MARDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG AND RESEARCH DEPARTMENT OF MATHEMATICS

CLASS SUBJECT CODE SUBJECT NAME : I M. Sc. MATHEMATICS : 23PMA13 : ORDINARY DIFFERENTIAL EQUATIONS

SYLLABUS

UNIT V: Existence and uniqueness of solutions to first order equations

Equation with variable separated – Exact equation – method of successive approximations–the Lipschitz condition–convergence of the successive approximations and the existence theorem.

UNIT-12 -

Existence and Unqueness of solutions of First order equations: "Introduction : · · · Consider the general 1 order equation $y' = f(x,y) \longrightarrow 0$ where t is some continuous function. If The linear operation is $y' = g(x)y + h(x) \longrightarrow \textcircled{D}$ where g, h are continuous on some interval I. then Any solution & of env. (a) can be witten $\begin{array}{l} \label{eq:alpha} g(x) = e^{\alpha(x)} \int_{e}^{a(x)} \int_{e}^{a(x)} dt + ce^{\alpha(x)} \\ \chi & \chi & \chi_{0} \end{array}$ ->(3) where, $Q(x) = \int g(t) dt$, \vdots to is in I and c is a constant: -Squations with Variable separated: A first order ern/. y' = f(x,y)is said to have the Variables seperated it t can be written in the form

$$f(x,y) = \frac{g(x)}{h(y)}.$$
where g , have $\frac{g(x)}{y'}$, of a single argument.
We can write the orn, as
 $h(y) \frac{dy}{dx} = g(x) \xrightarrow{g(x)} \frac{dy}{y'} = \frac{g(x)}{h(y)}$

on some enterval I containing a point of then.

$$f(\phi(x))\phi(x) = g(x)$$

for all $x \ln I$. $\int_{x}^{x} h(\phi(t)) \phi'(t) dt = \int_{x}^{x} g(t) dt \longrightarrow 0$ $\int_{x_0}^{x} h(\phi(t)) \phi'(t) dt = \int_{x_0}^{x} g(t) dt \longrightarrow 0$ $\int_{x_0}^{x_0} u = \phi(x_0)$ for all $x \ln I$. $\int_{t=x_0}^{x} u = \phi(x_0)$

Let U= \$(1) en the integral on the left int

... the above equation becomes, $\phi(x)$ $\int fill dt = \int g(t) dt$. $\phi(x_0)$ χ_0

Conversely, suppose x and y are related by the formula,

$$\int_{3}^{9} h(u) du = \int_{3}^{9} g(t) dt \longrightarrow 3$$
and that this different subjective a different table
for $\psi = 1$ is $f(u)$, satisfies
$$\int_{0}^{1} h(u) du = \int_{3}^{1} g(t) dt.$$

$$\int_{0}^{1} h(u) du = \int_{3}^{1} g(t) dt.$$

$$\int_{0}^{1} h(u) du = \int_{0}^{1} g(u) du = g(u).$$

$$\int_{0}^{1} h(u) du = \int_{0}^{1} g(u) du = g(u).$$

$$\int_{0}^{1} h(u) du = \int_{0}^{1} g(u) du = g(u).$$

$$\int_{0}^{1} h(u) dy = g(u) du.$$

$$\int_{0}^{1} h(u) dy = g(u) du.$$

$$\int_{0}^{1} h(u) dy = g(u) du.$$

$$\int_{0}^{1} h(u) dy = \int_{0}^{1} g(u) du + tc.$$

$$\int_{0}^{1} h(u) dy = \int_{0}^{1} g(u) du + tc.$$

$$\int_{0}^{1} h(u) dy = \int_{0}^{1} g(u) du + tc.$$
where c is constant, and the integrals are ant $-duvatives. \rightarrow automized optical in the sum optical$

represent any two fans's H, G \$.2 H=h, G'=g.

Then any detterentiable fun; of which is dofing implicity by the relation,

H(y) = G(x) + C. $\rightarrow O$. Whech is the eolog. of an/. O. Theorem : Statement is G(x) = G(x) + C.

Let g-h be continuous real valued functions for a < x < b, c < y < d respectively and consider the equation $h(y)y' = g(x) \rightarrow 0$ It G and H are any fury is \$. I G'=g, H'=h and c is any constant g.t the relation H(y) = G(x) + c defines a real - valued differentiable funz & for x in some interval I contained in a 4x 4b, then \$ will be a Solny. of h(y)y'=g(x) on I - Conversely, if \$ is a solor. of any. O on I, it satisfies the relation H(y) = h(x) + c on T, for some constant C. Example ! 1.

Suppose h(y)=1 then the defty early. Le y'=g(x), $\rightarrow \lim_{y \to y} w_{y} g(y) dx$ is a first in the suppose h(y)=0 and h(y). And every solution of has the form,

 $\phi(x) = G(x) + e$.

where G is defined for the integral any quantition on $a \leq x \leq b$ g.t. G' = g, and c is a constant.

Examplo: 2.

Suppose g(x) =1 then we have h (y)y'=1

 $= y' = \frac{1}{R(y)} \rightarrow 0$ $(= 0r) \cdot \frac{dy}{dy} = 1$

I h(y) dy = dx.
Thus, if H'=h, any differentiable feint.
defined implicitly by the selation,

 $H(y) = x + c \rightarrow \emptyset$ where c is constant. then ϕ is a solution

of eqny. 0, conseder the eqn. Example For Enstance, $f_{y} = y^{2}$ then $\frac{dy}{dx} = y^{2}$ $\Rightarrow \frac{1}{y^{2}} dy = dx$. $\Rightarrow 3$

Here $h(y) = \frac{1}{y^2}$, which is not contenuous y^2 at y = 0,

$$\frac{dy}{y^2} = dx$$

$$\frac{y^2}{y^2} dy = dx$$
Jing we got
$$-\frac{1}{y} = x + C.$$

$$\Rightarrow \quad y = -\frac{1}{x + C}.$$
Thus if c is any constant, the funk ϕ is $gy!$

$$\phi(x) = -\frac{1}{x + C}.$$
Provided $x \neq -c.$
Remark:

Mote that, seperation of Variables method of finding solutions may not yield all solutions of an equation.

For Ex: The zero fund. y = 0 [y(x) = 0 + x] is a color. of the diff. $gny. y' = y^2$. But this cannot be got from the color. $y = -\frac{1}{x+c}$. Exact Equation:

Let the first order $e_{1}N$, y' = f(x,y) is Written in the form, y' = -M(x,y)

$$y = \frac{1}{N(x,y)}$$

(07) M(X|Y) + M(X|Y)Y' = 0 - S(1).

where M, N are real-valued fur.'s defined for real X, Y on some rectangle R. The env. CD is said to be exact in R if Ji a fury. F having continuous first partial dorivatives there such that

$$\frac{\partial F}{\partial x} = M, \frac{\partial F}{\partial y} = N \longrightarrow \textcircled{}$$

En R.

Theorem :)

Suppose the equation M(x,y) + N(x,y)y'=0is exact in a vectangle R, and F is a realvalued fury. B.t $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N \longrightarrow \mathbb{D}$ in R. Every differentiable fury. ϕ defended Pmplicitly by a relation F(x,y)=c, (C=eonstant), is a solny. of \mathbb{D} and every solny. of \mathbb{O} whose graph lies in R areas. Proof: My: Suppose $M(x,y) + N(x,y)y'=0 \longrightarrow \mathbb{D}$ exact in R and F is a fury. satisfying

 $\frac{\partial F}{\partial x} = M , \frac{\partial F}{\partial y} = x$ in R Then (1) becomes, $\frac{\partial F}{\partial x}(x,y) + \frac{\partial F}{\partial y}(x,y)y'=0$ It & is any solar on some interval I then $\frac{\partial F}{\partial x}(x, \phi(x)) + \frac{\partial F}{\partial Y}(x, \phi(x))\phi'(x) = 0 \longrightarrow 0$ for all & In I. If $\overline{\phi}(x) = F(x, \phi(x))$ then from $\phi_{1}(3)$ => \$ (x) =0 Hence, $F(x, \phi(x)) = \mathcal{L}$, where c is some consta Thus the solny. I must be a fury, which is given implicitly by the relation, $F(x,y) = C \longrightarrow \Theta$ Conversely, if q is a differentiable fun, on some interval I defined implicitly by the relation F(x,y) = c then $F(x,\phi(x)) = c$. $\forall x \in I$. and differentiating we get eqny. (8). Thus dis a soln/. of eqn , (1).

Theorem: 2 Let M, N be two real-valued functions which have continuous first partial dorevatives on come rectangle. R: 1x-x0) fa, 1y-y0/ 4 b.

then the eqny. $M(x_1y) + N(x_1y)y' = 0$ is exact in Fif and only if, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ in R.

Proof: hiven: The equation M(x,y) + N(x,y)y'=0 is exact.

To prove: $\frac{\partial M}{\partial Y} = \frac{\partial N}{\partial X}$. $\longrightarrow \textcircled{O}$

Suppose the epn: M(x,y)dx+N(x,y)dy =0 is exalt

$$\mathcal{A}^{g}$$
 a fan/. \mathcal{B} it $\partial F = M$, $\partial f = N$
 $\mathcal{P}_{avr. Dittion. Prov. ditty. w.r. to x.
 \mathcal{D}^{F}) $\rightarrow \frac{\partial^{2}F}{\partial x \partial y} = \frac{\partial M}{\partial y}$; $\frac{\partial^{2}F}{\partial x^{2}} = \frac{\partial N}{\partial x^{2}}$
 \mathcal{S}^{gnre} , $\frac{\partial^{g}F}{\partial x \partial y} = \frac{\partial^{g}F}{\partial y \partial x}$.$

we get,
$$\frac{\partial M}{\partial Y} = \frac{\partial N}{\partial X}$$
.
Conversely.

given:
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

To find the funy. F satesfying
 $\frac{\partial F}{\partial x} = M, \quad \frac{\partial F}{\partial y} = N.$

$$(onsteder,
F(x,y) - F(x_0, y_0) = F(x,y) - F(x_0,y) + F(x_0,y_0)
= \int_{ax} \frac{\partial F}{\partial x} (S_1y) dS + \int_{y_0}^{y} \frac{\partial F}{\partial y} (x_0, z) dz
= \int_{ax} M(S_1y) dS + \int_{y_0}^{y} N(x_0, z) dz$$

$$= \int_{ax} M(S_1y) dS + \int_{y_0}^{y} N(x_0, z) dz$$

$$= \int_{ax} \frac{\partial F}{\partial y} (x_1, z) dz + \int_{ax} \frac{\partial F}{\partial z} (S_1, y_0) dS$$

$$= \int_{y_0}^{x} \frac{\partial F}{\partial y} (x_1, z) dz + \int_{ax} \frac{\partial F}{\partial z} (S_1, y_0) dS$$

$$= \int_{y_0}^{y} N(x_1, z) dz + \int_{x_0}^{x} M(S_1, y_0) dS - x_0$$

$$= \int_{y_0}^{x} M(S_1, y_0) dS + \int_{x_0}^{x} M(S_0, z) dS - x_0$$

$$= \int_{y_0}^{x} M(S_1, y_0) dS + \int_{x_0}^{x} M(x_0, z) dz - x_0$$

$$= \int_{x_0}^{x} F(x_1, y_0) = \int_{y_0}^{x} M(S_1, y_0) dS + \int_{x_0}^{x} M(x_0, z) dz - x_0$$

$$= \int_{x_0}^{x} F(x_0, y_0) = 0 \quad and$$

$$= \int_{x_0}^{x} F(x_0, y_0) = 0 \quad and$$

$$= \int_{x_0}^{x} F(x_0, y_0) = M(x_0, y_0) \quad for all \quad (x_0, y_0) nR,$$

ł

0

$$M^{y} \stackrel{\text{from}}{=} M^{y} \stackrel{\text{(B)}}{=} \stackrel{\text{(A)}}{=} \stackrel{($$

Example: Find the solar, of y'= 3x'= axy x'= y'.
Soln/. "
$\frac{dy}{dx} = \frac{3x^2 - 2xy}{x^2 - 2y}$
$(\pi^2 = 2y) dy = (2\pi^2 - 2\pi y) dx$.
$= \sum \left(3x^{2} - axy\right) dx - [x^{2} - ay] dy = 0$ $= \sum \left(3x^{2} - axy\right) dx - [x^{2} - ay] dy = 0$ $= \sum \left(3x^{2} - axy\right) dx + Ndy = 0$ $= \sum \left(3x^{2} - axy\right) d$
- this is an exact equation .
To find F!
W.K.T $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N$.
Consider, aF = 3x 2 2xy
First - Jary dx:
$= \frac{3}{3} - \frac{3}{3} + \frac{1}{3} + $
$F(u) = \chi^3 - \chi^2 + \xi(y) \longrightarrow O$

ſ

.

Jonsedor,
$$\frac{\partial F}{\partial y} = /N$$

Jing, we get.
 $\int \frac{\partial}{\partial y} F(x,y) = (-x^2 + ay) dy$.
 $F(x,y) =$

where t is endependent of the.

Now
$$\partial F = N$$

 $-\chi^2 + \frac{1}{2}(y) = \frac{2y}{\chi^2}$
 $\frac{1}{2}(y) = \frac{2y}{\chi^2}$
 $\frac{1}{2}(y) = \frac{2y}{\chi^2}$
 $\int sng, we get,$
 $\frac{1}{2}(y) = \frac{y^2}{\chi^2}$
Substitute in eqn/. (D)
 $0 \Rightarrow F(\chi, y) = \frac{x^3}{\chi^2} - \frac{x^2y}{\chi^2} + \frac{y^2}{\chi^2}$

Any differentiable fun, of which is defined implicitly by the solution

 $x^3 - x^2 y + y^2 = C$, where C is a constant.

d. determine which equations are exact and
solve.
(i)
$$axydx + (x^2 + 3y^2)dy = 0$$
.
(ii) $(x^2 + xy)dx + xydy = 0$.
(iii) $(x^2 + xy)dx + xydy = 0$.

(i) $\cos x \cos^2 y d - x = x = x \sin y dy = 0$ (v) $\pi^2 y^3 dx - x^3 y^2 dy$ Soln/ axydx + (x2+3y2) dy =0 (9) $M = 2\chi y , N = \chi^2 + 3y^2$ $\frac{\partial M}{\partial y} = \partial X$, $\frac{\partial N}{\partial x} = \partial X$. -'. QM = QN DX = DX - this is exact on. To tend F : $W.K-T_{j} \xrightarrow{\partial F(x,y)} M \xrightarrow{\partial F(x,y)} N$ Consider, <u>a Fixer</u> 2xy Jing we get, $F(r_{H}) = \int axy \, dx = by \frac{x^2}{2} + f(y)$ $F(x,y) = yx^2 + \varphi(y) \longrightarrow \mathcal{O}.$ where t is an Independent of X. Now $\frac{dF}{dy} = N$ $\frac{\partial}{\partial Y} \left(\frac{y}{x^2} + \frac{1}{3} \left(\frac{y}{y} \right) \right) = x^2 + \frac{3}{3} y^2$ x \$ \$ '(9) = x + 3 y ~ &'ly) = 392 Jing we get, $f(y) = \frac{3y^3}{3} = y^3.$

Sub En env.O,

$$F(x_{1}y) = yx^{2} + y^{3}$$

Any diff: fun. ϕ which is defined Employedly
by the relation,
 $yx^{2}+y^{3} = c$.
(17) $(x^{2}+xy) dx + xy dy = 0$.
 $M = x^{2}+xy$, $N = xy$.
 $\frac{\partial M}{\partial y} = x$, $\frac{\partial N}{\partial x} = y$.
 $\frac{\partial M}{\partial y} = \frac{2N}{\partial x}$.
This is not an exact equation.
(177) $e^{2} dx + (e^{2}(y+1)) dy = 0$.
 $M = e^{x}$, $N = e^{2}(y+1)$
 $\frac{\partial M}{\partial y} = 0$.
 $\frac{\partial N}{\partial x} = 0$.
 $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$.
This is an exact equation.
To find F:
 $W.x = T$
 $\frac{\partial F}{\partial x}(x_{1}y) = M = x$.
 $\frac{\partial F}{\partial x} = 0$.
 $\frac{\partial F}{\partial x}(x_{1}y) = M = x$.
 $\frac{\partial F}{\partial x} = 0$.

$$\frac{\partial F}{\partial y} [x_{1}y] = e^{y} (y+1)$$

$$\frac{\partial}{\partial y} (\frac{x^{L}}{2} + \frac{y}{2}|y)] = e^{y} (y+1)$$

$$\frac{\partial}{\partial y} (\frac{x^{L}}{2} + \frac{y}{2}|y)] = e^{y} (y+1)$$

$$\frac{\partial}{\partial y} (\frac{x^{L}}{2} + \frac{y}{2}|y)] = e^{y} (y+1) dy.$$

$$u = y+1, \quad dv = e^{y}$$

$$du = dy \quad V = e^{y}$$

$$\frac{du}{du} = dy \quad V = e^{y}$$

$$\frac{du}{du} = (y+1)e^{y} - \int e^{y} dy$$

$$\frac{d(y)}{d(y)} = (y+1)e^{y} - e^{y},$$

$$(0) = \frac{x^{2}}{2}F(x,y) = \frac{x^{2}e^{y}}{2} + (y+1-1)e^{y}$$

$$F(x,y) = \frac{x^{2}e^{y}}{2} + ye^{y}$$
Any diffs- $\frac{4un}{2}r$, $\frac{1}{2}ue^{y} = c$.
$$(1) \quad cosx \ cos^{2}y \, dy = -sinx \ sinzy \ dy = 0$$

$$r_{1} = cosx \ cos^{2}y \ dy = -sinx \ sinzy \ sinx \ dy = -sinx \ sinzy \ dy = -sinx \ sinzy \ sinx \ sinzy \ dy = -sinx \ sinzy \ sinx \$$

To find F:
$$W.E.T = \frac{3F(x,y)}{3x} = M$$
, $\frac{3F}{3y}(x,y) = N$.
 $\frac{3F(x,y)}{3x} = M$
 $\frac{3F(x,y)}{3x} = M$
 $\frac{3F(x,y)}{3x} = \cos x \cos^2 y$
 $\int \log_{x} \log_{x} \frac{3}{3} \log_{x} - \cos^2 y \int \cos x \, dx$
 $F(x,y) = \cos^2 y \cdot 8 \ln x + \frac{1}{3} (y) - 0$
Now, $\frac{3F}{3y}(x,y) = N$
 $\frac{3}{3y}(\cos^2 y \cdot \sin x + \frac{1}{3} (y)) = -8 \ln x \cdot 8 \ln 2y$
 $-2 \cdot 8 \ln 2y \cdot 8 \ln x + \frac{1}{3} (y) = -8 \ln x \cdot 8 \ln 2y$
 $-3 \cdot 8 \ln x \cdot 8 \ln 2y + \frac{1}{3} (y) = -3 \ln x \cdot 8 \ln 2y$
 $\frac{1}{3} (y) = 0$.
 $\frac{1}{3} (y) = 0$.
 $\frac{1}{3} (y) = \cos^2 y \cdot 8 \ln x + \frac{1}{3}$
 $\frac{1}{3} (y) = \cos^2 y \cdot 8 \ln x + \frac{1}{3}$

/

Equations with 1. S.T the solution ϕ of $y'=y^2$ which parson through the point (X0, Y0) & gn/. by $\phi(x) = \frac{y_0}{1-y_0/x_0}$ Equations with Variable seperated: -Given: y'=y2 > 0 $\frac{dy}{dx} = y^2$ $\Rightarrow dy = y^2 dx$ $y^2 dy = dx$. $Jing - \frac{1}{y} = x + c \rightarrow @$ which passes through the point (x0, 50) =) - + = xo te $-\frac{1}{y}-x_0=c$ $-\left(\frac{1}{y_{p}}+\chi_{0}\right)=c$ $= -\left(\frac{2(0y_0+1)}{y_0}\right) = C$

From @,

$$-\frac{1}{y} = x + c$$

$$-\frac{1}{x+c} = y$$

$$= y = -\frac{1}{x+c}$$

C ..

-> Y $\chi = \left(1 + \chi_0 y_0 - \frac{1}{y_0}\right)$ = - Yo $xy_{0} - 1 - x_{0}y_{0}$ -1 - Xoyo +xyo $-\frac{y_0}{-(1+x_0y_0-x_{y_0})}$ - <u>y</u>o $1 - (x - x_0) y_{p}$ or. Find the solny of the tollowing eqn/3. (i) $y' = x^2 y$. () y' = x 2 y 2 4 x 2 Sola/ ! y=Ax3y2 2 45x3 +C. $\frac{dy}{dx} = x^2 y$ dy = x 2 (y = 4) $\frac{dy}{y} = x^2 dx$ $Jing' \log = \frac{\chi^3}{3} + C$ $\frac{dy}{\int \frac{dy}{y^{\frac{1}{2}}}} = \int x^{2} dx .$ Taking exponential on b.s. $x_{3}^{3}+c.$ $x_{3}^{3}/3$ $y = e^{-} = c e^{-3}$ $\left[\frac{1}{2} \log \left(\frac{y-2}{y+2}\right)\right] = \frac{x^3}{3} + C$ (-: du = 1 log (49) tc)

(P) yy = x Soln. y dy = x > ydy =xdx $Jing, \frac{y^2}{2} = \frac{\pi^2}{2} + C$ $\Rightarrow \frac{y^2}{2} = \frac{\chi^2}{2} = c$ =) y²-x² = 2C => $y^2 - x^2 = c$ => y2 =x3C // (i) $y' = \frac{x+x^2}{y-y^2}$ $\frac{dy}{dx} = \frac{x + x^2}{y - y^2}$ $(y-y^2)dy = (a+a)dx$ Jing, $\frac{y^2}{2} - \frac{y^3}{3} = \frac{x^2}{2} + \frac{x^3}{3} + c$ $\frac{3y^2 - 3y^3}{6} = \frac{3x^2 + 3x^3}{6} + C$

(iii)
$$y' = \underbrace{e^{x-y}}_{1+e^{x}}$$

Soly.:
 $\frac{dy}{dx} = \underbrace{e^{x-y}}_{1+e^{x}}$
 $\frac{dy}{dx} = \underbrace{e^{x} \cdot e^{y}}_{1+e^{x}}$
 $\frac{dy}{dx} = \underbrace{e^{x} \cdot e^{y}}_{1+e^{x}}$
 $\underbrace{e^{y}}_{y} = \underbrace{e^{y}}_{1+e^{x}} dx$
Sing,
 $e^{y} = \log(1+e^{y}) + ($

 $\frac{3y^{2} - ay^{3}}{6} - \frac{3x^{2} + 2x^{3}}{6} = C$ = $3y^{2} - ay^{3} - 3x^{2} - ax^{3} = C$ = $3y^{2} - ay^{3} - 3x^{2} - ax^{3} = bc$ = $3y^{2} - ay^{3} - 3x^{2} - ax^{3} = bc$ = $3y^{2} - ay^{3} - 3x^{2} - ax^{3} + bc$ = $3y^{2} - ay^{3} = 3x^{2} + ax^{3} + bc$ ur Exact Equation problem: , consider the ern, m(x,y)dx + N(x,y)dy=0, where M. N have continuous first partial derivatives on some rectangle R. P.T a function u on R, having continuous first partial derivatives, is an integrating factor off $u\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=N\frac{\partial u}{\partial x}-M\frac{\partial u}{\partial y}$, on R. Proef'. The eqn/, M(x,y)dx+N(x,y)dy=0 -> 0 Let a fun, u on R having continuous first partial derivatives is an entegrating factor. -. u(x,y) m(x,y) dx +u(x,y) N(x,y)/40 ie.) umdx + unldy =0 > Midx + Midy =0 hot us assume that the equ, is exact. 10.) egn/ (1) is exact. Here $M_1 = UM_1$, $M_1 = UN_2$. $\frac{\partial m_1}{\partial y} = u \cdot \frac{\partial m}{\partial y} + m \cdot \frac{\partial u}{\partial y}$ $\frac{\partial N_1}{\partial x} = u \cdot \frac{\partial N}{\partial x} + N \cdot \frac{\partial u}{\partial x}$ sence, the own, is exact. $re, \Delta m_1 = \Delta N_1$ DYG

$$\begin{array}{c} U \frac{\partial M}{\partial Y} + M \cdot \frac{\partial U}{\partial Y} = U \frac{\partial N}{\partial x} + M \frac{\partial U}{\partial x} \\ U \frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} = M \frac{\partial U}{\partial x} - M \frac{\partial U}{\partial y} \\ U \frac{\partial M}{\partial Y} - \frac{\partial N}{\partial x} = M \frac{\partial U}{\partial x} - M \frac{\partial U}{\partial y} \\ \end{array}$$

Convesely, Univer: $\frac{\partial MI}{\partial y} = \frac{\partial NI}{\partial x}$ (c) $u\left(\frac{\partial m}{\partial y} - \frac{\partial N}{\partial x}\right) = N\frac{\partial y}{\partial x} - M\frac{\partial y}{\partial y}$. T.P.: F satisfies $\frac{\partial F}{\partial x} = MI$, $\frac{\partial F}{\partial y} = NI$.

Write converse proof of theorem (3).

is a contenuous fun! of y alone.

(d) It 2 is continuous and independent of x, then an entegrating factor is gry. by, $u(y) = e^{\alpha(y)}$ where a is any fury. S. t Q'= 2. Examples: 1. Solve the egn/. ydx - xdy =0 -0 Soly. ! M = g, N = -x $\frac{\partial M}{\partial x} = 1$, $\frac{\partial N}{\partial x} = -1$. am + an - This is not an oxall. To find the Integrating factor : Let an entegrating factory, which is a fun: at y alone then $2 = \frac{1}{M} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right)$ $T \cdot F \quad u(y) = e \qquad \int 2dy \qquad 2 = \frac{1}{y} (-1 - 1) = \frac{-3}{y}$ $u(y) = e \qquad = e^{\int -\frac{3}{y}dy} -2\int \frac{1}{y}dy -2\log y$ $u(y) = e^{\log y^2} \qquad = e \qquad = e^{\int -\frac{3}{y}dy} = e^{\int$ x^{19} by $u = \frac{1}{y^2}$ in eq. 0, Jzydx - Jz xdy =0 $= \int \frac{dx}{y} - \frac{x}{y^2} dy = 0$

Here,
$$M = \frac{1}{y}$$
, $N = \frac{-x}{y^2}$
 $\frac{\partial M}{\partial y} = \frac{1}{y^2}$, $\frac{\partial N}{\partial x} = \frac{1}{y^2}$.
 $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ st is an oxact.
To find $F_{,-}^{\circ}$
 $N.x-T$, $\frac{\partial F}{\partial x} = M$, $\frac{\partial F}{\partial y} = N$.
Consider, $\frac{\partial F}{\partial x} = M$
 $\frac{\partial F(x,y)}{\partial x} = \frac{1}{y}$
 $\int Ing w.x + 6 x$
 $F(x,y) = \frac{x}{y} + \frac{1}{y}(y) \rightarrow 0$.
Now, $\frac{\partial F}{\partial y}(x,y) = N$
 $\frac{\partial}{\partial y}(\frac{x}{y} + \frac{1}{y}(y)) = -\frac{x}{y^2}$
 $-\frac{x}{y^2} + \frac{1}{y}(y) = -\frac{x}{y^2}$
 $\frac{1}{y^2}(y) = 0$.
 $\frac{1}{y}(y) = c$ (say)
From (1) $\Rightarrow F(x,y) = \frac{x}{y} + c$
Any distr. soln. ϕ when is defined by the relation, $\frac{x}{y} = c \Rightarrow y = cx$.

Fine an integrating factor and solve. (a) (a) (a) + a) da + 3xy dy = 0: x [y3+1)=c. (b) $(5x^3y^2 + 2y)dx + (3x^4y + ax)dy = 0$. (c) $(e^{y} + xe^{y}) = xe^{y} = dy = 0$ Ans: $x^{y} + x^{2}y^{2} = c$. (c) $(e^{y} + xe^{y}) = xe^{y} = dy = 0$ Ans: $xe^{x+y} = c$. The Method of successive approxemations: Consider the 1st order differential err. $y'= \psi(x,y)$ with $\psi(x_0) = y_0 \rightarrow 0$ where \$ is any continuous real valued function on some rectangle R in the real (x,y) plane. On some Interval I containing to there is a solor. \$ of O satisfying $\phi(x_0) = y_0 \longrightarrow (2)$ By this we mean these is a real-valued differentiable fun, setisfeng (2) such a points (rider) are in R for x in I and $\phi'(x) = f(x, \phi(x)), \text{ for all } x in E.$ Thus a funt. of is called a soln! of to the S DI initial value problem $y' = f(x, y), y(x_0) = y_0 \longrightarrow (3)$ on I.

An integral osny.

$$y = y_0 + \int y(t,y)dt \rightarrow 0$$

on I. By a solor, of this ogn/. On I is moonly a real-valued continuous fund. ϕ on I fuch the $(\chi, \phi(\chi))$ is in R for all χ in I and

$$\phi(x) = y_0 + \int g(t, d(t)) dt. + x n D.$$

Theorem:
Theorem:
A tany.
$$\phi$$
 is a solny. of the firstfal value
Problem $y' = \phi(x, y)$, $y(x_0) = y_0$ on an interval I
iff it is solar of the integral end,
 $y = y_0 + \int \phi(t, y) dt$ on Σ .
Xo

ĺ.

Proof
inven:
$$\phi$$
 is a solar, of IVP , $y' = f(x,y), y(x_0); y$,
T. p : ϕ is a solar, of the integral gny .
Suppose ϕ is a solar, of $IV \cdot P$ on I
then $\phi'(t) = g(x, \phi(t))$, on $I - 0$.
Stace, ϕ is a continuous on I and f is
Continuous on R , the funre F defined by

 $f(t) = f(t, \phi(t))$ is continuous on I. Jing ear. O use got from no to x use get, $\int \phi'(t) dt = \int f(t, \phi(t)) dt$ $\left[\phi(\varepsilon)\right]_{x_0}^{x} = \int \xi(\varepsilon,\phi(\varepsilon))d\varepsilon$ 10 $\phi(x) - \phi(x_0) = \int f(t, \phi(t)) dt$ $\varphi(x) = \varphi(x_0) + \int \frac{1}{2} (t, \varphi(t)) dt.$ since, $\phi(x_0) = g_0$. $\Rightarrow y = y_0 + \int f(t,y) dt \rightarrow \infty$ Hence of is a solor, of the integral env. Conversely, Suppose of satisfies a solar of the integral equation. $\phi(x) = \phi(x_0) + \int_{x_0}^{\infty} f(t, \phi(t)) dt$ $ie_{\gamma}\phi(z) = g_{0} + \int f(t,\phi(t))dt$ Diff. we get, $\phi'(x) = \phi(x, \phi(x))$ and clearly $\phi(x_0) = y$. [By the fundamental then of Entogral calculus lower limit is a constant, it will Vanish]

Thus of is a solor of IV. P y'= \$ (a, y), g(20) = yo) Successive approximation general Formula We now describe the method of succossing approximations to obtain a solor. of the Potegral egn/. (2). As a forst approximation we consider the fun is defined by $\phi_0(x) = y_0$ This fun! sattisfies INP Initial condition \$ (x0) = yo, but doos not en general satisfy egn/ (2) However if we compute, $\phi_{1}(x) = y_{0} + \int 4(t, \phi_{0}(t))dt$ $\phi_{1}(x) = y_{0} + \int f(t, y_{0}) dt$ We expect that ϕ_{1} is a closer approximation to a solut. Than ϕ_{0} .

Infact, if coe continue the process and define successively $\phi_0(x) = y_0$ $\phi_{k+1}(x) = y_0 + \int_{1}^{2} \xi(t, \phi_k(t)) dt,$ χ_0 χ_0 χ_0

We might expect, on taking the lemit as $k \rightarrow \infty$, then we obtain, $\phi_{k}(x) \rightarrow \phi(x)$. where ϕ would satesty x $\phi(x) = y_{0} + \int f(t, \phi(t))dt$.

he call the funr.'s ϕ_0 , ϕ_1 , ... defined above as successive approximations to a solution of the integral eqn.(2) (or) the initial value problem(s) fermore:

Since f is continuous on R, it is bounded there, that is, I a constant M20 such that

 $|f(x,y)| \leq M$. for all (x,y) in R. Theorem:

The successive approximation ϕ_k , defined by $\phi_0(x) = y_0$, $\phi_{k+1}(x) = y_0 + \int f(t, \phi_k(t)) dt$, k = 0, 1, 2... exist as continuously fun, on $\frac{\pi}{2}$. $\Re(-b) = 1: (x - x_0) \leq \alpha = m^2 m m m f(a, b/m)^2$,

and
$$[x, \phi_{x}(x)]$$
 is in R for x in Σ - Indeed
the ϕ_{x} satisfy $|\phi_{x}(x) - y_{0}\rangle \leq M|x - x_{0}\rangle \rightarrow (3)$
tor all x in T .
Proof '.
Clearly ϕ_{0} exists on Σ as a continuous
fun/. and satisfy the en/.
 $|\phi_{x}(x) - y_{0}\rangle \leq M|x - x_{0}\rangle$ for $x = 0$.
When $k = 1$,
 $1 \phi_{r}(x) - y_{0}\rangle = |\int_{x_{0}}^{x} (t, y_{0}) dt| \leq |\int_{x_{0}}^{x} |f(t, y_{0})| dt|$
 $\leq M|x - x_{0}|$. $(-:|f(t, y_{0})| dt|$
Hence ϕ_{1} satisfies the Prograality O .
since, f is continuous on R , the funy.
Fo defend by,
 $F_{0}(t) = f(t, y_{0})$.

is continuous on I. Thus ϕ , which is gni. by, χ $\phi_i(x) = y_0 + \int F_0(t) dt$. No is continuous on I.

Assume that the thin has been proved for the funi. \$, \$, \$, . . . \$, We P.T it is

valid for
$$q_{k+1}$$
.
 $W \cdot k \cdot T (t, \phi_k(t))$ is in R for $t in T$.
Thus the fur. F_k given by
 $F_k(t) = \oint (t, \phi_k(t))$ exists for E in T .
 Tt is continuous on T . Since \oint is continuous on R .
and ϕ_k is continuous on T .
 $\vdots \phi_{k+1}(x) = y_0 + \int F_k(t)dt$.
 x_0
exists as a continuous fun, on T .
 $Also, |\phi_{k+1}(x) - y_0| \leq |\int_{1}^{x} |F_k(t)| dt|$
 $\leq M |x - x_0|$
 $\vdots \phi_{k+1} \text{ Salfsfies the Enequality.}$
The thin is proved by Enduction.

Note:

Since for x in I, $|x-x_0| \leq b/M$, the inequality $|\phi_k(x) - y_0| \leq M|x-x_0| \leq M \cdot \frac{b}{m} = b$. for x in I. This implies the point $(x, \phi_t(x))$ are in R for x in I.

lies in the region bounded by the two

M times the pth form of the power. series for e */a-xo) since, the power series for et /x-x0/ reo) 5 (t/x-xo)) is get and the series Dis convergent for x in I. \Rightarrow the series O is cgt on I. $(\Phi_{r}(N))$ The k^{th} partial sum of eqn. O which is tends to $\phi(x)$ as $k \to 0$ for each x in: Hence, { \$\$ = (x) } to merges to \$(x). (b) Properties of the limit of : This limit fun! & is a solo!. of our problem on I. ϕ is continuous on T. 10 P : I $x_1, x_2 \in I$, $\left| \phi_{k+1}(x_1) - \phi_{k+1}(x_2) \right| = \left| \int_{\alpha_1}^{\alpha_2} \left\{ (t, \phi_k(t) dt \right) \right|$