MARUDHAR KESARI JAIN COLLGE FOR WOMEN , VANIYAMBADI

PG DEPARTMENT OF COMPUTER APPLICATIONS

CLASS . I MCA
SUBJECT CODE : GCA43

SUBJECT NAME : WEB APPLICATION USING C#

SYLLABUS

UNIT - I11: COMPONENT BASED PROGRAMMING Teaching Hours: 12

Introduction — Creating a Simple Component — Properties and State — Database
Components — Consuming the Database Component — Enhancing the Component
with Error Handling — Aggregate Information — Data Objects.

Chapter 21: Component-Based Programming

Overview

Component-based programming is a simple, elegant idea. When used properly, it allows your
code to be more organized, consistent, and reusable. It's also incredibly easy to implement in
a .NET application, because you never need to touch the registry or perform any special
configuration.

To create a component, you separate a portion of your program's functionality and compile it to a
separate assembly (DLL file). Your web pages (or any other .NET application) can then use this
component in the same way that they use ordinary .NET classes. Best of all, your component
provides exactly the features your code requires, and hides all the other messy details.

When combined with careful organization, component-based programming is the basis of good
ASP.NET application design. In this chapter, we'll examine how you can create components (and
why you should), and consider examples that show you how to encapsulate database functionality
with a well-written business object. We'll also take a detour into the world of COM, and show how
you can access legacy components by adding .NET wrappers around them.

Why Use Components?

To master ASP.NET development, you need to become a skilled user of the .NET class library. So
far, you've learned how to use .NET components designed for sending mail, reading files, and
interacting with databases. Though these class library ingredients are powerful, they aren't
customizable, which is both an advantage and a weakness.

For example, it's convenient to be able to access any database in almost exactly the same way,
irrespective of what type of information it contains. However, it's much less helpful to have to
weave database details (such as SQL queries and connection strings) directly into your web page
code. Though you can improve on this situation by storing database constants in a web.config
application file (as described in Chapter 5), you still need to retrieve data using specific field
names. If the structure of a commonly used database changes even slightly, you could be left with
dozens of pages to update and retest. To solve these problems, you need to create an extra layer
between your web page code and the database. This "extra layer" takes the form of custom
component.

This database scenario is only one of the reasons you might want to create your own components.
Component-based programming is really just a logical extension of good code organizing
principles, and it offers a long list of advantages:

Increased security For example, you could configure your component to only allow
access to certain tables, fields, or rows in a database. This is often easier than setting
up complex permissions in the database itself. Because the application has to go
through the component, it needs to play by its rules.

Better organization Components move the clutter out of your web page code. It also
becomes easier for other programmers to understand your application's logic when it is
broken down into separate components.

Easier troubleshooting It's impossible to oversell the advantage of components
when testing and debugging an application. Component-based programs are broken
down into smaller, tighter blocks of code, making it easier to isolate exactly where a
problem is occurring.

21-1

More manageable Component-based programs are much easier to enhance and
modify because common tasks are coded once (in the component), and used in as
many places as required. Without components, commonly used code has to be copied
and pasted throughout an application, making it extremely difficult to change and
synchronize.

Code reuse Components can be shared with any ASP.NET application that needs the
component's functionality. Even better, a component can be used by any .NET
application, meaning you could create a common "backbone" of logic that's used by a
web application and an ordinary Windows application.

Simplicity Components can provide multiple related tasks for a single client request
(writing several records to a database, opening and reading a file in one step, or even
starting and managing a database transaction). Similarly, components hide details—an
application programmer can use a database component without worrying about the
database name, location of the server, or the user account needed to connect. Even
better, you can perform a search using certain criteria, and the component itself can
decide whether to use a dynamically generated SQL statement or stored procedure.

Performance If you need to perform a long, time-consuming operation, you can
create an asynchronous component to handle the work for you. That allows you to
perform other tasks with the web page code, and return to pick up the result at a later
time.

Components in ASP

In ASP programming, components were also a requirement to overcome the limitations of
VBScript. Unlike ASP pages, components could be written in Visual Basic 6, which provided a
richer syntax, a speedier compiled language, and the ability to perform tasks that just weren't
allowed in ordinary script code. ASP.NET, as you've learned, doesn't suffer from any of these
limitations, and hence components aren't required to compensate for ASP deficiencies. However,
components still make good sense and are required to design a large-scale, well-organized
ASP.NET application.

Component Jargon

Component-based programming is sometimes shrouded in a fog of specialized jargon.
Understanding these terms helps sort out exactly what a component is supposed to do, and it also
allows you to understand MSDN articles about application design. If you are already familiar with
the fundamentals of components, feel free to skip ahead.

Three-Tier Design

The idea of three-tier design is that the functionality of most complete applications can be divided
which displays controls, and receives and validates user input. All the event handlers in your web
page are in this first level. The second level is the "business" layer, where the application-specific
logic takes place. For an e-commerce site, application-specific logic includes rules such as how
shipping charges are applied to an order, when certain promotions are valid, and what customer
actions should be logged. It doesn't involve generic .NET details such as how to open a file or
connect to a database. The third layer is the data layer, where the application's information is
stored in files or a database. The third layer contains logic about how to retrieve and update data,
such as SQL queries or stored procedures.

21-2

Prosentation Tler

Web pagt

Business Tier

Custom

Custom Component

componet

Custom

(3] n]ll;‘ nent

Datalxase Text or

birary {ile

Figure 21-1: Three-tier design

The important detail about three-tier design is that information only travels from one level to an
adjacent level. In other words, your user interface code should not try to directly access the
database and retrieve information. Instead, it should go through the second layer and then arrive
at the database.

This basic organization principle can't always be adhered to, but it's a good ideal. When you
create a component, it's almost always used in the second layer to bridge the gap between the
data and the user interface. In other words, if you want to fill a list of product categories in a list
box, your user interface code would call a component, which would get the list from the database,
and then return it to your code. Your web page code is isolated from the database—and if the
database structure changes you need to change one concise component, instead of every page
on your site.

Encapsulation

If three-tier design is the overall goal of component-based programming, encapsulation is the best
rule of thumb. Encapsulation is the principle that you should create your application out of "black
boxes" that hide information. For example, if you have a component that logs a purchase on an e-
commerce site, that component handles all the details and allows only the essentially variables to
be specified.

For example, this component might accept a user ID and an order item ID, and then handle all the
other details. The calling code would not need to worry about how the component works or where
the data is coming from—it just needs to understand how to use the component. (This principle is

described in a lot of picturesque ways. For example, you know how to drive a car because you
understand its component interface—the steering wheel and pedals—not because you understand

the low-level details about combustion and the engine.)
Data Objects

Data objects are used in a variety of ways. In this book, we'll use the term to mean a custom

21-3

object you make that represents a certain grouping of data. For example, you could create a
Person class that has properties like Height, Age, and EyeColor. Your code can then create data
objects based on this class. You might want to use a data object to pass information from one
portion of code to another. (Note that data objects are sometimes used to describe objects that
handle data management. This is not the use we will follow in this book.)

Business Objects

The term business object often means different things to different people. Generally, business
objects are the components in the second layer of your application that provide the extra layer
between your code and the data source. They are called business objects because they enforce
"business rules." For example, if you try to submit a purchase order without any items, the
appropriate business object would throw an exception and refuse to continue. In this case,

no .NET error has occurred—instead, you've detected the presence of a condition that should not

be allowed according to your application's logic.

In our examples, business objects are also going to contain data access code. In an extremely
complicated, large, and changeable system, you might want to further subdivide components, and
actually have your user interface code talking to a business object which in turn talks to a data
object which interacts with the data source. However, for most programmers this extra step is
overkill, especially with the increased level of consistency that is provided by ADO.NET.

Creating a Simple Component

Technically, a component is just a collection of one or more classes that are compiled together as
a unit. For example, Microsoft's System.Web.dll is a single (but very large) component that
provides the objects found in many of the System.Web namespaces.

So far, the code examples in this book have only used a few types of class—mainly custom web

page classes that inherit from System.Web.Ul.Page and contain mostly event handling
procedures. Component classes, on the other hand, won't interact directly with a web page and
rarely inherit from anything. They are more similar to the custom Web Service classes described
in the fourth part of this book, which collect related features together in a series of utility methods.

Web Services versus Components

Web Services provide some of the same opportunities for code reuse as custom components.
However, Web Services are primarily designed as an easy way to share functionality across
different computers and platforms. A component, on the other hand, is not nearly as easy to share
with the wide world of the Internet, but is far more efficient for sharing internally (for example,
between different applications in the same company or different web sites on the same server).
For that reason, Web Services and components don't directly compete—in fact, a Web Service

could even make use of a component (or vice versa). In some cases you might find yourself
programming a site with a mixture of the two, putting the code that needs to be reused in-house
into components, and the functionality that needs to be made publicly available into Web Services.

The Component Class
You have two options when writing a component.

« You can code it by hand in a .vb text file, and then compile it with the vbc.exe command-line

21-4

compiler described in earlier chapters.

« You can use Visual Studio .NET, and start a new Class Library project. When choosing the

project directory, you need to specify a real (physical) directory, not the virtual directory
name. Figure 21-2 shows Visual Studio .NET's New Project window with a Class Library

project.
Project Types Tergister I'ngj
_lhi'iim] - O
od Vious C8 Progcts _.‘1 a E
< Setup and Dagloymert Prasects W e Oattlbay Windows
&] Otree Progmen Apphe aton Cortiof Loy
o) Vieasd Studo Schtions
3 d» &
ASPNET ASPNET Wet Cortrad
Web Ap Web Service amy
! B
A prowct ke eating ol 0 e i cther agplct
NE l("".lf'ﬂ‘\‘rw‘
Locaton JCIASP NET Dhagee) = fowne I
Prowet vl b omiind st OSSP NE T\Ohapte 2 1 SanpleCongonent
won | [twed | He |

Figure 21-2: Creating a component in Visual Studio .NET

These options are equivalent. In your .vb file, you define the component as a class.

Public Class SimpleTest
End Class

Remember, a component can contain more than one class. You can create this other classes in
the same file, or in separate files, which will be compiled together into one assembly.

Public Class SimpleTest
End Class

Public Class SimpleTest2
End Class

To add functionality to your class, you add public methods (functions or subroutines). The web
page code calls these methods to retrieve information or perform a task. The following example
shows one of the simplest possible components, which does nothing more than return a string to
the calling code.

Public Class SimpleTest
Public Function Getlnfo(param As String) As String
Return "You invoked SimpleTest.GetInfo() with " & _
param & """
End Function
End Class

Public Class SimpleTest2
Public Function Getinfo(param As String) As String
Return "You invoked SimpleTest2.GetInfo() with " & _
param & ""
End Function
End Class

Usually, these classes will be organized in a special namespace. You can group classes into a
namespace at the file level by using the Namespace block structure. In the following example, the
classes will be accessed in other applications as SimpleComponent.SimpleTest and
SimpleComponent.SimpleTest2. If needed, you can create multiple levels of nested namespaces.

21-5

Namespace SimpleComponent

Public Class SimpleTest
' (Class code omitted.)
End Class

Public Class SimpleTest2
' (Class code omitted.)
End Class

End Namespace

In Visual Studio .NET, your component is automatically placed in a root namespace that has the
project name. This code doesn't appear in the .vb file (although you can add additional
namespaces there). To change the name of your root namespace, right-click on the project in the
Solution Explorer and select Properties. Look under the Common Properties | General group for
the root namespace setting (see Figure 21-3). You can also use this window to configure the
name that will be given to the compiled assembly file.

Prsect ks CWIP MET \Dnagaee 2 P Smpwel oongrwet\

Tuapd rae Lo mporent B

[T] cae | | B
Figure 21-3: Setting the root namespace

Compiling the Component Class

In Visual Studio .NET, you can compile this class just by right-clicking on the project in the
Solution Explorer and choosing Build. You can't actually run the project, because it isn't an
application, and it doesn't provide any user interface.

If you are writing the class by hand in a text file, you can compile it in more or less the same way
as you compile a .aspx code-behind file or .asmx web service.

vbc /tlibrary /r:System.dll /r:System.Web.dll SimpleComponent.vb

The /t:library parameter indicates that you want to create a DLL assembly instead of an EXE
assembly. The compiled assembly will have the name SimpleComponent.dll. The /r parameter
specifies any dependent assemblies you use. The compilation process is the same as that
described with web pages in Chapter 5.

All Components Must Be Compiled
Unlike web pages and Web Services, you must compile a component before you can use it.

Components are not hosted by the ASP.NET service and IIS, and thus cannot be compiled
automatically when they are needed.

21-6

Using the Component

Using the component in an actual ASP.NET page is easy. If you are working without Visual
Studio .NET, all you really need to do is copy the DLL file into the application's bin directory.
ASP.NET automatically monitors this directory, and makes all of its classes available to any web
page in the application, just as it does with the native .NET types.

In Visual Studio .NET, you need to specify the component that you plan to use as a reference.
This allows Visual Studio .NET to provide its usual syntax checking and IntelliSense. Otherwise, it
will interpret your attempts to use the class as mistakes and refuse to compile your code.

To link a component, select Project | Add Reference from the menu (you can also right-click on
the References group in the Solution Explorer). Select the .NET tab, and click Browse. Find and
select the SimpleComponent.dll file we created in the previous example, and choose Open (see
Figure 21-4).

P =
| Vesion | ot -
1033000 CAWINNT Mool NET\ia Sglect]
703300 C\Pyogram Fler'\Mosoi NE
Qoo
oty 31 3X00
spodSouce 3120000
3133m0
2133000
312000
Crpaak rdopesel b 1000
CrptalirdcSioesld 1000 d
Cryab eyCodel & 1600 C\Psopam Fies\Lomeen Fie
{2t % et b 1000 \Pywnws Fs\Looewr P _'.|
Selecind Componeets
MNarw ¥ Remcye I
[SegteCoogomenid Fle L ASERE\Chaote ot Smele |
[Tk] cwxa | met |

Figure 21-4: Adding a custom component reference

Once you add the reference, the DLL file will be automatically copied to the bin directory of your
current project. You can verify this by checking the Full Path property of the SimpleComponent
reference, or just browsing to the directory in Windows Explorer. The nice thing is that this file will
automatically be overwritten with the most recent compiled version of the assembly every time you
run the project.

Project References

You can also create a Visual Studio .NET solution that combines a class library project with an
ASP.NET application project. This technique, which we examined with Web Services in Chapter
20, allows you to debug a component while it is in use alongside the application. In this case, you
don't add a reference to the DLL file. Instead, you add a special project reference to the class
library project in the same solution, using the Projects tab of the Add Reference window. With
project references, Visual Studio .NET automatically compiles the component for you when
needed.

You can now use the component by creating instances of the SimpleTest or SimpleTest2 class.

Public Class TestPage
Inherits Page

21-7

Protected IbIResult As Label

Private Sub Page_Load(sender As Object, e As EventArgs) _
Handles MyBase.Load
Dim TestComponent As New SimpleComponent.SimpleTest()
Dim TestComponent2 As New SimpleComponent.SimpleTest2()
IbIResult. Text = TestComponent.Getinfo("Hello") & "

"
IbIResult.Text &= TestComponent2.Getinfo("Bye")
End Sub

End Class

The output for this page, shown in Figure 21-5, combines the return value from both Getinfo
methods.

2 Test - Microsalt Intarnet £ xphoees - O
-

| He & Vew Fgvstes Jooh Hep iR = O =N e

>
Addess | €] 110 /N manar /A5 ME 1 Chagter Z1 Eangiel cogoret] eit/T es€ e acpn =

You invoked Simple Test.GetInfo() with 'Hello'

You invoked Simple Test2.GetInfo() with 'Bye’

|
(@] Duen I J Local pharet 4

Figure 21-5: The SimpleTest component output

To make this code slightly simpler, you could have chosen to use shared methods, which don't
need a valid instance. A shared Getinfo method would look like this:

Public Class SimpleTest
Public Shared Function Getinfo(param As String) As String
Return "You invoked SimpleTest.Getlnfo() with " & _
param & """
End Function
End Class

The web page would access the shared Getinfo method through the class name, and would not
need to create an object.

Private Sub Page_Load(sender As Object, e As EventArgs) _
Handles MyBase.Load
IbIResult.Text = SimpleComponent.SimpleTest.GetInfo("Hello")
End Sub

Properties and State

The SimpleTest classes provide functionality through public methods. If you're familiar with class-
based programming (or if you've read Chapter 3), you'll remember that classes can also store
information in private member variables, and provide property procedures that allow the calling
code to modify this information. For example, a Person class might have a FirstName property.

When you create classes that use property procedures, you are using stateful design. In stateful
design, the class has the responsibility of maintaining certain pieces of information. In stateless
design, like that found in our SimpleTest component, no information is retained between method
calls. Compare that to a stateful SimpleTest class.

21-8

Public Class SimpleTest

Private _Data As String
Public Property Data() As String
Get
Return _Data
End Get
Set(Value As String)
_Data = Value
End Set
End Property

Public Function GetInfo() As String
Return "You invoked SimpleTest.GetInfo()," & _
"and _Datais™ & _Data & "
End Function

End Class

In the programming world, there have been a number of great debates arguing whether stateful or
stateless programming is best. Stateful programming is the most natural, object-oriented
approach, but it also has a few disadvantages. In order to accomplish a common task, you might
need to set several properties before calling a method. Each of these individual steps adds a little
bit of unneeded overhead. A stateless design, on the other hand, often performs all its work in a
single method call. However, because no information is retained in state, you may need to specify
several parameters, which can make for tedious programming. A good example of stateful versus
stateless objects is shown by the Filelnfo and File classes, which are described in Chapter 16.

There is no short answer about whether stateful or stateless design is best, and it often depends
on the task at hand. However, stateful designs have some important shortcomings that are difficult
to circumvent. The most important of these is the fact that properties need to be changed
individually, and that can allow classes to be placed in inconsistent or invalid states. Even if this
state is temporary, it can lead to a problem if a software or hardware failure occurs. This type of
problem is most commonly seen with transactions.

The next example illustrates the difference with two ways to design an Account class.

A Stateful Account Class

Consider a stateful account class that represents a single customers account. Information is read
from the database when it is first created in the constructor method, and can be updated using the
Update method.

Public Class Account

Private _AccountNumber As Integer
Private _Balance As Decimal

Public Property Balance() As Decimal
Get
Return _Balance
End Get
Set(Value As Decimal)
_Balance = Value
End Set
End Property

Public Sub New(AccountNumber As Integer)
' (Code to read account record from database goes here.)
End Sub

Public Sub Update()
' (Code to update database record goes here.)

21-9

End Sub

End Class

If you have two Account objects that expose a Balance property, you need to perform two
separate steps to transfer money from one account to another. Conceptually, the process works
like this:

' Create an account object for each account,

' using the account number.

Dim AccountOne As New Bank.CustomerAccount(122415)
Dim AccountTwo As New Bank.CustomerAccount(123447)
Dim Amount As Decimal = 1000

' Withdraw money from one account.
AccountOne.Balance -= Amount

' Deposit money in the other account.
AccountTwo.Balance += Amount

' Update the underlying database records using an Update method.
AccountOne.Update()
AccountTwo.Update()

The problem here is that if this task is interrupted halfway through by an error, you'll end up with at
least one unhappy customer.

A Stateless AccountUtility Class

A stateless object, on the other hand, might only expose a shared method called FundTransfer,
which performs all its work in one method.

Public Class AccountUtility

Public Shared Sub FundTransfer(AccountOne As Integer, _
AccountTwo As Integer, Amount As Decimal)
' (The code here retrieves the two database records,
' changes them, and updates them.)
End Sub

End Class

The calling code can't use the same elegant Account objects, but it can be assured that account
transfers are protected from error. Because all the database operations are performed at once,
they can use a database stored procedure for greater performance, and a transaction to ensure
that the withdrawal and deposit either succeed or fail as a whole.

' Store the account and transfer details.
Dim Amount As Decimal = 1000

Dim AccountlDOne As Integer = 122415
Dim AccountiDTwo As Integer = 123447

Bank.AccountUtility.FundTransfer(AccountiDOne, AccountlDTwo, _
Amount)

In a mission-critical system, transactions are often a requirement. For that reason, classes that

retain very little state information are often the best design approach, even though they are not
quite as elegant or as well organized.

Database Components

21-10

Clearly, components are extremely useful. But if you're starting a large programming project, you
may not be sure what features are the best candidates for being made into separate components.
Learning how to break an application into components and classes is one of the great arts of
programming, and it takes a good deal of practice and fine-tuning.

One of the most common types of components is a database component. Database components
are an ideal application of component-based programming for several reasons:

« Databases require extraneous details (connection strings, field names, and so on) that can

distract from the application logic, and could easily be encapsulated by a well-written
component.

« Databases frequently change. Even if the underlying table structure remains constant and

additional information is never required (which is far from certain), queries may be replaced
by stored procedures, and stored procedures may be redesigned.

o Databases have special connection requirements. You may even need to change the

database access code for reasons unrelated to the application. For example, after profiling
and testing a database, you might discover that you can replace a single query with two
queries or a more efficient stored procedure. In either case, the returned data remains
constant, but the data access code is dramatically different.

« Databases are used repetitively in a finite set of ways. In other words, a common database
routine should be written once and is certain to be used many times over.

A Simple Database Component

To examine the best way to create a database component, we'll consider a simple application that
provides a classifieds page listing items that various individuals have for sale. The database uses
two tables: an Item table that lists the description and price of a specific sale item, and a
Categories table with possible groupings under which items can be grouped. The relationship is
shown in Figure 21-6.

1 Now Disgran i ‘AdBoad” on FARIAMAT

Figure 21-6: The AdBoard database relationships'

In our example, we are connecting with an SQL server database using the OLE DB part of the
class library. You can create this database yourself, or you can refer to the online samples, which
include the SQL code that will generate it automatically. To start, the Categories table is preloaded
with a standard set of allowed categories.

The database component is simple. It's an instance class that retains some basic information
(such as the connection string to use), but it does not allow the client to change this information,
and therefore does not need any property procedures. Instead, it performs most of its work in

21-11

methods such as GetCategories and Getltems. These methods return DataSets with the
appropriate database records. This type of design creates a fairly thin layer over the database—it

handles some details, but the client is still responsible for working with familiar ADO.NET classes
such as the DataSet.

Imports System.Data
Imports System.Data.OleDb
Imports System.Configuration

Public Class DBUHil
Private ConnectionString As String

Public Sub New()
ConnectionString = ConfigurationSettings.AppSettings(_
"ConnectionString")
End Sub

Public Function GetCategories() As DataSet
Dim Query As String = "SELECT * FROM Categories"
Dim ds As DataSet = FillDataSet(Query, "Categories")
Return ds

End Function

Public Overloads Function Getltems() As DataSet
Dim Query As String = "SELECT * FROM Categories”
Dim ds As DataSet = FillDataSet(Query, "ltems")
Return ds

End Function

Public Overloads Function Getltems(categorylD As Double) _
As DataSet
Dim Query As String = "SELECT * FROM ltems "
Query &= "WHERE Category_ID="" & categoryID & ""
Dim ds As DataSet = FillDataSet(Query, "ltems")
Return ds
End Function

Public Sub AddCategory(name As String)
Dim Insert As String = "INSERT INTO Categories "
Insert &= "(Name) VALUES (" & name & ")"

Dim con As New OleDbConnection(ConnectionString)
Dim cmd As New OleDbCommand(Insert, con)

con.Open()
cmd.ExecuteNonQuery()
con.Close()

End Sub

Public Sub Additem(title As String, description As String, _
price As Decimal, categorylD As Integer)
Dim Insert As String = "INSERT INTO Items "
Insert &= "(Title, Description, Price, Category_ID)"
Insert &= "VALUES (" & title & "', " & description & "', "
Insert &= price & ", " & categorylD & ")"

Dim con As New OleDbConnection(ConnectionString)
Dim cmd As New OleDbCommand(Insert, con)
con.Open()
cmd.ExecuteNonQuery()
con.Close()

End Sub

Private Function FillDataSet(query As String, _
tableName As String) As DataSet
Dim con As New OleDbConnection(ConnectionString)
Dim cmd As New OleDbCommand(query, con)

21-12

Dim adapter As New OleDbDataAdapter(cmd)

Dim ds As New DataSet()
adapter.Fill(ds, tableName)
con.Close()

Return ds
End Function

End Class
Interesting Facts About this Code

« This code automatically retrieves the connection string from the web.config file when the
class is created, as described in Chapter 5. This trick enhances encapsulation, but if the
client web application does not have the appropriate setting, the component will not work. If
you are creating a component that needs to handle ASP.NET and Windows applications,
this design wouldn't be suitable.

¢ This class uses an overloaded Getltems method. This means the client can call Getitems

with no parameters to return the full list, or with a parameter indicating the appropriate
category. (Chapter 2 provides an introduction to overloaded functions.)

« Each method that accesses the database opens and closes the connection. This is a far

better approach than trying to hold a connection open over the lifetime of the class, which is
sure to result in performance degradation in multi-user scenarios.

« The code uses its own private FillDataSet function to make the code more concise. This is

not made available to clients. Instead, the FillDataSet function is then used by the Getltems
and GetCategories methods.

Consuming the Database Component

To use this component in a web application, we first have to make sure that the appropriate
connection string is configured in the web.config file, as shown here.

<?xml version="1.0" encoding="utf-8" 7>
<configuration>

<appSettings>
<add key="ConnectionString"
value="Provider=SQLOLEDB.1;Data Source=localhost;Initial
Catalog=AdBoard;Integrated Security=SSPI" />
</appSettings>

<system.web>
<!-- Configuration sections go here. >
</system.web>

</configuration>

Next, compile and copy the component DLL file, or add a reference to it if you are using Visual
Studio .NET. The only remaining task is to add the user interface.

To test out this component, you can create a simple test page. In our example, shown in Figure
21-7, this page allows users to browse the current listing by category and add new items. When
the user first visits the page, it prompts the user to select a category.

21-13

DAt omd Mucriosult Inteeet | eplores | o 10 X}

Bl K& Yew Fgeodee Yook Mo | 0o ooy iel 3l UL Semh W 3
.f‘"“m 1909 /A st AP NE T Chagho 20 B omd 28wt kpe =

ey -

E |
|g] Oere 7T SMicdmwa

Figure 21-7: The AdBoard categories

Once a category is chosen, the matching items are displayed, and a panel of controls appears,
which allows the user to add a new entry to the ad board under the current category (see Figure

21-8).

DAdoart Meroioft indeert £ apbens

| B G Yo Fret Ixh B0 Ofek e) 2 L L Seen '
(A0 [&) 16 /At 455 N1 b Lo b ot vm |
-

MeQory IB‘:-:- 5 and Mus El Ouplay I

‘ Add Item To Current Catogory

Tithe JLearnng Thermodynamcs

once =

Detonpton A great place 1o start leaming et |
ABOUL entrogy

4

—ua |

10 Tole Price Description Cotegory 1D
A grost place
795 10 start waming 6

Aot entiopy

Loarming
Thermodyname §

3 g A sten st the
Comgiate 17.99 pnce!

Peference

M woir and
The Sound And — coffes stans
the Fury i 1rroughout. Sl

readatia

(2] Do f T T

Figure 21-8: The AdBoard listing

The page code creates the component when needed, and displays the appropriate database
information by binding the DataSet to the drop-down list or DataGrid control.

Public Class AdBoard
Inherits Page

Protected IstCategories As DropDownList
Protected WithEvents cmdDisplay As Button
Protected pniINew As Panel

Protected txtDescription As TextBox
Protected txtPrice As TextBox

21-14

Protected txtTitle As TextBox
Protected gridltems As DataGrid
Protected WithEvents cmdAdd As Button

Private Sub Page_Load(sender As Object, e As EventArgs) _
Handles MyBase.Load
If Me.IsPostBack = False Then
Dim DB As New SimpleDB.DBULil()

IstCategories.DataSource = DB.GetCategories()
IstCategories.DataTextField = "Name"
IstCategories.DataValueField = "ID"
IstCategories.DataBind()
pniNew.Visible = False
End If
End Sub

Private Sub cmdDisplay_Click(sender As Object, e As EventArgs) _
Handles cmdDisplay.Click
Dim DB As New SimpleDB.DBULil()

griditems.DataSource = DB.Getltems(_
IstCategories.Selectedltem.Value)
griditems.DataBind()
pniNew.Visible = True
End Sub

Private Sub cmdAdd_Click(sender As Object, e As EventArgs) _
Handles cmdAdd.Click
Dim DB As New SimpleDB.DBULil()

DB.Addltem(txtTitle.Text, txtDescription.Text, _
txtPrice.Text, IstCategories.Selecteditem.Value)

gridltems.DataSource = DB.Getltems(_
Val(IstCategories.Selecteditem.Value))
griditems.DataBind()
End Sub

End Class
Interesting Facts About this Code

« Not all the functionality of the component is used in this page. For example, the page does

not use the AddCategory method or the version of Getltems that does not require a category
number. This is completely normal. Other pages may use different features from the
component.

o The page is free of data access code. It does, however, need to understand how to use a

DataSet, and it would need to know specific field names in order to create a more attractive
DataGrid with custom templates for layout (instead of automatically generated columns).

« The page could be improved with error handling code or validation controls. As it is, no

validation is performed to ensure that the price is numeric, or to even ensure that the
required values are supplied.

Enhancing the Component with Error Handling

One way the component could be enhanced is with better support for error reporting. As it is, any
database errors that occur will be immediately returned to the calling code. In some cases (for
example, if there is a legitimate database problem), this is a reasonable approach, because the
component can't handle the problem.

21-15

However, there is one common problem that the component fails to handle properly. This problem
occurs if the connection string is not found in the web.config file. Though the component tries to
read the connection string as soon as it is created, the calling code won't realize there is a
problem until it tries to use a database method.

A better approach is to notify the client as soon as the problem is detected, as shown in the
following code example.

Public Class DBUil
Private ConnectionString As String

Public Sub New()

ConnectionString = ConfigurationSettings.AppSettings(_

"ConnectionString")
If ConnectionString = "" Then
Throw New ApplicationException(_
"Missing ConnectionString variable in web.config file.")

End If

End Sub

' (Other class code omitted.)

End Class

You Can Debug Component Code

If you are debugging your code in Visual Studio .NET, you'll find that you can single step from your
web page code right into the code for the component, even if it isn't a part of the same solution.
The appropriate source code file will be loaded into your editor automatically, as long as it is
available.

This code throws an ApplicationException with a custom error message that indicates the
problem. To provide even better reporting, you could create your own exception class that inherits
from ApplicationException, as described in Chapter 11.

Enhancing the Component with Aggregate Information

The component doesn't have to limit the type of information it provides to DataSets. Other
information can also be useful. For example, you might provide a read-only property called
ltemFields that returns an array of strings representing the names for fields in the ltems table. Or
you might add another method that retrieves aggregate information about the entire table, such as
the average cost of an item or the total number of currently listed items.

Public Class DBUHil
' (Other class code omitted.)

Public Function GetAveragePrice() As Decimal
Dim Query As String = "SELECT AVG(Price) FROM Items”

Dim con As New OleDbConnection(ConnectionString)
Dim cmd As New OleDbCommand(Query, con)

con.Open()
Dim Average As Decimal = cmd.ExecuteScalar()
con.Close()

Return Average
End Function

21-16

Public Function GetTotalltems() As Integer
Dim Query As String = "SELECT Count(*) FROM Items"

Dim con As New OleDbConnection(ConnectionString)
Dim cmd As New OleDbCommand(Query, con)

con.Open()
Dim Count As Integer = cmd.ExecuteScalar()
con.Close()

Return Count
End Function

End Class

These commands use some customized SQL that may be new to you (namely, the Count and
AVG functions). However, these methods are just as easy to use from the client's perspective as
Getltems and GetCategories.

Dim DB As New SimpleDB.DBUHil()
Dim AveragePrice As Decimal = DB.GetAveragePrice()
Dim Totalltems As Integer = DB.GetTotalltems()

Read-Only Properties versus Methods

It may have occurred to you that you could return information such as the total number of items
through a read-only property procedure (like Totalltems) instead of a method (in this case,
GetTotalltems). Though this would work, property procedures are better left to information that is
maintained with the class (in a private variable) or is easy to reconstruct. In this case, it takes a
database operation to count the number of rows, and this database operation could cause an
unusual problem or slow down performance if used frequently. To help reinforce that fact, a
method is used instead of a property.

Enhancing the Component with a Data Object

Sometimes a DataSet is not the best way to return information to the client. One possible reason
could be that the field names are unusual, unintuitive, or subject to change. Another reason might
be that the client isn't using data binding, and doesn't want to worry about using the ADO.NET
objects to extract the appropriate information.

In these cases, you can create a more advanced component that returns information using a
custom data class. This approach takes encapsulating one step further, and isolates the calling
code from most of the underlying database details. For example, you could create the following
classes to represent the important details for items and categories.

Public Class Item
Public ID As Integer
Public Title As String
Public Price As Decimal
Public Description As String
Public Category As String
End Class

Public Class Category
Public ID As Integer
Public Name As String

End Class

21-17

For the most part, the member variable names match the actual field names, although they don't
need to do so. You can add these classes directly to the .vb file that contains the DBUTil
component class.

The DBULIl class requires a slight bit of rewriting to use the new classes. To simplify matters, this
version only uses the category-specific version of the Getltems method. You'll notice, however,
that this method has been enhanced to perform a join query, and return the matching category
name (instead of just the ID) for each item row.

Public Class DBUHil
' (Other class code omitted.)

Public Function GetCategories() As Collection
Dim Query As String = "SELECT * FROM Categories”
Dim ds As DataSet = FillDataSet(Query, "Categories")
Dim dr As DataRow
Dim Categories As New Collection()

For Each dr In ds.Tables("Categories").Rows
Dim Entry As New Category()
Entry.ID = dr("ID")
Entry.Name = dr("Name")
Categories.Add(Entry)

Next

Return Categories
End Function

Public Function Getltems(categorylD As Double) As Collection
Dim Query As String = "SELECT * FROM ltems "
Query &= "INNER JOIN Categories ON "
Query &= Category_ID=Categories.ID "
Query &= "WHERE Category_ID="" & categoryID & ""
Dim ds As DataSet = FillDataSet(Query, "ltems")
Dim dr As DataRow
Dim Items As New Collection()

For Each dr In ds.Tables("ltems").Rows
Dim Entry As New Item()
Entry.ID = dr("ID")
Entry.Title = dr("Title")
Entry.Price = dr("Price")
Entry.Description = dr("Description")
Entry.Category = dr("Name")
Items.Add(Entry)

Next

Return Items
End Function

End Class

Now the GetCategories and Getltems methods return a collection of Category or ltem objects.
Whether this information is drawn from a file, database, or created manually is completely
transparent to the calling code.

Unfortunately, this change has broken the original code. The problem is that you can't use data
binding with the member variables of an object. Instead, your class needs to provide property
procedures. For example, you can rewrite the classes for a quick test, using the following code.

Public Class Item
Public ID As Integer
Public Price As Decimal
Public Description As String

21-18

Private _Title As String
Public Property Title() As String
Get
Return _Title
End Get
Set(Value As String)
_Title = Value
End Set
End Property

Private _Category As String
Public Property Category() As String
Get
Return _Category
End Get
Set(Value As String)
_Category = Value
End Set
End Property
End Class

Public Class Category

Private _ID As Integer
Public Property ID() As Integer
Get
Return _ID
End Get
Set(Value As Integer)
_ID = Value
End Set
End Property

Private _Name As String
Public Property Name() As String
Get
Return _Name
End Get
Set(Value As String)
_Name = Value
End Set
End Property

End Class

Now data binding will be supported for the ID and Name properties of any Category objects, and

the Title and Category properties of all ltem objects. The original AdBoard code won't require any
changes (unless you have changed the component's namespace or class names), but it will work
with one slight difference. Because the DataGrid can only bind to two pieces of information, it will
only display two columns (see Figure 21-9).

21-19

e (& Yoo fpote Jom Yo L S e F A Sowch K
hﬁ; g/ Raramat W N T g T VA omd i Ecnd_ D watencts s ‘;]
)

segeey It Qoks and Mutic 3 Oesplay

Add Item To Curremt Category

[
|

’

lg) Oorm ~ J Lacal roaret

Figure 21-9: The AdBoard with the new component

Of course, the calling code doesn't need to use data binding. Instead, it can work with the Item
and Category objects directly, just as you can work with .NET structures such as DateTime and
Font. Here's an example of how you could fill the list box manually.

Dim DB As New DataObjectDB.DBUHil()
Dim Item As New DataObjectDB.Category()
Dim Categories As Collection = Components.GetCategories()

For Each Item In Categories
IstCategories.ltems.Add(New Listltem(ltem.Name, Item.ID))
Next

Data Objects Can Also Add Functionality

The Category and Item objects are really just special structures that group together related data.
You can also add methods and other functionality into this class. For example, you could rewrite
the Addltem method in the DBUtil component so that it required an Item object parameter. The
Item object could provide some basic error checking when you create and set its properties that
would notify you of invalid data before you attempt to add it to the database.

This approach can streamline a multi-layered application, but it can also add unneeded
complexity, and risk mingling database details deep into your classes and code. For more
information, you might want to read a book on three-tier design, or refer to the architectural white
papers provided by Microsoft in the MSDN Knowledge Base.

Using COM Components

If you're a longtime ASP developer, you probably have developed your own components at one
time or another. You may even have legacy COM components that you need to use in an
ASP.NET application. While the ideal approach is to redesign and recode these components

as .NET assemblies, time constraints don't always allow for these changes, particularly if you are
already involved in a large migration effort to convert existing web pages. There is no way to

21-20

directly mingle the unmanaged code in a COM component with .NET code, as this would violate
the security and verification services built into the Common Language Runtime.

Fortunately, .NET does provide a method to interact with COM components. It's called a Runtime
Callable Wrapper (RCW)—a special .NET proxy class that sits between your code and the COM
component (see Figure 21-10). The RCW handles the transition from managed Visual Basic .NET
code to the unmanaged COM component. Though this may seem simple, it actually involves
marshalling calls across application domains, converting data types, and using traditional COM
interfaces. It also involves converting COM events to the completely different .NET event
framework.

NET managed code 1 nmanaged cod

|
1

Y
Y

NET web Runtime callable

COM object
page code wrapper (RCW) o

A

A

Figure 21-10: Accessing a COM object through an RCW

The RCW presents your code with an interface that mimics the underlying COM object—it's the
same idea as the Web Service proxy class, which "pretends" to be the Web Service in order to
simplify your coding. Once you have created an RCW, you can use it in the same way that you
would use the actual COM component, invoking its methods, using its properties, and receiving its
events.

Creating an RCW in Visual Studio .NET

There are two basic ways to generate an RCW. The first method is to use Visual Studio .NET. In
this case, select Project | Add Reference from the menu, and then select the COM tab to display a
list of currently installed COM objects. Find the COM object you want to use and double-click on it,
or browse to it using the Browse button (see Figure 21-11).

Add Rolorence [%]
NET COM | Prames |
Mool Actee Pugn 10 CAWINNTLS jutenn ZN0hagn 0
Mool Addin Desywn 10 C\Psogam Fimr\Common Fle. =~
Mool ADO Dats Comci 60 . 60 CAWINNT S patem 32 MEAD
Mucae ADOEA 25w DDLU 25 C AP Fler\Comeon Fie
M ANOEx 28001 26 C\Pogam Fier\Common Fle
My AOEw 271Dy 27 "
Mool Agerd Cortied 210 0
Mool Ageet Server 20 20 Cw agerd\AgertS v
Mool Agwt Servei Edena 20 CAOWINNT s agecd igeetSy
Moo 0P A (1 Dbz Lbews BN C \Proesn Fle\Coomesen, Fie d
Sedectad Comgornete
Howwe [Tyoe | Souce | Femoye |
MoaooR Actve Data Dtyecta L. COM ©\Program Fles\Common Pl
[Tox | come | wew |

Figure 21-11: Adding a COM reference

When you click OK, .NET will check for a primary Interop assembly, which is an RCW that has
been created and signed by the same party that created the original COM component. If it cannot
find a primary Interop assembly, it will prompt you with a warning and generate the RCW DLL file
automatically. This file will be placed in the bin directory of your application (as are all
components), and will automatically be given the name of the COM component's type library.

21-21

For example, in Figure 21-11, a reference is being added to the COM-based ADO data access
library (the precursor to ADO.NET). The RCW has the name ADODDB.dIl and is made available
through the namespace ADODB. This primary Interop assembly is provided with the .NET
framework, but you can create your own RCW assemblies for other COM components just as
easily.

You can find the component's namespace by examining the current references for your project in
the Solution Explorer (see Figure 21-12).

Solution Explorer - COMTest

Bl =

= (3% COMTest 2l
= =y References
Sk A0 (DB
+J System
=0 System. Data
+2) System. Drawing
+J System,Web
+J System. XML
9] Assemblyinfo.vb
@] COMTest vsdisco
&) Global asax
Aj] Styles.css
|58 Web.config
=] WebForm1 .aspr

—
-

Figure 21-12: The Runtime Callable Wrapper

You can now create classes from the COM component, and use them as though they are
native .NET classes (which, of course, they now are). That means you use the .NET syntax to
create an object or receive an event using the classes in the RCW (see Figure 21-13).

| WebFaml aspe v |
“’:Veﬂnl =] [i9Paoe_Load

Public Class UYebYorml
Inberits Syaten. Veb ULl .PFage

ol | L 7"

Frivate Sub Page Load(EyVal sendesr As System.(b)jectc, By¥
Dim rs As ADODD.Recordset

r.-.l
= Fiw
End @ Fed
@ GatRowe
End Clas @ GetStwy
4
o Lock Type
5 Marhalgtons
=5 MaFleconds ~
| 9 Mow
B @ Movelrt -u -.r‘

Figure 21-13: Using an RCW class

Creating an RCW with Type Library Import

If you aren't using Visual Studio .NET, you can create a wrapper assembly using a command-line
utility that is included with the .NET framework. This utility, which is known as the type library
import tool, is quite straightforward. The only piece of information you need is the filename that
contains the COM component.

The following statement creates an RCW with the default filename and namespace (as it would be
in Visual Studio .NET), assuming that the MyCOMComponent.dll file is in the current directory.

21-22

tibimp MyCOMComponent.dl|

Assuming that the MyCOMComponent has a type library named MyClasses, the generated RCW
file will have the name MyClasses.dll and will expose its classes through a namespace named

MyClasses. You can also configure these options with command-line parameters, as described in
Table 21-1.

Table 21-1: Type Library Import Parameters

|Parameter |[Description |

lout:Filename ||Sets the name of the RCW file that will be generated. |

/namespace:Namespace Sets the namespace that will be used for the classes in the RCW
assembly.

/asmversion: VersionNumber |Specifies the version number that will be given to the RCW
assembly.

/reference:Filename If you do not specify the /reference option, tlbimp.exe

automatically imports any external type libraries that are
referenced by the current type library. If you specify

the /reference option, tibimp.exe attempts to resolve these
references using types in the .NET assemblies you specify before
it imports other type libraries.

/strictref Does not import a type library if the Tblimp.exe cannot resolve all
references in the current assembly or the assemblies specified
with the /reference option.

There are also additional options for creating signed assemblies, which is useful if you are a
component vendor who needs to distribute a .NET assembly to other clients. These features are
described in the MSDN reference. Additionally, you can use .NET classes to manually write your
own wrapper class. This process is incredibly painstaking, however, and in the words of
Microsoft's own documentation, "seldom performed."

21-23

