“) IO)
from externa| Program e, . Cause the 8051 t0

LR

fy—Code bytes can

TABLE 3.1

K ATt

RAM Address (HEX)

Name Function Internal

A Accumulator OEO
B Arithmetic OF0
DPH Addressing external memory 83
DPL Addressing external memory 82
IE Interrupt enable control 0A8
IP Interrupt priority 0B8
PO Input/output port latch 80
P1 Input/output port latch 90
P2 Input/output port latch AOD
P3 Input/output port latch 0BO
PCON Power control 87
PSW Program status word 0D0
SCON Serial port control 98
SBUF Serial port data buffer 99
SP Stack pointer 81
TMOD Timer/counter mode control 89
TCON Timer/counter control 88
TLO Timer 0 low byte 8A
THO Timer 0 high byte 8C
TL1 Timer 1 low byte 8B
TH1 Timer 1 high byte 8D

also be fetched exclusively from an external memory, addresses 0000h to

FFFFh, by connecting the external access pin (EA pin 31 on the DIP) to ground.
The PC does not care where the code is; the circuit designer decides whether

the code is found totally in internal ROM, totally in external ROM, or in a com-
bination of internal and external ROM.

mternal RAM

internal special-functigp s
gxternal RAM

[nternal and external RO

8iSterS

2w e g

‘nally, the followsi
Finally Ing five types of OPcodes are ygeq
used to move data:

MOV

MOVX
MOVC
PUSH and POP

XCH

CAlE S SEEN

¢ COMMENT *

All of the following opcode examples
may b : .
may be assembled and debugged b Y D€ converted into operating programs that

each example:

org 0000h ; start code at 0000h
loop: ; a label to jump to (Chapter 8)
(insert code here)
sjmp loop ; jJump back to beginning
end ; end the program

5,]

Addressing Modes

The way the data sources or destination addresses are specified in the mne-
monic that moves that data determines the addressing mode. Figure 5.1 dia-
grams the four addressing modes: immediate, register, direct, and indirect.

Immediate Addressing Mode
nation is to make the source of the data

The simplest way to get data to a desti
Part of the opcode. The data source is then immediately available as part of the

instruction itself. |
When the 8051 executes an immediate data move, the program (aouglter llIS]
dutomatically incremented to point to the byte(s) following the opcode byte

the program memory. Whatever data i found there is copied to the destinatior

address,

CHAFIER

| ' Next Byte(s) Are Datar

7 S Source of Datg o
! Instruction Using # ly

Immediate Addressing Mode

RO to R7

Instruction Using

S

[ReAg;;i;r;(_)dtc_) R7 in Current Banﬁ/' Source or Destination of Data

Register Addressing Mode

} Instruction Using a RAM Addresi'

F Address in RAM Source or Destination of Data

Direct Addressing Mode

[Instruction Using @R0 or @R1

! Register RO or R1 in Current Bank | Address of Data

LAddress in RAM Source or Destination of Data

Indirect Addressing Mode

-

"

i

the

%}e rush to meet a deadline, we might forget to use the # fo
e resulting opcode is often a legal command that jg assemb

S
jom
wn
o
<
—t
o
@
R
w
w
D
=
o
—_
D

e |

=t
=
-

w

o

»
@
—
»
—=
T
=
~
o
—
5
=
D
()
=
=

GURE 5.1 o Addressing Modes

The mnemonic for immediate data is the pound sign (#). Occasionally ;
. s y, n

r immediate dat

rently selected register bank), A, and D%P;}gfie oy

— Operation
ri#n Co . '
the 8-bit : .
MOV A #n Py ltnumber n into register R
; ; r(o s
MOV DPTR - Copy the 8-bit Number n into the A iofths cur.rent register bank
Copy the 16-bit ccumulator register

Mnemonic Operation

MOV RO,#00h Put the immediate 8-bit number 00h in register RO
MOV R1,#01h Put the immediate 8-bit number 01h in register R1
MOV R4,#04h Put the immediate 8-bit number 04h in register R4
MOV R7,#07h Put the immediate 8-bit number 07 in register R7

MOV A,#0AAh Put the immediate 8-bit number AAh in register A

MOV DPTR,#1234h Put the immediate 16-bit number 1234h in register DPTR

Register Addressing Mode

Certain register names may be used as part of the opcode mnemonic as sources
or destinations of data. Registers A, DPTR, and RO to R7 may be named as part of
the opcode mnemonic. Other registers in the 8051 may be addressed using the
direct addressing mode. Some assemblers can equate many of the direct ad-
dresses to the register name (as is the case with the assembler discussed in this
book) so that register names may be used in lieu of register addresses. Remem-
ber that the registers used in the opcode as R0 to R7 are the ones that are cur-
rently chosen by the bank-select bits, RS0 and RS1 in the PSW.
Register-to-register moves are as follows:

Mnemonic Operation

MOV A,Rr Copy data from register Rr to register A
MOV Rr,A Copy data from register A to register Rr

A data MOV does not alter the contents of the data source address. A copy of
the data is made from the source and moved to the destination address. The
contents of the destination address are replaced by the source address con-
tents. The following list shows examples of MOV opcodes with immediate and

register addressing modes:

Mnemonic Operation

MOV A #0F1h Move the immediate data byte F1h to the A register
MOV A RO Copy the data in register RO to register A

MOV DPTR,#0ABCDh Move the immediate data bytes ABCDh to the DPTR
MOV R5,A Copy the data in register A to register R5

MOV R3,#1Ch Move the immediate data byte 1Ch to register R3

- 4 CAUTION ¢

+ Itis impossible to have immediate data as a destination.
All numbers must start with a decimal number (0 —-9), or the assembler assumes

*

the number is a /abel.

+ Register-to-register moves using the register addressing mode occur between reg-

isters A and RO to R7

CHAFIER 2

Direct Addressing MOdReAM and the SFRs may be a.ddressed direCtly .
r(;lrfss assigned to each RAM location :imd each Speci:l‘

endix% for an overall SFR /memory map,h]
I(;dresses from 00h to 7Fh to addrgss each byte ”
h to FFh at the locations shown in Table 5.1 '

¢ CAUTION ¢ —————

the addresses of the SFRs; the addresses are ng, in

All 128 bytes of inte
ing the single-byte ad
function register. See Ap
Internal RAM uses a
SFR addresses exist from 80

+ Note that there are “gaps” in

order. ' ' s
« Note the use of a leading 0 for all numbers that begin with an alphabetic (a|Dha)

character.

RAM addresses 00 to 1Fh are also the locations assigned to the four bank o

eight working registers, RO to R7. This assignment means that R2 of regiStg«,
TABLE 5.1 =
SFR Address (hex)
A 0EO
B 0F0
DPL 82
DPH 83
IE 0A8
IP 088
PO 80
P1 90
FE 0AO
e 080
PCON 87
oW 0DO
SBUF 99
SCON
98
SP
81
TCON
88
TMOD
THO -
TLO gg
TH1 a
TL1 D

88

TABLE 5.2

A b

Bank Reglster Address (fiex) Bank Register Address (hex)
; o o 2 RO 10
° i 01 2 R1 11
0 i 02 2 R2 12
: ns a3 2 R3 13
0 R4 04 2 R4 14
0 "o g3 2 RS 15
: - o8 2 R6 16
; il 07 2 R7 17
1 Y 08 3 RO 18
1 & 09 3 R1 19

! e 0A 3 R2 1A
! s 0B 3 R3 1B
1 st 0C 3 R4 1C
1 R5 0D 3 RS5 1D
! R6 OE 3 R6 1E
1 R7 OF 3 R7 1F

bank 0 can be addressed in the register mode as R2 or in the direct mode as
02h. The direct addresses of the working registers are shown in Table 5.2.

Only one bank of working registers is active at any given time. The PSW
special-function register holds the bank-select bits, RS0 and RS1, which deter-
mine which register bank is in use.

When the 8051 is reset, RSO and RS1 are set to 00b to select the working
ated from 00h to 07h in internal RAM. Reset also sets SP
Il grow up as it is used. This growing stack will over-
et the SP to a number above

registers in bank 0, loc

to 07h, and the stack wi
write the register banks above bank 0. Be sure to s

those of any working registers the program may use.
The programmer may choose any other bank by setting RSO and RS1 as de-

sired: this bank change is often done to “save” one bank and choose another
when servicing an interrupt or using a subroutine.

The programmer may elect to use the absolute numeric address number for
an SFR or may use a symbol (name) for the SFR. For example, the following in-

structions both move a constant number into port 1:

mov 90h,#0a5h
mov p1,#0a5h
plied with this book, “looks up” the actual address o

The A51 assembler, sup
SFR symbol. Please refer to the end o

an SFR when the programmer uses an

| e P

Appendix B for a list of SFR symbols.

ifvi ‘Rs in this book to emy,)..)
We shall use both methods of specilying SIRs 1 Ih"’“z;.

: addresses.
the fact that SFRs are internal RAM addre

o i 3 iate, and register ad,..
3 e possible using direct, immediate, 8 ”--Ss;,m
The moves made possil .

modes are as follows:

ic Operation .
Mnem°"'d Copy data from direct address add to reglstercI /;«
MOV:A,ad Copy data from register A to direct addregs a
MOV add A Copy data from direct address add to register Rr
Sl b Copy data from register Rr to direct address add
:/lﬂg\\; :gg,:r: Copy immediate data byte n to direct address add

MOV addi,add2 Copy data from direct address add2 to direct address add1

The following list shows examples of MOV opcodes using direct, immgg,
ate, and register addressing modes:

Mnemonic Operation

MOV A,80h Copy data from the port O pins to register A

MOV 80h,A Copy data from register A to the port 0 |latch .

MOV 3Ah,#3Ah Copy immediate data byte 3Ah to RAM lgcatlon 3Ah
MOV R0,12h Copy data from RAM location 12h to register RO
MOV 8Ch,R7 Copy data from register R7 to timer 0 high byte
MOV 5Ch,A Copy data from register A to RAM location 5Ch

MOV 0A8h,77h Copy data from RAM location 77h to IE register

¢ CAUTION o —

¢+ MOV instructions that refer to direct addresses above 7Fh that are not SFRs will

result in errors. The SFRs are physically on the chip; all other addresses above
7Fh do not physically exist.

¢ Moving data to a port changes the port latch; moving data from a port gets data
from the port pins.

* Moving data from a direct address to itself is not Predictable and could lead to errors.

Indirect Addressing Mode

The indirect .
will finally be u:;(;d.ressﬁng mode uses a register to hold the actual address that
rather the number jm L y dat.a move; the register itself is not the address, but
rogister RO or R1 Oftn the register. Indirect addressing for MOV opcodes uses
data locations in, RAeI\I}I called a data pointer, to hold the address of one of the
ginfing register (R from address 00h to 7Fh. The number that is in the
Enown Theg mnemoi)l)' Cannog ll)e known unless the history of the register is
. : o IC Sym O USed f 1 1 3 2N 113 ’” .
which is printed as @. or indirect addressing is the “at” sign,
s : L .
he. moves made possible using immediate, direct, register, and indirect
addressing modes are as follows:

Mnemonic ~ Operation

MOV @Rp,#n Copy the immediate byte n to the address in Rp
MOV @Rp,add Copy the contents of add to the address in Rp

MOV @Rp,A Copy the data in A to the address in Rp
MQV add,@Rp Copy the contents of the address in Rp to add
MOV A, @Rp Copy the contents of the address in Rp to A

The following list shows examples of MOV opcodes, using immediate, reg-
ister, direct, and indirect modes

Mnemonic Operation

MOV A,@RO Copy the contents of the address in RO to the A register
MOV @R1,#35h Copy the number 35h to the address in R1

MOV add, @R0 Copy the contents of the address in RO to add

MOV @R1,A Copy the contents of A to the address in R1

MOV @R0,80h Copy the contents of the port 0 pins to the address in RO

¢ CAUTION o

« The number in register Rp must be a RAM address.
« Only registers RO or R1 may be used for indirect addressing.

5.

2 External Data Moves

As discussed in Chapter 3. it is possible to expand RAM and ROM memory
space by adding external memory chips to the 8051 microcontroller. The exter-
nal memory can be as large as 64K for each of the RAM an(-j RQM memor‘y ar-
eas. ()p(:od-es that access this external memory always use indirect addressing

to specifv the external memory.

Figure 5.2 shows that registers R0, R1, and the aptly named DPTR can be

rnal RAM. RO and R1 are lim-

]y 1d the address of the data byte in exte

st Tt e+ It o=

Mnemonic Operation

MOV A#3Ah
i A =

PEC A BB

MOV RO,#15h RO = 15h

m(év@1§g,#12h Internal RAM address 15h = 12h

o Internal RAM address 15h = 13h
Internal RAM address 15h = 12h

INC RO RO = 16h

:\:lcc);v@jggA Internal RAM address 16h = 39h
Internal RAM address 16h = 3Ah

MOV DPTR,#12FFh DPTR = 12FFh

INC DPTR DPTR = 1300h

DEC 83h DPTR = 1200h (SFR 83h is the DPH byte)

¢ CAUTION ¢
¢+ Remember: No math flags are affected.

All 8-bit address contents overflow from FFh to 00h.
DPTR is 16 bits; DPTR overflows from FFFFh to 0000h.
The 8-bit address contents underflow from 00h to FFh.
There is no DEC DPTR to match the INC DPTR.

L 2

L 2

*

L 2

/43

Addition

All addition is done with the A register as the destination of the result. All ad-
dressing modes may be used for the source: an immediate number, a register, a
direct address. and an indirect address. Some instructions include the Carry
flag as an additional source of a single bit that is included in the operation at

the least significant bit position.
The following list shows the addition mnemonics:

Mnemonic Operation
Add A and the immediate number n; put the sum in A

ADD A #n

ADD A,Rr Add A and register Rr; put the sumin A

ADD A,add Add A and the address contents; put the sum in A

ADD A, @Rp Add A and the contents of the address in Rp; put the sum in A

Note that the C flag is set to 1 if there is a carry out of bit position 7; it is
cle .nnd to 0 otherwise. The AC flag is set to 1 if there is a carry out of bit posi-
it is cleared otherwise. The OV flag is set to 1 if there is a carry out of bit

xl(‘ll

| 6 or if there is a carry out of bit POsitiqy, i

ol - g 1101 s .)
position 7, but not bit posili vl as the logical operation My

11 (! g » 20X rersst
not bit position 7, which may be exj

OV = C7 XOR C6

Unsigned and Signed Addition

, ide that the numbers used in the program gy,
The. S o ma—y Setc{qﬁ lillll?lzliers that are 8-bit positive binary ny b
unsigned numbers :[at 1s, . h ammer may need to iy,
ranging from 00h to FFh. Adltel‘naIlvely, the progr us
siitive and negative signed numbers. o

pOblgi;gflszll numgbers useg bit 7 as a sign bit in the most 31gn1ﬁc?nt byte (Msp
the group of bytes chosen by the programmer to represent the largest UMby,
be needed by the program. Bits 0 to 6 of the MSB, and any o.ther b.y_tes, eXpre
the magnitude of the number. Signed numbers use a 1 in bit position 7 th
MSB as a negative sign and a 0 as a positive sign. Further, all negative DUImpg,
are not in true form, but are in two’s complement form. When doing Signeg
arithmetic, the programmer must know how large the largest number is tq 1, _
that is, how many bytes are needed for each number. |

[n signed form, a single byte number may range in size from 1000000,
which is —128d, to 01111111b, which is +127d. The number 00000000}
000d and has a positive sign, so there are 128d negative numbers and 1284 Pas.
itive numbers. The C and OV flags have been included in the 8051 to enab]s the
programmer to use either numbering scheme.

Adding or subtracting unsigned numbers may generate a Carry flag whey
the sum exceeds FFh or a Borrow flag when the minuend is less than the sub-
trahend. The OV flag is not used for unsigned addition and subtraction. Adding
or subtracting signed numbers can lead to carries and borrows in a similar man
ner, and to overflow conditions as a result of the actions of the sign bits.

{
I
of

Iy

Unsigned Addition

Unsigned numbers make use of the Carry flag to detect when the result of
ADD operation is a number larger than FFh. If the carry is set to 1 after an ADD

then the carry can he added to a higher order byte so that the sum is not los
For instance:

95d = 01011111b = 5Fh
189d = 10111101p = BDh
284d 1)00011100b = 284 1)1Ch

where) indicates the state of t

Carry out from the sum. The
that forms the se

¢
he C flag. The C flag is set to 1 to account 0! the

program could add the Carry flag to another by
cond byte of larger number,

Signed Addition

me
:('I.‘:l';;-i‘(lnll"l')ll}l‘ll1l(lfll'i.s'l\::u‘liv'lm Iu(lrlml two ways: add'ition of like signed numbers an-d
it 1 il I'm: ;‘l'lw‘”f!(. numbers. If unlike 51gnf3(l numbers are added, tl_len it
e Wi||‘-|| ' u.. result to be llnrger than —128d or +127d, and the sign of
always be correct, For example:

001d 11111111p = FFh
1 027d 00011011b - 1Bh
1 026d 1)00011010b -~ +026d 1)1Ah

l I.vru. there is a carry from bit 7 so the Garry flag is 1. There is also a carry from
bit 6, and the OV flag is 0. For this condition, no action need be taken by the
program o correct the sum.

It positive numbers are added, there is the possibility that the sum will ex-
ceed +127d, as demonstrated in the following example:

£100d 01100100b = 64h
+050d 00110010b = 32h
+150d 0)10010110b 106d 0)96h

lgnoring the sign of the result, the magnitude is seen to be +22d, which would
be correct if we had some way of accounting for the +128d, which, unfortu-
nately, is larger than a single byte can hold. There is no carry from bit 7 and the
Carry flag is 0; there is a carry from bit 6 so the OV flag is 1.

An example of adding two positive numbers that do not exceed the positive
limit is this:

+045d ~ 00101101b = 2Dh
+075d = 01001011b = 4Bh
+120d 0)01111000b — 120d 0)78h

Note that there are no carries from bits 6 or 7 of the sum; the Carry and OV
flags are both 0.
The result of adding two negative numbers together for a sum that does not
exceed the negative limit is shown in this example:

030d - 11100010b = E2h
050d - 11001110b = CEh
080d 1)10110000b = -080d 1)BCh

Here, there is a carry from bit 7 and the Carry flag is 1; there is a carrv from bif
6 and the OV flag is 0. These are the same flags as the case for adding unlike
numbers; no corrections are needed for the sum.

i B ni'e s 2
, , . srs whose sum does exceed 128d, we
When adding two negative numbers whe h"‘.q.

070d 10111010b = g:;:
070d 10111010b =
140d 1)01110100b - - 116d 1)74h

Or, the magnitude can be interpreted as -12d. which is tl}e run'lz?inder aﬁt‘ra
carry out of —128d. In this example, there is a carry from bit pnsntm’n 7. ang
carry from bit position 6, so the Carry and the OV flags are set to 1. The Magy:
tude of the sum is correct: the sign bit must be changed to a L.

From these examples the programming actions needed for the and
flags are as follows:

Flags Action

Cc ov

0 0 None

0 1 Complement the sign
10 None

1 1

Complement the sign

A general rule is that if the OV flag is set. then complement the sign. The
OV flag also signals that the sum exceeds the largest positive or negative .
bers thought to be needed in the program.

Multiple-Byte Signed Arithmetic

The nature of multiple-bvte arithmetic for signed
tinctly different from single-byte arithmetic | 'sing more than one byte in un-
signed arithmetic means that carries or borrows are propagated from low
order to high-order bytes by the simple technique of adding the carry to the

next highest byvte for addition and subtracting the borrow trom the next highest
byte for subtraction,

and unsigned numbers is dis.

Signed numbers appear to behave |ike unsigned numbers until the Jast byte
s reached. For a signed number. the seventh bit of the highest byte is the sign;
Fthe sign is negative, then the entire number is in two's (:nmpIuﬁmuI form.
For example, using 4 2-bvte signed number, we have

32767d OHHHIHHHHb 7FFFh
00000d 00000000 000000006 000OK
000014 HHHHHHHHD FFFFh
327684 10000000 0000000 8000N

NOte that the lowest |}
fike

the following examples:

Ve of the numbers 00000d and - 32768d ape vt

btes for +32767d and -000014

bvte signed number arithmetic, then, the lower bytes are toal”

numbers. All checks for overflow are done only for the highe!
'Ntains the sign, Ap overflow at the highest order byte is not

CAasare the lowest
ar mult
IS unsigned

R it

SEUIIVIEN F e

ally recover; -
noyprov(i);/i(:)l;::lfgr 1':10 programmer has made a mistake and probably has made
procedure. o LlSe[‘(nu.n}ber. larger than planned. Some error a(;know]ed.gment
of mistake is g po I.lg).n‘hcatmn, should be included in the program if this type
The precedl') s
der bytes in Siglﬁzdexanéples §how the 1.19ed to add .the Carry flag to higher or-
plish this task are s 8.1} unsigned addition operations. Opcodes that accom-
the carry bit is aqd 1511 ar to the ADD mnemonics: A C is appended to show that
The follows ed to the sum in bit position 0.
owing list shows the add with carry mnemonics:

Mnemonic Operation
ADDC A
#n Add the contents of A, the immediate number n, and the C flag; put

the sum in A

ADD

C A,add Add the contents of A, the direct address contents, and the C flag;

put the sum in A

ADDC A,Rr Add the contents of A, register Rr, and the C flag; put the sum in A

ADDC A,@Rp Add the contents of A, the contents of the indirect address in Rp, and
the C flag; put the sum in A

Note that the C, AC, and OV flags behave exactly as they do for the ADD

commands.
The following list shows examples of ADD and ADDC multiple-byte signed

arithmetic operations:

Mnemonic Operation

MOV A,#1Ch A = 1Ch

MOV R5,#0A1h R5 = Alh

ADD A,R5 A =BDh;C=0,0V=0
ADD A,R5 A=5Eh;C=1,0V=1

ADDC A #10h A =6Fh;C=0,0V=0
ADDC A, #10h A=7Fh;C=0,0V=0

¢ CAUTION o
¢ ADDC is normally used to add a carry after the LSBY addition in a multi-byte proc-

ess. ADD is normally used for the LSBY addition.

7.4

Subtraction

Subtraction can be done by taking the two’s complemegt of the m.lmber to be
subtracted, the subtrahend, and adding it to another nurpber, the ml‘nuend. The
8051, however, has commands to perform d}rect subtraction of two s‘1gned OT un-

i ,d numbers. Register A is the destination address for subtraction. All four
. source addresses. The commands treat the

.- modes may be used for |
2 2?;}? ?‘IS;Iglgas 4 borrow and always subtract the Carry flag as part of the operation.

CHA

\WTER 7 ¢

L

smaller number:

I'he C flag is set to 1
s and 1
sult is 085d. the OV flag is set to 0. The two’s complement of the

Arithmetic Operations

e ynONICS:
‘The following list shows the gubtract mi
j: Lallo (gol1s
Mnemonic ber n and the C flag from A; put the resy|;
1 mmediate nurm . in g
SUBB A.#n gtlg:r’:; ;he contents of add and the C flag from.A. put the resul i, i
ey S:btract Rr and the C flag from A put the resglirllr;AC -
2355 QIZer subtract the €O Rp an g from A;
| the result in A

Operation

t if a borrow 1s needed into bit 7 and reset othery, .
ded into bit 3 and reset otherwise. Th, O\
nd not bit 6 or if there is a borrow i,
s the XOR of the Hor

it the C flag is se
JOrTow is nee
into bit 7 a
for addition, the OV flagi

Note the
The AC flag is set if @ i
flag is set if there is a horrow
bit 6 and not bit 7. As in the case

rows into bit positions 7 and 6.

Unsigned and Signed Subtraction

Again, depending on what is needed, the
as signed or unsigned numbers. The Carry

flag to account for situations when a larger num
number. The OV flag indicates results that must be adjusted whenever twony

hers of unlike signs are subtracted and the result exceeds the planned sigreq

programmer may choose to use by,
flag is now thought of as a Borry,
ber is subtracted from a sma|lg;
m-

Pt

magnitudes.

Unsigned Subtraction

Because the C flag is always subtracted from A along with the source byte
must be set to 0 lf_the programmer does not want the flag included in the s
traction. If a multi-byte subtraction is done, the C flag is cleared for the f]
byte and then 1nc']uded in subsequent higher byte operations.
| 'Ill“he result w1l].be in true form, with no borrow if the source numbet
1s;h:neretrhthanA P:r or in two's cpmplement form, with a borrow if the sourcs
niti ok "?}?p r.an heS(ic are nst signed numbers, as all 8 bits are used for the mag
. . I'ne range of numbers i: iti
Y8 SOG4 = G is from positive 255d (C = 0, A = FFh) to neg
The following ex: | ;
g exaraple demonstirates subtraction of a larger number fro?

015d = 00001111p
SUBB 100d = 01100100b i gz:
—085d 1)10101011b = 1714 = 1)ABh

T

e

SECTION 7.4 ¢ Subtraction 179

The reverse of the example yields the following result:

100d = 01100100b - 64h
SUBB 015d = _ 00001111b = OFh
085d = 0)01010101b — 085d 0)55h

The C flag is set to 0, and the OV flag is set to 0. The magnitude of the result is
in true form.

Signed Subtraction

As is the case for addition, two combinations of unsigned numbers are possible
when subtracting: subtracting numbers of like and unlike signs. When numbers
of like sign are subtracted, it is impossible for the result to exceed the positive
or negative magnitude limits of +127d or —128d, so the magnitude and sign of
the result do not need to be adjusted, as shown in the following example:

+100d = 01100100b (Carry flag = 0 before SUBB) = 64h
SUBB +126d = 01111110b = 7Eh
—026d 1)11100110b = —026d 1)E6h

There is a borrow into bit positions 7 and 6; the Carry flag is set to 1, and the

OV flag is cleared.
The following example demonstrates using two negative numbers:

—061d = 11000011b (Carry flag = 0 before SUBB) = C3h
SUBB —116d = 10001100b - 8Ch
+055d 0)00110111b = +55d 0)37h

There are no borrows into bit positions 6 or 7, so the OV and Carry flags are

cleared to 0.
An overflow is possible when subtracting numbers of opposite sign because

the situation becomes one of adding numbers of like signs, as can be demon-
strated in the following example:

—099d = 10011101b (Carry flag = 0 before SUBB) = 9Dh
SUBB +100d = 01100100b = 64h
—-199d 0)00111001b = +057d 0)39h

Here, there is a borrow into bit position 6 but not into bit position 7; the OV flag
is set to 1, and the Carry flag is cleared to 0. Because the OV flag is set to 1, the
result must be adjusted. In this case, the magnitude can be interpreted as the
two’s complement of 71d, the remainder after a carry out of 128d from 199d.
The magnitude is correct, and the sign needs to be corrected to a 1.

The following example shows a positive overflow:

+087d = 01010111b (Carry flag =0 before SUBB) _i_ gg:l
SUBB -052d = _11001100b 1)8Bh
+139d 1)10001011b = —117d

There is a borrow from bit position 7, and no borrow from bit position g;

OV flag and the Carry flag are both set to 1. Again the answer n;u(sit;)se a(i]uSY

because the OV flag is set to 1. The magnltud.e can be 1nte}1;pre ed : ab. 01

the remainder from a carry out of 128d. The sign must be changed to a binar
ition dealt with.

and";}lllz (g)(:;gl(‘);ci‘lltlllce) is that if the OV flag is. set to 1, then compéement the g

bit. The OV flag also signals that the result is greater than —'128 or +1274.

Again, it must be emphasized: When an overflow occurs in a program, an

fully operate the program. Theoretically, the program could resize every ny
ber used, but this extreme procedure would tend to hinder the performance
the microcontroller. o

Note that for all the examples in this section, it is assumed that the Ca
flag = 0 before the SUBB. The Carry flag must be 0 before any SUBB operat]
that depends on C = 0 is done. | .

The following list shows examples of SUBB multiple-byte signed arithme

he
ed
Ld
y 0

D

ror has been made in the estimation of the largest number needed to succdgs.

operations:
Mnemonic Operation
MOV 0DOh,#00h Carry flag = 0
MOV A #3Ah A = 3Ah
MOV 45h,#13h Address 45h = 13h
SUBB A 45h A=27h;C=0,0V=0
SUBB A,45h A=14h;C=0,0V =0
SUBB A #80h A=94h;C =10V =1
SUBB A #22h A=T71h;C=0,0V=0
SUBB A #0FFh A=T72h;C=1,0V=0

¢ Remember to set
traction operation.

¢ CAUTION ¢
the Carry flag to 0 if it is not to b

[o B

e included as part of the subt

 Multiplication and Division

gn
I-

m-
of

[Ty
on

tic

The 8051 has the ¢g
sion using the A an
and has no oth

pability to perform 8-bit integer multiplication and iV’
d B registers. Register B is used solely for these operati¢™

eI use except as a location in the SFR space of RAM that cotild

S RAWVIAN F oA -3 | . oy (£ o SO0 b Lk

be used to hold data. The A register holds 1 byte of data before a multiply or di-
vide operation, and 1 of the result bytes after a multiply or divide operation.

Multiplication and division treat the numbers in registers A and B as un-
signed. The programmer must devise ways to handle signed numbers.

Multiplication

Multiplication operations use registers A and B as both source and destination

addresses for the operation. The unsigned number in register A is multiplied
by the unsigned number in register B, as follows:

Mnemonic Operation

MUL AB Multiply A by B; put the low-order byte of the product in A, put the high-
order byte in B

The OV flag will be set if A x B > FFh. Setting the OV flag does not mean that
an error has occurred. Rather, it signals that the number is larger than 8 bits,
and the programmer needs to inspect register B for the high-order byte of the
multiplication operation. The Carry flag is always cleared to 0.

The largest possible product is FE01h when both A and B contain FFh.
Register A contains 01h and register B contains FEh after multiplication of FFh
bv FFh. The OV flag is set to 1 to signal that register B contains the high-order
byte of the product; the Carry flag is 0.

The following list gives examples of MUL multiple-byte arithmetic operations:

Mnemonic Operation

MOV A #7Bh A = 7Bh

MOV 0FOh,#02h B = 02h

MUL AB A = F6h and B = 00h; OV Flag = 0
MOV B,#0FEh B = FEh

MUL AB A = 14h and B = F4h; OV Flag = 1

¢ CAUTION o

+ Note there is no comma between A and B in the MUL mnemonic.

Division
Division operations use registers A and B as both source and destination ady

dresses for the operation. The unsigned number in register A is divided by thg
unsigned number in register B, as follows:

=

Mnemonic Operation

DIV AB Divide A by B; put the integer part of quotient in register A and the
integer part of the remainder in B

The OV flag is cleared to 0 unless B holds 00h before the DIV. Then the: 5y,

is set to 1 to show division by 0. The contents of A and B, when divisi,, t,

is attempted, are undefined. The Carry flag is always reset. Ly (|
Division always results in integer quotients and remainders,

s Sh“'ﬂ/[.
the following example: thy

A1=213d = 12 (quotient) and 9 (remainder)
B1=017d [213d = (12 X 17) + 9]

When done in hex:

A=0D5h _ 5 (quotient) and 9 (remainder)
B=011h
The following list gives examples of DIV multiple-byte arithmetic Operatigy,
Mnemonic Operation
MOV A #0FFh A = FFh (255d)
MOV OFOh,#2Ch B = 2C (44d)
DIV AB A = 05h and B = 23h [255d = (5 = 44) + 35]
DIV AB A = 00h and B = 05h [05d = (0 =< 35) + 5]
DIV AB A = 00h and B = 00h [00d = (0 =« 5) + 0]
DIV AB A=72%2and B = ??; OV flag is set to 1

¢ CAUTION ¢ — T
¢ The original contents of A and B are lost.
¢ Note there is no comma between A and B in the DIV mnemonic.

Decimal Arithmetic

Most 8051 applications involve adding intelligence to machines where the hexé
decimal numbering system works naturally. There are instances, however, whep
the application involves interacting with humans, who insist on using the dec
mal number system. In such cases. it may be more convenient for the progaf®
mer to use the decimal number system to represent all numbers in the progé®™
Four bits are required to represent the decimal numbers from 0 to 9 (0000
1001) and the numbers are often callec binary coded decimal (BCD) number™
Two of these BCD numbers can then be packed into a single byte of data. "
The 8051 does all arithmetic operations in pure binary. When BCD .numlf.
bers are being used the result will often be a non-BCD number, as shown 1n

following example:

49BCD = 01001001b = 49h
+38BCD = 00111000b = 38h
B7BCD +6000001tb—81BCD 81h

3 13 7 y 3 . 1 em—
Jumps and calls may also be generically referred to as b.ranches, ‘WltnCIc]tion
phasizes that two divergent paths are made possible by this type of instru .

The Jump and Call Program Range

A jump or call instruction can replace the contents of the program counter w1]}1h
a new program address number that causes program execution to begin at the
code located at the new address. The difference, in bytes, of this new address
from the address in the program where the jump or call is loc:iited is called the
range of the jump or call. For example, if a jump instruction is located at pro-
gram address 0100h, and the jump causes the program counter to become
0120h, then the range of the jump is 20h bytes. '

Jump or call instructions may have one of three ranges: a relatw‘e range
of +127d, —128d bytes from the instruction following the jump or c.all instruc-
tion; an absolute range on the same 2K byte page as the instruction follow-
ing the jump or call; or a long range of any address from 0000h to FFFFh, any-

where in program memory. Figure 8.1 shows the relative range of all the jump
instructions.

Relative Range

Jumps that replace the program counter contents with a new address that is
greater than the address of the instruction following the jump by 127d or less
than the address of the instruction following the jump by 128d are called rela-
tive jumps. They are so named because the address that is placed in the pro-
gram counter is relative to the address where the jump occurs. If the absolute
address of the jump instruction changes, then the jump address changes also
but remains the same distance away from the jump instruction. The address
following the jump is used to calculate the relative jump because of the action
of the PC. The PC is incremented to point to the next instruction before the
current instruction is executed. Thus, the PC is set to the following address be-
fore the jump instruction is executed, or in the vernacular: “before the jump is
taken.”

Relative jumping has two advantages. First, only 1 byte of data need be spe-
cified, either in positive format for jumps ahead in the program or in two’s com-
plement negative format for jumps behind. The jump address displacement byte
can then be added to the PC to get the absolute address. Specifying only 1 byte
saves program bytes and speeds up program execution. Second, the program that

is written using relative jumps can be located anywhere in the progran address
space without re-assembling the code to generate absolute addresses.

CHAPTER 8 e Jump and Call Instructiviis

Memory Address (HEX) s 7
IR - |
FFFF |
LADD Limit |
|
e g)
2 !
e !
= |
// |
e o . i :
SADD Limit l :
n
| —

o + 127d | Relative Limit |~ J° | |
| JNC Bit | .
| JB Jumps ; :
: JNB 1 |

. lJeC | AJMP | L

pc [NextOpoode 1~~~ ;

mpOpeode | | GNE | |

| DJNZ Byte | |

gz Jumps } |

I JNZ ' |

| l |

| | |
B '

PC — 128d | Relative @M— ¥ SJMP | :
[

| | I

| } |

SADD Limit . |

ThisPage ————————— L csssemsmmmmmmsme) :

~ 4 |
B |
I// = |
; |
,/ |
| |
|
LADD Limit I
0000 J_
e B
FIGURE 8.1 « Jump Instruction Ranges
The disadvantage of usi :

_ using relativ Ros . "
dresses jumped be within a raige of +81;E/1((]1r essing is the requirement that all ad
range) of the jump instruction. This range | —128d byt.es (an 8-bit signed numbe
form program loops over short code ran EE E}S] w— SETIORS DE oblem. Most jur?*
pability. Jumps are the only branch instrguct- at are within the relative address ®

? : 1ons that can use the relative range:

T Jumps bevond the relative
done to another relative jump un
better handled, however, by the i

range are needed, then a relative jump can be
til the desired address is reached. This need is
umps that are covered in the next sections.

Short Absolute Range

iﬁbsolute range makes use of t}
sions called pages.
stretch of addresses
pages of any conven

le concept of dividing memory into logical divi-
‘Program memory may be regarded as one continuous
from 0000h to FFFFh. Or, it may be divided into a series of
lent binary size, such as 256 bvtes, 2K, 4K, and so on.

The 8051 program memory is arranged as 2K pages. giving a total of 32d (20h)
pages. The hexadecimal address of each page is shown in Table 8.1.

Inspection of the page numbers shows that the upper 5 bits of the program
counter hold the page number, and the lower 11 bits hold the address within
each page. An absolute address is formed by taking the page number of the in-
struction following the branch and attaching the absolute page range address of
11 bits to it to form the 16-bit address.

Branches on page boundaries occur when the jump or call instruction
finishes at X7FFh or XFFFh. The next instruction starts at X800h or X000h,
which places the jump or call address on the same page as the next instruction
after the jump or call. The page change presents no problem when branching
ahead but could be troublesome if the branch is backwards in the program. The
assembler will flag such problems as errors, so adjustments can be made by the
programmer to use a different type of range.

Absolute range addressing has the same advantages as relative address-
ing; fewer bytes are needed and the code is relocatable as long as the relocated
code remains on the following page. Absolute addressing has the advantage of

TABLE 8.1 -
Page Address (hex) Page Address (hex) Page Address (hex)
~07FF 0B 5800 — 5FFF 16 B00O — B7FF

8? 8(8)88 — gFFF oC 6000 - 67FF 17 B800 — BFFF
02 1000 -17FF oD 6800 - 6FFF 18 C000 - C7FF
03 1800 —-1FFF OE 7000 -77FF 19 C800 — CFFF
04 2000 -27FF OF 7800 -7FFF 1A D000 —D7FF
05 2800 — 2FFF 10 8000 — 87FF 1B D800 — DFFF
06 3000 - 37FF 11 8800 - 8FFF 1C E000 -E7FF
07 3800 - 3FFF 12 9000 -97FF 1D E800 -EFFF
08 4000 — 47FF 13 9800 — 9FFF 1E FO00 —F7FF
09 4800 — 4FFF 14 A000 -A7FF 1F F800 - FFFF

oA 5000_57FF 15 A800-AFFF

Short Absolute Range

Absolute range makes use of the concept of dividing memory into logical divi-
sions called pages. Program memory may be regarded as one continuous
stretch of addresses from 0000h to FFFFh. Or, it may be divided into a series of
pages of any convenient binary size, such as 256 bytes, 2K, 4K, and so on.

The 8051 program memory is arranged as 2K pages, giving a total of 32d (20h)
pages. The hexadecimal address of each page is shown in Table 8.1.

Inspection of the page numbers shows that the upper 5 bits of the program
counter hold the page number, and the lower 11 bits hold the address within
each page. An absolute address is formed by taking the page number of the in-
struction following the branch and attaching the absolute page range address of
11 bits to it to form the 16-bit address.

Branches on page boundaries occur when the jump or call instruction
finishes at X7FFh or XFFFh. The next instruction starts at X800h or X000h,
which places the jump or call address on the same page as the next instruction
after the jump or call. The page change presents no problem when branching
ahead but could be troublesome if the branch is backwards in the program. The
assembler will flag such problems as errors, so adjustments can be made by the
programmer to use a different type of range.

Absolute range addressing has the same advantages as relative address-
ing; fewer bytes are needed and the code is relocatable as long as the relocated
code remains on the following page. Absolute addressing has the advantage of

o S —— — ey T . 53 ‘GL%_\
TABLE 8.1 | e
Page Address (hex) Page Address (hex) Page Address (hex)
00 0000 - 07FF 0B 5800 —5FFF 16 B000 —-B7FF
01 0800 — OFFF 0C 6000 — 67FF 17 B800 —BFFF
02 1000 -17FF 0D 6800 — 6FFF 18 C000-C7FF
03 1800 -1FFF 0E 7000 -77FF 19 C800 - CFFF
04 2000 —27FF OF 7800 —7FFF 1A D000 —D7FF
05 2800 - 2FFF 10 8000 — 87FF 1B D800 - DFFF
06 3000 -37FF 11 8800 — 8FFF 1C E000-E7FF
07 3800 — 3FFF 12 9000 - 97FF 1D E800 - EFFF
08 4000 — 47FF 13 9800 — 9FFF 1E FO00 —F7FF
09 4800 — 4FFF 14 A000 —A7FF 1F F800 — FFFF

0A 5000 — 57FF 15 A800 — AFFF

LAy L/oollls.

Long Absolute Range

Addresses that can access the entire program space from 0000h to FFFpy, i
long-range addressing. Long-range addressgs require more bytes of cogg :
specify and are relocatable only at the beginning of 64K pages. Since we g lin,
ited to a nominal ROM address range of 64K, the program must be Te-assempj, i
every time a long-range address changes and these branches are not genera]]y
relocatable. .

Long-range addressing has the advantage of using the entire prograp, a.

dress space available to the 8051. It is most likely to be used in large Prograp

8¢

JBC b,ra , & addressable Dl

Jumps

The ability of a program to respond quickly to changes in conditions depengs
largely on the number and types of jump instructions available to the program:
mer. The 8051 has a rich set of jumps that can operate at the bit and byte levels,
These jump opcodes are one reason the 8051 is such a powerful microcontroller

Jumps operate by testing for conditions that are specified in the jump mne
monic. If the condition is true, then the jump is taken —that is, the progranm
counter is altered to the address that is part of the jump instruction. If the con-
dition is false, then the instruction immediately following the jump instruction
is executed because the program counter is not altered. Keep in mind that the
condition of true does not mean a binary 1 and that false does not mean binary0.
The condition specified by the mnemonic is either true or false.

Bit Jumps

Bit jumps all operate according to the status of the Carry flag in the PSW or the

status of any bit-addressable location. All bit jumps are relative to the progra®
counter.

Jump instructions that test for bit conditions are shown in the following I

Mnemonic Operation

JC radd Jump relative if the Carry flag is set to 1
JNC radd Jump relative if the Carry flag is reset to 0
JB b,radd Jump relative if addressable bit is set to 1

JNB b,radd Jump relative if addressable bit is reset to 0

Note that no flags are affected unless the bit in JBC is a flag bit in the PSW. When
the bit used in a JBC instruction is a port bit, the SFR latch for that port is read,

tested, and altered.
The following program example makes use of bit jumps:

Address Mnemonic Comment
LOOP: MOV A #10h ;A = 10h
MOV RO,A ;RO = 10h
ADDA: ADD A,RO ;add ROto A
JNC ADDA Jif the Carry flag is 0, then no carry is

;true; jump to address ADDA; jump until A
;is FOh; the C flag is set to
;1 on the next ADD and no carry is
;false; do the next instruction
MOV A #10h ;A = 10h; do program again using JNB
ADDR: ADD A,RO ;add RO to A (RO already equals 10h)
JNB 0D7h,ADDR ;D7h is the bit address of the Carry flag
JBC 0D7h,LOOP ;the carry bit is 1; the jump to LOOP
;is taken, and the Carry flag is cleared
o 0
END

¢ CAUTION ¢

¢ All jump addresses, such as ADDA and ADDR, must be within +127d, —128d of
the instruction following the jump opcode.

¢+ If the addressable bit is a flag bit and JBC is used, the flag bit will be cleared.

¢ Do notuse any label names that are also the names of registers in the 8051. These
are called reserved words and will cause great agitation in the assembler. See Ap-
pendix B for a listing of reserved names (also called symbols.)

Byte Jumps

Byte jumps—jump instructions that test bytes of data—behave as bit jumps. If
the condition that is tested is true, the jump is taken; if the condition is false, the
instruction after the jump is executed. All byte jumps are relative to the pro-
gram counter.

The following list shows examples of byte jumps:

hhnemonic
GJINE A,add,radd

(@)

JNE A #n radd

CUNE Rr,#n.radd

CUNE @Rp,#n.radd

DUNZ Rr,radd Decrement register Rr by 1 and jump to the relative address if the result is not 0; no flags
are affected . _ .
DJNZ add,radd Decrement the direct address by 1 and jump to the relative address if the result is not; p,
flags are affected unless the direct address is the PSW
JZ radd Jump to the relative address if A is 0: the flags and the A register are not changed
JNZ radd Jump to the relative address if A is not 0: the flags and the A register are not changeqd
Note that if the direct address used in a DINZ is a port, the port SFR is decpe.
mented and tested for 0.
4 Unconditional Jumps

Unconditional jumps do not test any bit or byte to determine whether the jump
should be taken. The jump is always taken. All

group of jumps, and these are the only jumps that can jump to any location in
memory.

Operation _ .
Compare the contents of the A register with the con;enésa?f t?]i d'tfoe:?t i?dAdirSe;ss, if the, %
not equal, then jump to the relative address; set the ff'y t 30 €SS thap, th
contents of the direct address; 0them1§e, set ?he Carr); ag i
Compare the contents of the A register with the immedia 19;‘:"1 T ’th et)'/1 are not -
then jump to the relative address; set the Carry flag to 1 if A is less than the “Umber; :
' rry flagto O .
Cooéhpi?glfﬁ’eScf)tnttr;t(;ifn;egigter Rr with the immediate nu-mber'n; if they are not equa,
then jump to the relative address; set the Carry flag to 1 if Rn is less than the Numpg,
i he Carry flag to 0
Coor;r;)zr::?sésc?nttents ofnt/he gddress contained in register Rp to the Qumber n; if they 5,
not equal, then jump to the relative address; set the Carry flag to 1 if the contents of the
address in Rp are less than the number; otherwise, set the Carry flag to 0

jump ranges are found in this

The following list shows examples of unconditional jumps:

Mnemonic Operation

JMP @A+DPTR Jump to the address formed by adding A to the DPTR; this is an

unconditional jump and will always be done:; the address can be

anywhere in program memory; A, the DPTR, and the flags are
unchanged

AJMP sadd Jump to absolute short range address sadd: this is an unconditional
jump and is always taken: no flags are affected

LJMP ladd Jump to absolute long range address ladd; this is an unconditional
jump and is always taken: no flags are affected

SJMP radd Jump to relative address radd; this is an unconditional jump and is
always taken: no flags are affected

NOP Do nothing and go to the next instruction; NOP (no operation) is

used to waste time in g software timing loop, or to leave room in
a program for later additions; no flags are affected

The Binary Number System

umerals, 0and T. A binfiry NUmbe,
ls using a radix of 2. Blpary digits
o words Binary and digITs.

A binary number system uses two decimal r;
is made up of a collection of binary numer

; :oh i ontraction of th . ;
Are :;lso cal%ed tIl‘)zts., wl};glllliis ?11 (:md 0 might correspond to a switch that is off o
n an electronic cl :

on, or to a circuit that has a high voltage or a low vo}telllge %?;p:i[.s E{)eié:i;glz
ment of binary 1 to off, for example, or biqary Otoa hlgh VtO ogn . f .

binary 1 may correspond to a switch that is off, or one t ahls .ctice -)\
the computer industry, however, have generally followed the pra ks -
cuit that is in a high-voltage state is a binary 1, and one that 1 1. & 10 age

state is binary 0.

Conversions Between Decimal and Binary Numbers

i B

(o I . B |

lecimal equivalent number as shown in Table 2.6.
The reverse process, that of converting a number with a decimal radix to

r 1 if the decimal number is odd.

TABLE 2.6

Digit Position 2Position Decimal Equivalent

1 8 256 1 X 256 = 256
‘ 7 128 1% 128 = 128
1 "’ 64 1% 64= 64
} i 32 1% 32= 32
g 3 16 1X 16= 16
1 5 8 OX 8= 0
0 1 4 1X 4= 4
0 5 2 0x 2= 0
1 O0X 1= 0

- T 500

The decimal equivalent of a binary number is formed by multiplying each bit
n the binary number by the binary radix of 2 raised to the position’s power.
[he result of each multiplication is expressed as a decimal number. The indi-
ridual decimal numbers are added to obtain the decimal equivalent of the bi}
1ary number. For instance, the binary number 111110100 can be converted to a

lumber with a binary radix, is done by repeated division of the decimal num-
er by the binary radix of 2. The decimal number is repeatedly divided by 2
nd the remainder becomes a bit of the equivalent binary number. Any decimg
umber divided by 2 must have a remainder of 0 if the decimal number is evej

—

‘ The remainder of the first division operation yields the least si nificant bit
(\l.bB] ol 'thu binary number. The number left after the ﬁrs:t di;fis.ifn by 2 (the
first quotient) is again divided by 2, yielding a second remainder and ayeecond
qlm'ticllt. The second remainder is the next most significant bit of the‘binar
oqunfalent number. The process of dividing the quotient by 2 and keeping thz
remainder as a bit of the binary equivalent number is continued until the quo-
tient is zero. The final remainder is the most significant bit (MSB) of the bigar
equivalent number,) ¥

To demonstrate conversion from a decimal number to an equivalent binary

number..we sl.mll take the decimal 500 number from the last example and re-
convert it to binary. See Table 2.7.

Hexadecimal Numbers

The larger the radix of a number system, the more compact is the expression
for any number in the system. Because each digit is multiplied by a larger radix
raised to the positional power of the digit, the value of the number grows
rapidly as digits are added.

A radix 5 number is more compact than a binary number, and a decimal
radix number is more compact than a radix 5 number. For example, the number
of digits required to express decimal 57 in systems of radix 2, 3, and 5 are
shown next:

111001 radix 2 57 decimal
2010 radix 3 = 57 decimal
212 radix 5 = 57 decimal

Radix 12 numbers, in turn, are even more compact than decimal numbers.
But, a problem arises when we begin to use numbers that have a radix larger
than 10: we must invent new symbols for the numerals greater than decimal 9.

One popular method used to invent new numerals is to borrow other well-

known symbols from the alphabet.
Alphabetic letters can be adapted for each new numeral, such as A for dec-

imal 10. B for decimal 11, C for decimal 12, and so on until all the new numer-
als have a symbol. Number systems that use a radix greater than 10 have not
proved useful to date, except one, known as hexadecimal.

Hexadecimal numbers have a radix of 16, with numerals equivalent to deci-
mal number 0 to decimal number 15. Hexadecimal numbers are useful for
binarv work because one hexadecimal numeral is equivalent to a 4-bit binary
number. Hexadecimal numbers then, may be thought of as a type of binary short-
hand. Each hexadecimal numeral can be replaced by its equivalent binary num-
ber, or the reverse. (Hexadecimal is also commonly referred to as hex by most
programmers.) '

awied

SS‘\"‘W\'\\M Aumo\m o Wm{?) o
—0 |

>)—\ GNAIIRATS

r\
5-

e o
b
o -
< nd ‘)(\LPW‘MJWQ
TR b wd o o dda @
{ (o ~

b lomgplin mmony o e FNF e

. o be 2
Com?ﬂn hews Ade /Y‘C '

~ ’j”o R
an):r\ LU0 D Wh%ux_@ UE

SR X\D\-US

¥ Vo A«M\m 4 Ao vitad ey

- ¢ Tro
)') Treddoed Nmub ceniro LoriTroley

s 0 conTro) ey

) Exiernad P

\a. ,?\r\o»\& NS

Q. N &
C)ﬁax&ﬁ\\ co N j NO) P)QL}L%

-~

% W\DQC\M “’\chﬁa 5 HC rOloohal o 3 ,

=

N e on R rmbadicl00) Syritr ek o

oy unit Eed hedy ol P funetion

j .') YOS on (& th] z
Podtd onvai) ol) AN (alkag S

Q_\’Y\b\’)id] AN Lo oL 7y

3 g Qo(\’n&\ e
N fn\\rjlc&@r@\ b*—)}ﬂe rOoN (} A vA(Y

i

s
o)

Ao Q/b [. Adalo, r(\‘l'vﬁ@é) :X\.(p\
V) o ootk 3 ‘f &
PRSE i
" ‘3:0\{\(\\ CormmNuUNt Cfyoye
y CounfRyS Y ey
x 109RWOgT, on Ao c)\'rf A an
&Qé m(ng (_01"\"“"01\27

o) \Y\\?L

\g\\é R\S‘C ?Lﬂi/ ~— MO lordimioy co My

7=

g
= / J)ﬂ\Q\\) PO TYU Uhon 20t ——
ad sc
% mcjof Ckc??\w‘ o (94" mio—ommws i
\;ng@d S&)/S\Q'\W
gm
: Yoy
| peduud Tsmeons b SO
RISC —
Lovmolen
' on oxqc}'\&&."“o M aareBRY L iy
¥ | Towsd ()
dy indArnt Fond
| Eixs
% Roduied The AU PR c(; ()Kl’U) N&de/
YA Yhudiow)
% g’\mv\\‘\\o o oﬁc\‘f ’ rodid
Qoo™ 3
kw go MHB ’b
Yy cloudd T
%O / HTPS, SPARC ‘T_‘ MPANA— ooy \,/\Qduif{',@].

Los Gyh= q\.
o7 Al

LTV JTEVS) O&Wromd—ub O\f T

e (oo Ny C} i .y \QM';\(Q LQ}:b(ﬁ .

\))I\ON d\\)g\\q %?w@(\m)

2) Softione » 3

¥ - v g oo TP
Wy g

CL O\t {

%)\Q‘?S o \)\O_CV.CNA " ?tcm eoch b*{{) | C&
Cordhd ana ouQ %&\'M ba

O&(o ?\CMDY .

S ’—l Sr O LL\E& con Y xR AU G on D L% Alarxg B
M X)\—Q/\")C\'\ alQ QAL O ¢ &Z_p;’ L C\—)D 2D

o Corhl unX | Wi Uy Toduy Al Alg naleaRdy

@'ﬁm&b
v TRy appoacad q He doagy G he ool
o iy @S RUL proleoy
al (rende Or. c\??\\:c\u\ . 2t 3 edugs
y 2
AR Mitye aw
CCL\LQ(»\)\0\\& - k \'\(\'& (\WQQK/‘») : xc y&,‘\j?)ﬁl"s\\NJ*
{/
"kr\ o (\’\ kk\QC\
v J0 M= SRR, MR Hon Py

Cﬁw\-ﬁo an R (P d L:am@Q ¥

X/ SO R\g - b B yO WD O OO
[@ Dyaal) ™ \"\Yﬂh& < (Q.
e 'y (@mkh. oY and @&) ’ .
p \ é B-Q O\&k &YQ"\Z\ f\B o C'QQ_'B
" 'T\/\Qvo s~ 5 Ay @INY CHs . V\QK_Q)BOY can
LA 0 pS oxacld e \ood O Areve
AT RO
e Foy Thed \)\C\'\I\}\(‘L)ﬂ‘g@ Q'rﬁ?\o 5 x \o:@)p\
N IS Cgf 6“\ "R o\ ‘7)\\“(/FOPLS; &'\93;;5 Ry
<J

el ym o’a he wuq})

Q !‘\C\S?L

