MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

SUBJECT NAME: NUMERICAL METHODS I

CLASS: 1 B.Sc CS

CODE: 23UECS12A

SYLLABUS:

Unit-I Curve Fitting- Principle of Least square Fitting of straight line Y=ax+b, parabola = $Y=ax^2+bx+c$, exponential curves of forms $Y=ax^b$, $Y=ae^{bx}$, $Y=ab^x$

UNIT-T

NUMERIAL METHOD (curve filting principle of least square)

The procedure of evaluating unknown constant with the help of given data is known as unive filting.

Least square method:

The most frequently used method to obtain the closes yet to the given data containing various error of measurement as been discussed the method & known as heast square method

1. Using the method of least square find the best filting line to the given data

x	1 2	3	A	5
4 1	3	5	6	5

Assume that the line that best fits to given data is y = a + bx

n=5 filren Data

$$x \quad y \quad xy \quad x^{2}$$

$$i \quad i \quad i \quad i \quad i$$

$$2 \quad 3 \quad 6 \quad 4$$

$$3 \quad 5 \quad i5 \quad 9$$

$$4 \quad 6 \quad 24 \quad 16$$

$$4 \quad 5 \quad 5 \quad 25 \quad 25$$

$$4x = 15, \quad EY = 20, \quad 6x = 11, \quad 5x^{2} = 55$$

$$20 = a5 + 15b \quad \rightarrow \textcircled{0}$$

$$71 = a.15 + 55b \quad \rightarrow \textcircled{0}$$

$$11 = y = a + 55b$$

$$(-71) = y = a + 55b$$

$$20 = a5 + 15c(1.1)$$

$$20 = a5 + 15c(1.1)$$

$$20 = a5 + 16.5$$

$$20 - 16.5 = a5$$

$$\frac{5}{5} = a$$

$$(-7) = 5ub \quad 3h \quad formula$$

$$4 = a + b^{2}$$

$$(-7) = 0.77 + 1.1(x)$$

6	Fit a square estimat	sense	109 -	the	-bx + follou	cx ² j ng a	n the . lata al	least	
	7 Y		2	3	-4 16	5			
and the second s	J	4 : 59 < 24	$= a + b$ $= an + a$ $= a \epsilon$	х +0 -b E л х +1	+(2 bzx ²	я ² + с ± х + с ± х	1		
	x 1 2 3 4 27=	, 19	1 4 9 16 25	1 8 27 64 125	625	xy 10 24 39 64 95 £xy=	$x^{2}y$ 10 48 117 256 475 $\xi x \dot{y} =$		
	12	70 70 232 906 $= \int 5$ 15	= 52 + = 15a = 550	225 9 -156 - + 556 1 + 22 55 225	+55 C +225 56+ °	232 c 179 c 57 (55 15 (15 55 c)	906 ×979-2 ×979-5	25 × 225 5 × 225) 55 × 55	4
					F	700			

$\mathcal{D}_{1} = \begin{vmatrix} 70 & 15 & 55 \\ 232 & 55 & 225 \\ 906 & 225 & 979 \end{vmatrix} = \frac{70(55 \times 979 - 225 \times 225)}{15(232 \times 979 - 225 \times 906) + 55(232 \times 225 - 55 \times 906)} = 155(232 \times 225 - 55 \times 906)$
$= 6580$ $= 570 = 5(232 \times 979 - 225 \times 906) - 55 = 5(232 \times 979 - 225 \times 906) - 70 (15 \times 979 - 225 \times 55) + 55 906 979 = 55 (15 \times 906 - 232 \times 55) - 55 (15 \times 906 - 232 \times 55) - 2006$
$ = 346 $ $ = 346 $ $ = 346 $ $ = 5157906 - 232 \times 225)^{-1} $ $ = 5(55 \times 906 - 232 \times 225)^{-1} $ $ = 15(15 \times 906 - 232 \times 55)^{+1} $ $ = 15(15 \times 906 - 232 \times 55)^{+1} $ $ = 15(15 \times 906 - 232 \times 55)^{+1} $ $ = 15(15 \times 906 - 232 \times 55)^{+1} $ $ = 1006 $
= 200
$a = \frac{D_1}{D} = \frac{6580}{700}$ $a = 9.4$
$b = \frac{D2}{D} = \frac{340}{700}$ $b = 0.4857$
$L = \frac{D3}{D} = \frac{200}{700}$ $L = 0.2857$
$y = a + bx + cx^2$ $y = 9.4 + 0.4857x + 0.2857x^2$
$\chi = b$ $y = 9.4 \pm 0.4857(b) \pm 0.2857(b)^2$
y= 22.5994

	Find	a ano	1 b y=ae	bx fixs t	the data	100		
	x	1	2	3	4			
	y	7	()	17	27			
	$y = ae^{bx}$ $y = ae^{bx}$ $fog AB = Log a + Hog B$ $Log e^{y} = Log e^{a} + log e^{bx}$ $= Log e^{a} + log e^{bx}$ $= Log e^{a} + bx ci$ $Log e^{y} = Log e^{a} + bx$ $\therefore y = Log e^{a} + bx$ $y = a + bx$ $y = a + bx$ $zy = Ana + bz^{2}$ $zxy = EAx + zbx^{2}$							
-	χ	l y	y= 10904	the second s	y	x ²		
-	1	7	1.9459	1.	9459	1		
	2	11	2.3979	4	.7958	4		
	3	17	2. 8332	8	. 4996	9		
	4	27	3.2758	13	.1832	16		
2	<i>i</i> z=	źy =	24 =	3:	xy =	5x2=		
	(0	62	10.4522	-	8.4245	30		
	1							

$$28.4245 = (0A + 30b \rightarrow @)$$

 $10.4529 = 4A + 10b \rightarrow @)$

mu

31.3584 = 12A + 30b 28.4245 = 10 A + 30 b 2.9339 = 2A $A = \frac{2.9339}{2}$ A = 1.46695From equ () 10.4528 = 4(1.46695) + 10610.4528 - 4(1.46695) = 1066 = 0.45852 A=Logea $a = e^{A} = e^{1.4970}$ a = 4.4683 $y = ae^{bx}$ y=4.4683 e 0.4585 (2)

Fit a	straight	Line f	o the followi	ng data.				
x	0	1 2	3	4				
4	1 1.	8 3.3	4.5	6.3				
$\epsilon y = an + b\epsilon x \rightarrow 0$ $\epsilon xy = a\epsilon x + b\epsilon x^{2} \rightarrow (2)$								
X	Y	χ2	x y					
0	he Steel	0	D					
1	1.8	1	1.8					
2	3.3	4	6.6					
3	4.5	9	13-5					
4	6.3	16	25.2					
EI = 00	Ey = 16.9	$\frac{4x^2}{30}$	Exy = 47.1					
	16.0	- 50 +10	6 -7 A)					
	16.9 = 5a + 10b - 7A $47.1 = 10a + 30b \to B$							
multi 2 into equ @								
33.8 = 10pt + 20b								
A7.1 = 10a + 30b								
		3 = +10	and the second					
		b = 13.3		33				

	16.9 = 0	5a +10b 5a +10(1	u 🏵 • 33)			
$ \begin{array}{r} 16 - 9 - 13 \cdot 3 = 5a \\ 3 \cdot 6 = 5a \\ a = \frac{3 \cdot 6}{5} \\ a = 0 \cdot 72 \end{array} $						
Fift a straight line to the following data						
x	11	2	3 4	5	6	
y	1200	900 60	00 200	llo	50	
x	y	x ²	74			
1	1200	1	1200			
2	900	4	1800			
3	600	9	1800			
4	200	16	16 800			
	110	25	25 550			
5		36 300				
6	50	36	500			
	50 Zy= 3060	36 Ex ² =	500 Exy = 6450			

$$\begin{aligned} \begin{aligned} &\xi \eta = a u + b \xi x & \to 0 \\ \xi x \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & \to \infty \end{aligned}$$

$$\begin{aligned} &\xi \eta = a \xi x + b \xi x^2 & = b a \xi x + b \xi x^2 & = b a \xi x + b \xi x^2 & = b a \xi x + b \xi x^2 & = b a \xi x + b \xi x^2 & = b a \xi x + b \xi x^2 & = b a \xi x + 1 + 8 \xi x & = b a \xi x & = 1 + 3 \xi x + 1 + 8 \xi x & = 1 + 3 \xi x & = 1 +$$

Fend t		ve of	best fi	t of t	he type			
y = ac	br ,	1	1 13		1			
2	1	5	7	9	12			
8	10	15	12	15	21			
y = aebx								
logy = loga + logebx								
	logy = loga + bx loge							
		y = A	+Bx					
		y = l	09 4	A= 609	A			
12	BX = BX log e							
19			= 1090		6			
	3	£y = a	n + bs	$\chi \rightarrow ($	A)			
		Ery = a						
х	log y	1110-	χ ²	×40	log)			
1	16		1	10				
5	15	2	7/	75				
7	12	14	9	84				
9	15/	1 8	1	(35				
12	1/21		14	252				
٤٦ =	54:	= 2	x=	Ézy	2			
34								

×	4	log y	x²	log xy
1	10	1	de terres	ł
5	15	1.1761	25	5.8805
7	12	1.0792	49	7.5544
9	15	1.1761	81	10.5828
12	21	1.3222	144	15.8664
£x=		Eny=	2x=	Ezy =
34		5.7536	300	40.8871

$\varepsilon_y = an + b\varepsilon_x - 70$
$\mathcal{E}xy = a\mathcal{E}x + b\mathcal{E}x^2 - \mathcal{I}$
$5.7536 = 59 + 346 \rightarrow \textcircled{0}$ $40.8871 = 349 + 3006 \rightarrow \textcircled{0}$
mul 34 in equ @
mul 5 in aqu B
195.6224 = 170a + 1156 b 204.4355 = 170a + 1500 b
-8.8131 = -344b
$\frac{8.8131}{344} = b$
6 = 0.02561
Sub equ in D
5.7536 = 50 + 34b

 $5 \cdot 15 \cdot 36 = 50 + 34(0 \cdot 02561)$ $5 \cdot 7536 = 50 + 34(0 \cdot 02561)$ $5 \cdot 7536 = 50 + 0 \cdot 87074$

5.7536 - 0.87074 = 5a 4.88286 = a 5 a=0.9766 $\frac{B}{\log 10^{\text{e}}} = \frac{0.02561}{\log 10^{\text{e}}}$ b = 0 - x d + 10 - 64

F	fnd	the	un	ve ob	bos	t f	Pt	of th	he t	ype
0	y=ax+b									
	n		3	4	6	8	9	11	14	Г
	4	1	2	4	4	5	7	8	9	1
						11	-	0		1
	$\Xi y = an + b\Xi x - 7 \bigcirc$ $\Xi x y = a\Xi x + b\Xi x^2 - 7 \bigcirc$									
Ē		1		•				-04		
-	x	(8	X	2	:	xy			
	1	1		1			1			
	3	2		9	2		6			
	4	4	4	16	13		16	134		
	6	4		36	-	2	4	104		
	8	5		64			-0	-		
	9	7	-	81			3			
	11	8	1	(2)	- P.		26	pr		
	14	9	-	196	_	1000	say	=		
1	EX = 56	Ey 40		524			364			
-				2.45						
				= 80				A		
		M		= 560 e 7						
		pu	nipe	e i	u vul	4	- 0	/		

280 = 569 + 3926 364 = 560 + 5246-84 = -1326

$$\frac{84}{132} = b$$

$$\frac{1}{132}$$

$$\frac{1}{15} = 0.64$$
Sub in equil
 $A_0 = 8a + 56b$
 $A_0 = 8a + 56(0.64)$
 $A_0 = 8a + 35.84$
 $A_0 - 35.84 = 8a$
 $A \cdot 1b = 8a$
 $a = \frac{4 \cdot 1b}{8}$
 $a = 0.52$

Find the when $x = 30$.

Find the when $x = 30$.

$$\frac{x}{16} = \frac{1}{16}$$
 $\frac{x}{16} = \frac{1}{16}$
 $\frac{x}{25} = \frac{1}{16}$
 $\frac{15}{20} = \frac{2.5}{20}$
 $\frac{x}{16} = \frac{1}{16}$
 $\frac{15}{25} = \frac{2}{30}$

$$\frac{x}{16} = \frac{1}{16} = \frac{2}{5} = \frac{8}{7}$$
 $\frac{1}{16} = \frac{2}{5} = \frac{8}{7}$
 $\frac{1}{16} = \frac{2}{5} = \frac{8}{7}$

$$\begin{aligned} & \leq q = an + b \leq x \rightarrow 0 \\ & \leq nq = a \leq x + b \leq x^{2} \rightarrow 0 \end{aligned}$$

$$\begin{aligned} & 114 = Sa + 75b - 7@ \\ & 114 = Sa + 75b - 7@ \\ & 1885 = 75a + 1375b - 7@ \\ & 1885 = 75a + 1375b \\ & 1710 = 75a + 1125b \\ & 1885 = 75a + 1375b \\ & 1885 = 75a + 1375b \\ & 1985 = 75a + 1375b \\ & 1985 = 75a + 1375b \\ & 1985 = 75a + 1375b \\ & 1175 = +250b \\ & b = 0.7 \\ & Sub in equ & \\ & Sub in equ &$$

bost yu	the met itting so	thod of least squares, find t no to the given data. 2 3 4 5	he				
21		2 3 4 9 3 5 6 5					
19		3					
	ŹY ŹXY	$y = an + b \leq x \rightarrow 0$ $y = a \leq x + b \leq x^2 \rightarrow 0$					
2	4	xy x^2					
1	1	dage - april					
2	3	6 4					
3	5	15 9					
4	6	24 16					
5	5	25 25					
£x =	Ey=	$zxy = zx^2 = 55$					
15	20	11 55					
	20 = 71 =	5a +156 -7 1 15a +556 -7 1					
	mul	3 juto equ A					
1.70		= 159 + 45b					
N. March	71 = 15a + 55b						
		= -106					
	Ь	$= \frac{11}{10}$					
		$\overline{v} = 1 \cdot 1$					
	10						

Sub in equ (2)

$$20 = 5a + 15b$$

 $20 = 5a + 15(1.1)$
 $20 = 5a + 16.5$
 $20 - 16.5 = 5a$
 $3.5 = a$
 5
 $a = 0.7$
 $y = a + bx$
 $y = 0.7 + 1.1x$

fit a wrive of the form y= ae br for the data

r	0	2	4
y	8.12	10	31.82

$$Y = ae^{bx}$$

Taking log on both fide
 $\log Y_c = \log ae + bi \log e^{a}$
 $Y = A + bx$

$$\leq \eta = an + ka \rightarrow 0$$

 $\leq xy = a \leq x + b \leq t^2 \rightarrow 0$

(e.	x	y	y= loge ^y	zy	χ²	
1	0	8.12	2.0943	0	0	
	2	10	2.3026	4.6052	4	
	4	31.92	3.4601	13.8404	16	
	£x =		zy =	Ery=	£1 ² =	
2	6		7.8570	18.4456	20	
	2	7.8570	= 3a + 6b = 6a + 20b	$\rightarrow \textcircled{A}$ $\rightarrow \textcircled{B}$		
		mul 2	into equE) avrag		
		15.714 :	$= 6\alpha + 12b$ $= 6a + 20b$ $= 6a + 20b$			
			o = -8b	-		
			lb = b			
		8	= 0.34145	CARADP		
			in equ (A			
		7.8570	= 3a + 6b			
			= 30 + 6(0)	-		
			0 = 30 + 2.04	No. Thereway		
		7.85	10-2.0487=			
			5.8083 = 3			
1			5.8083	=a		
			3			
			a = 1.9	361		

A doge^a
$$\rightarrow a = e^{a}$$

$$= e^{1.9361}$$

$$a = 6.9317$$

$$Y = ae^{6x}$$

$$Y = (6.9317)e^{0.3415x}$$

Fit an exprotial curve of the form $y = ae^{bx}$ by the method of deast square for the following table

No. of potal	5	6	7	8	9	10
No. of flowers	133	55	23	7	2	2

Y= a+62

 $\leq y = an + b \leq x$

		cry - uch		La bankar ha
A	y	y=10gy	xy	x ²
5	133	4.8903	24.4515	25
6	55	4.0073	24.0438	36
7	23	8.1355	21.9485	49
8	7	1.9459	15.5672	64
9	2	0.6931	6.2379	81
10	2	0.6931	6.9310	100
£x=	4	źy =	Exy=	21°=
45		15.3652	99.1799	355
4		A DESCRIPTION OF A DESC		

$$xy = a \xi x + b \xi x$$

$$15 \cdot 3652 = 6a + 45b \rightarrow \textcircled{P}$$

$$99 \cdot 1799 = 45a + 355b \rightarrow \textcircled{P}$$

$$Mul \ 15 \ anto \ equ (P) \ mul \ 2 \ anto \ equ (P)$$

$$230 \cdot 478 = 90 \ 9 + 675b$$

$$198 \cdot 3598 = 90 \ 9 + 710 \ b$$

$$(-) \qquad (-) \qquad (+)$$

$$32 \cdot 1182 = -35b$$

$$-\frac{32 \cdot 1182}{35} = 6$$

$$b = -0.9177$$
Sub in equ (P)

$$15 \cdot 3652 = 6a + 45b$$

$$15 \cdot 3652 = 6a + 45b$$

$$15 \cdot 3652 = 6a + 45(-0.9177)$$

$$15 \cdot 3652 = 6a - 41 \cdot 2965$$

$$15 \cdot 3652 + 41 \cdot 2965 = 66$$

$$\frac{56 \cdot 6617}{6} = a$$

$$a = 9 \cdot 443b$$

$$A = \log e^{9} = 7 \ a = e^{A} = e^{9 \cdot 443b}$$

$$A = \log e^{9} = 7 \ a = e^{A} = e^{9 \cdot 443b}$$

$$A = \log e^{9} = 7 \ a = e^{A} = e^{9 \cdot 443b}$$

$$A = \log e^{9} = 7 \ a = e^{A} = e^{9 \cdot 443b}$$

$$A = \log e^{9} = 7 \ a = 0^{A} = e^{9 \cdot 443b}$$

$$A = \log e^{10} = 7 \ a = 0^{A} = e^{-9 \cdot 443b}$$

1 = 00

(ollen ??

Fit a best fitting unive in the form
$$y=ax^{b}$$

for the following data
 $x = 1 = 2 = 3 = 4 = 5 = 6$
 $y = 2.98 = 4.76 = 5.4 = 6.1 = 6.9 = 7.5$
calculate the value of y when $x = 3.5$.
 $y=ax^{b}$
Applying loge on both side
 $logey = loge [ax^{b}]$
 $logy = log a + logx^{b}$
 $logy = log a + logx^{b}$
 $logy = log a + blog x$
 $y = A+bx$
 $zy = ah + b zx = -70$
 $zxy = a zx + b zx^{2} = -30$
 $x = y = x + b zx^{2} = -30$
 $x = x + b zx^{2} = -30$
 $x = 1 = 2.98 = 0 = 1.0919 = 0 = 0$
 $1 = 2.98 = 0 = 1.0919 = 0 = 0$
 $1 = 2.98 = 0 = 1.0919 = 0 = 0$
 $2 = 4.76 = 0.6931 = 1.4493 = 0.4805 = 1.0045 = 1.9133$
 $3 = 5.4 = 1.0986 = 1.9032 = 1.9218 = 2.5068$
 $4 = 6.1 = 1.3863 = 1.9169 = 2.5903 = 3.0857$
 $5 = 6.8 = 1.6094 = 1.9169 = 2.5903 = 3.0857$
 $5 = 6.8 = 1.6094 = 1.9169 = 2.5903 = 3.0857$
 $5 = 6.7 = 1.7918 = 2.0149 = 3.2104 = 3.6103$
 $b = 7.5 = 1.7918 = 2.0149 = 3.2104 = 3.6103$
 $b = 7.5 = 1.7918 = 2.9149 = 2.212 = 2.2201$

9.9319=6a+6.5792b -> B) 12.0201=6.5792a+9.4099b -> B 00

Fit a	best f	itting	CUH	re y	= ar	5		
z (price)		20	16	10	1)	14		
yldeman	d) 2	2 /	4)	120	89	56		
Hence estimate domand (4) when price x = 12								
$y = ax^{b}$								
Applying loge on both side								
$logoy = loge a (x)^b$								
	$= loga + log x^b$							
	to	9ey =						
		loge4				e=loge	² ^A	
			= A+b					
		EN=	an +	bźx	->0	2		
$z_{xy} = a z + b z^2 \rightarrow 2$								
T	У	1 7 =	logx	4	=logy	x	2	zy
20	22	2.90	157	3	.0910	8.9-	(44	9.2597
16	41	2.7	726	3	.7136	7.6		10.2963
10	100	2.3	026	4	.785	5.8	618.	11.0237

r	9	$\alpha = \log x$	y=logy	x	ny
20	22	2.9957	3.0910	8.9744	9.2597
16	41	2.7726	3.7136	7.6972	10.2963
10	120	2.3026	4.785	5.3018	11.0237
11	89	2.3979	4.4886	5.7499	10-7632
14	56	2.6391	4.0254	6.9646	10.6234
		Én =	<i>≰</i> y =	シス2=	±xy=
		13.1079	20.1061	34.6783	51.9664

20.1061 = 5a + 13.10796 -> @ 51.9664=13.1079a + 34.6783b -> B D= 1401 700 = 03

20	1	2	3	4	5	6	7
U	87	97	113	129	202	195	193

$$Y=ab^{n}$$

Applying loge on both side
 $loge y = loge (a(b)^{2})$
 $= loga + logb^{n}$
 $log y = loga + nlogb$
 $Y=loge y \cdot A = loga = B=loge$

Jun tinu (a

24 =	an + b Ex	$\rightarrow 0$
Exy =	aEx + bEx2	->2

x	y	y= Iny	x	хy
1	87	4.4659	1	4.4659
2	97	4.5747	4	9-1494
3	113	4.1274	A. 5 351	19.4392
4	129	4.8598	16	26.5415
5	202	5.3083 5.2730	36	31.638
6	195	5.2627	49	36.8389
1	193	7. 202/	7/	
Exa	sys	Ey=	EZ=	2ty =
28		34.4715	140	142.2548

$$\begin{array}{l} 34.4715 = 7a + 28b & -> (P) \\ 142.2548 = 28a + 140b & -> (P) \\ 142.2548 = 28a + 140b \\ 137.886 = 28a + 140b \\ 142.2648 = 140b \\ 142.2648 = 28a + 140b \\ 142.2648 = 10000 \\ 142.2648 = 1000000 \\ 14000000000000000000000$$

24

49.99

TA-IPT'S

19.4 92

391.20

STATE

TT I M

The population at a certain sty at loyeons Interval & given by the following table

YEOTS(x)	1941	1951	1961	1971	1981	1991	2001
population(y)	3.9	5.3	7.3	9.6	12.9	17-1	23.2
	of t the	40 108	m y =	ab ^a t	to th	i do	da

 $Y = ab^{x}$ Applying loge on both side $loge y = loge (ab^{x})$ log y = log a + xlog b Y = A + Bx $Y = loge Y \quad A = loge^{a} \quad B = loge^{b}$ $zy = an + bzx \rightarrow 0$ $zxy = azx + bzx^{2} \rightarrow (2)$

n=7 $x_{1} = x - 1941$

THE BE CALL

2	x	y	2=2-1941	y=logey	×2	zy
	-	R To oth	0	1.3609	D	0
	t94 1	3.9	10	1.6677	100	16.677
	1951	5.3	20	1.9878	400	39.758
	1961	9.6	30	2.2617	900	67.854
	(97) (9 8)	12.9	40	2.5572	1600	102.288 141.955
	1991	17.1	50	2.839/	2500 3600	188.652
	2001	23.2	60	3.1442	6 1000	1.14
•			£χ =	zy =	£X ² =	Exy =
			210	15.8186	9100	557.179
					8	

15.8186 = 7a + 210b -> ④ 557.179 = 210a+9100b -> ⑤ mul 30 in equ €

474.558 = 210a + 6300b557.179 = 210a + 9100b

-82.621 = -2800 b

 $\frac{82.621}{2800} = 6$

b = 0.0295075 Sub in equ (P) 15.8186 = 7a + 210b 15.8186 = 7a + 200(0.0295075) 15.8186 = 7a + 6.196575 15.8186 - 6.196575 = 7a9.622025 = 7a

$$\begin{array}{l} \begin{array}{l} \frac{9 \cdot 622\,025}{7} = a \\ a = 1 \cdot 374575 \\ log e^{Q} = 1 \cdot 374575 \\ a = e^{1 \cdot 374575} \\ a = e^{1 \cdot 374575} \\ a = e^{0 \cdot 0295075} \\ a = 3 \cdot 9534 \\ y = abx \\ y = abx \\ y = 3 \cdot 9534 \\ (1 \cdot 0299)^{\chi - 1941} \\ y = 3 \cdot 9534 \\ (1 \cdot 0299)^{2011 - 1941} \\ y = 3 \cdot 9534 \\ y = 3 \cdot 9534 \\ \chi = 0299 \\ y = 31 \cdot 09029394 \end{array}$$