MARUDHAR KESARI JAIN COLLEGE FOR WOMEN, VANIYAMBADI PG & RESEARCH DEPARTMENT OF MATHEMATICS

CLASS : I B.Sc PHYSICS

SUBJECT CODE: MATHEMATICS I

SUBJECT NAME: 23UEMA10C

SYLLABUS

UNIT- III

Numerical Methods

Newton's method to find a root approximately. Finite Differences: Interpolation: Operators ,, ∇ ,E, difference tables. Interpolation formulae: Newton's forward and backward interpolation formulae for equal intervals, Lagrange's interpolation formula.

Unit: 3

Numerical methods:

Newton's method to tind a root approximation:

 $x = x = 1 - \frac{f'(x)}{f'(x)}$

a root of approximation. dx = dxh-1.

This method depends on taylor's expansion of tunction.

Suppose we want a root of f(x)=0.

(here f(x) need not be a polynomial)

Let us - have the bollowing assumption $\alpha: A \text{ root}$ of b(x)=0.

xo: A known humber close to x. h: A small number such that d= roth.

then h measures the gap between the root & and to anowh is not known if his known it means or, the root is known sincex is a root of the equation f(x) = 0.

(1 + (x) + (x) + (x) = 0

By the taylor's series.

Therefore, using (1)

 $0 = \frac{1}{1!} (x0) + \frac{h}{1!} \int_{0}^{1} (x0) \frac{h}{2!} \int_{0}^{1} (x0) dx$

:. The equation gives the actual value of h which cannot be obtained

terms, we get an approximate value took h boom.

o= $f(xo)+\frac{h}{f}$ f'(xo) as $h=-\frac{f(xo)}{f'(xo)}$ which this value of h, xo+h=x but this xo+h is closer to xo+h and xo'benote this xo+h by x, then, $xi=xo-\frac{f(xo)}{f'(xo)}$

Thus x_1 is a better appromation for x_1 then x_2 or x_3 the number x_2 is given by $x_2 = x_1 - f(x_1)$

4/121)

than xi etc thus in conclusion.

20 is not an approximation for x.

xi is a better approximation for x.

xi is a better approximation for x.

xi is a still better approximation torx

the approximation and given by

xxx = 2ch -1 - + (xh - 1)

+1 (xh - 1)

Key points Desive the sook of Newton's $\alpha = x + h$ $\alpha = x +$

 $n+1(\infty 0)=-+(\infty 0)$

¿ O Find by Newton's method the real so of x3+3x+120 correct to a decimal

Part.

Criven:

$$xo = o it_{1}(x) = 3x_{5} + 3$$

$$xv = xv - 1 - \frac{1}{2}(xv - 1)$$

$$t(0) = 1 + 3 - 1 = 3$$

$$t(0) = 0 + 0 - 1 = -1$$

$$t(0) = x_{3} + 3x_{5} - 1$$

mod & cos

$$x_{1} = x_{0} - \frac{1000}{1000}$$

$$= 0 - x_{0} + 3x_{0} - \frac{1}{3}$$

$$3x_{0}^{2} + \frac{3}{3}$$

$$= -\left(\frac{3}{-1}\right)$$

$$= -03 + 3(0) - 1$$

h=2, | = 1 = 0

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$= \frac{1}{3} - \frac{1}{3}(\frac{1}{3})$$

$$= \frac{1}{3} - (\frac{1}{3})^{3} + p(\frac{1}{3})^{-1}$$

3(23)+3

$$= \frac{1}{3} - \frac{\left(\frac{1}{24}\right)}{\frac{1}{24}}$$

$$= \frac{1}{3} - \frac{\left(\frac{1}{24}\right)}{\frac{10}{3}}$$

$$= \frac{1}{3} - \frac{1}{9} \times \frac{3}{10}$$

$$= \frac{90 - 3}{270}$$

$$= \frac{97}{270}$$

$$h = 3,$$

$$-3 = 0.322 - \frac{(0.322)^3 + 3(0.322)^{-1}}{3(0.322)^{2+3}}$$

$$= 0.322 - \frac{(0.333 + 0.966 - 1)}{6.3110 + 3}$$

$$= 0.322 - 0.007$$

= 0.322 - 0.0007 3.3110 = 0.322 - 0.0021 = 0.3199 = 0.32

Dusing Newton's method to tind the Smallest Positive root of the equation.

*	-2	-1	0	•	2
£1x)	-2.5	1.5	0.5	-0.5	74.5
4111	1	=) (10 11	人	

4- E -22XX-1 0 OCXXI - 12X22

1 4- 01- T- ph- ph- ph- opt

$$\frac{1}{1(x)} = 3x^{2} - 2x + 0.5$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^{2} - 3x - 1 = 0$$

$$\frac{1}{1(x)} = 3x^$$

$$x_{0} = x_{0} - \frac{1}{4} (x_{0} - 1)$$

$$x_{1} = x_{0} - \frac{1}{4} (x_{0})$$

$$= 3 - \frac{3}{3} - 2(3)^{2} - 3(3)^{2} + 4(3) - 3$$

$$= 3 - \frac{(-4)}{(2)}$$

$$= 3 + \frac{1}{3}$$

$$x_{1} = 3 \cdot \frac{3333}{4 \cdot (x_{0})}$$

$$h = 2$$

$$x_{2} = x_{1} - \frac{4(x_{0})}{4'(x_{0})}$$

$$= (3 \cdot 333)$$

THE Polation ..

InterPalation:

suppose, in a exporiment, coresponding to the n+1 values. x0,x1,x2xh ----

of a quantity x, the observed hall values of another quantity y aro. yo, y, 'y > , - - · yn →®

There may be a relationship between * and y, when this relationship is not known explicity, a function + (x) is found based on the values @ & @ such that the equation.

will give on approximate value for y corresponding to an x other than . It x lies within the range of O. then this method binding y is called Interpolation. It & lies outside the range of O, then the method is called extrapolation.

Nomenclature

201X11X2 1 .. In are called arguments yo, y,, y, , ... yn are called entries.

Interpolation or extrapolation.

Forward differences (+.d.'s) suppose

the x values are in the increasing order and are equally spaced, that

x1-x0=x21-x1=x3-x2=...

Then the n numbers.

Y1-40142-41,43-421.--4n-4n-1

are defined to be the first order 1.d.

=6 the given n+1 entries.

and, using A (delta), are denoted

Δ y 0 1 A y 1 Δy 2 · · · · Δy n-1.

ive, Ay: = Ayitı - yi or Ay = (hexty)-y

Note that Ayn is not known become

ynti is not given.

Ayor Ayı ..., Ay n-11 hamely.

(Ayı) - (Ayo), (Aya) - (Ayı).

(Ayn-1) - (Ayn-2)

are defined to be the second order 1. d's of the same n+1 values of y hamely 'yo, y, ..., yn and are denoted by

A2yo, Ay,, -- A2 yn-2

similarly, for the same not value

Aoia 11..... Au of A · Valo · Valo....

raphs bulles

J. d.s.

forward difference table. The fidis
of all orders can be displayed in a
tabular form. The respective table
is called the fid table.

For example, the following tebble is the fid tables for 4 pairs of values of x and y'

·x	y	Δ	Δ 2	Δ ³
20	og	has bush	or and finding	· = 3/45
Σl	יוף	190-11-90	H + 1 H -	y ye
X2	92	Dy 1 = y 2 - 91	$\Delta^2 y_0 = \Delta y_1 - \Delta y_0$	A 3 yo = A 2 y, -A3go
23	A 3	Δy2= y3-y2	$\Delta^2 y_1 = \Delta y_2 - \Delta y_1$	

In this case, to interpalate a value by Newton's by bornard bornula, we will require.

yo, Ayo, A240, A340.

which are the top elements of columns

Backward differences (b.d's). The n

y, -yo, y2-y, y3-y2..., yh-yh-lare defined as the birst order bds

and using of (del or habla) are denoted by

· Vy = y 1-y; = 10 ive 1 Vy = y-(Previous

note that 17 yo is not known became y-1 is not given.

The first order bid's 06 Tyring.

(Dy2) -(Dy); (Dy3)-(Dy2)...(Dy)

one called the second order bidi

V2 y21, V2y3 - -- , V2yh

similarly the third order bidia

out of property of the second of the A3 h.

example, the bid tobble boo 4 pairs of values of x by is

given below.

		101	below,	
_	X	y	V	724 618 2
	xo	90	Ard 7 Abyagi	odfil turn
	,œ1	81	AA1=A1-A0	7292=742-741
	x2	82	7 42 - 42 - 47	V3y3= V2y3
A STATE OF THE PERSON NAMED IN COLUMN 2 IS NOT THE PERSON NAMED IN	23.	93	Vy3 = y 3-y2	V243=A43-A43

of newton's backward bornula,
we will require,

73, 043, 0343, 0343,

of caloumns 2,3,4,5.

(operator) A. In general, box any value of x, the operator A is defined by, jornard

 $[\Delta + (x) = + (x+y) - + (x).$

In Particular,

 $\Delta yo = \Delta + (x) = + (xo + h) - + (xo) = y - you$

Δ240 = Δ [Δ40] = Δ [41 - A0] = Φλ1-Φλ0.

= (42-91) -(41-40) = 23 - 24, +90,

△340 = 43 - 342 + 341-40

Mote. The coefficients in Δ^3y_0 are the coefficients of $(1-x)^3$, and the coefficients in Δ^4y_0 will be the Coefficients of $(1-x)^4$, etc.

Operator (5) backward.

In general , tor any value of

10+(x)=q(x)-+(x-p)

In particular.

 $\Delta_3 \lambda u = \lambda v - 3 \lambda u - 1 + 3 \lambda u - 5 - 3 u - 3 u - 3 u - 3 u - 3 u - 3 u - 3 u - 1 - 1 u - 1 u - 1 u - 1 u - 1 u - 1 u - 1 u - 1 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2 u - 1 u - 2$

operator the operator E is defined such that its operator on they value at x fields the y value at xth.

Thus, in general,

(E+1x) = + (x + 4).

In particular,

 $E(y_0) = E+cx_0) = +cx_0+h) = y_1$ $E(y_1) = y_2 \cdot E(y_2) = y_3 \cdot E(y_{h-1}) = y_1$

Also,

 $E^{2}(y_{0}) = E + E(y_{0}) = E + Cy_{0} = y_{2}$ $E^{3}(y_{0}) = y_{3} + E^{4}(y_{0}) = y_{4} + ... + (y_{0}) = y_{4}$ Example 1. Find the missing you value in the table.

with usual notations, the old column in the tollowing table gives first differences but we require the values of yx, namely,

411421 43,4100 yo

oper Find the missing yx value in the

y×	0	7'	72	43	94	85
Δηχ	AYO	081	Δ42	483	469	282

soln:

From the table.

1 = 0

$$\Delta y_0 = y_1 - y_0$$
.

1=1,

1 = 2

1=3

vp + v - o	×	Ser H. Ser Shiven
2 h-8 100=4	ce	15 6 1
Ay = y = y = y = y = y = y = y = y = y =	D CS	2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P 2 P
4240 = 42, -440 = 69-9 = 69-9 = 19-6	A	20 0 x 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\Delta^{3}y_{0} = \Delta^{2}y_{1} - \Delta^{2}y_{0}$ $= 53 - 60$ $= -10$ $= -219 - 50$ $= -219 - 50$ $= -269$ $= -269$ $= -227$	A 33 V	
Δ+4,0=43,1-124,0 =-289+10 =-289+10 =-227+269 =-227+269	RAY	
A540=A+4,-A+40 = 496+259 = 755.	PSV.	

46-56= +60

uliets Derivation of Newton's formand formy Let the value or and y be x01x11x21 . - - , xh 801 811 429 --- , yn where & values are in creasing ord, x1-x0=x2-x1=x3-xz. .. = xn-xh-1=h (positive quanti tel fix) be a polynomial of degree h then + (x0) = 901 + (x1) = 911 --. + (x1)= Now, fix) can be written as f(x) = ao+ a1 (x-x0)+az(x-x)(x-1) -. + con (> - 20) (x - x 1) -. (20 In the specing x = oxo and f (xo)=yo +(x0) = a0. yo = a0 = = = = 90 +(x) = yot a 1 (x-20) + as (x - xi)+. ancx-x0) - - . (xn-xn-1) Let x = x11 f(x1) = y1. +(x1) = A0+01 (x1-x0). y1 = y0+a1 (x1-x0) y1-y0=a1(x1-x0) $\alpha_1 = \frac{y_1 - y_0}{(x_1 - x_0)} = \frac{\Delta y_0}{h}.$

 $f(x) = yot \left(\frac{4yo}{x+xo}\right)(x-xo) + \alpha_2(x-xo)$ $h \qquad (x-xi) + \alpha_0 o + \alpha_1(x-xo)$ $\alpha_1(x-xo)(x-xo)$ (x-xo)

TE x cx21+(x2)=42. 4(x2) = 90 + (Ayo) (x2-10)+a2(x2-20) $y_2 = y_0 + \left(\frac{\Delta y_0}{h}\right)(x_2 - x_0) + q_2(x_2 - x_0)(x_2 - x_0)$ y2-y0 = (Δy0)(x2-x0) +a2 (x2-x6)(x2-x1) y2 - y0 = (x2 + x0) [Δy0 + α2 (x2-x1)] $\frac{y^2-y_0}{x^2-x_0}=\frac{5y_0}{h}+a_2h.$ $\frac{y_2 - y_0}{x_2 - x_0} = \frac{\Delta y_0 + \alpha_2 h^2}{h}$ X2-X1+DC1-XO = Lyotash2 $\frac{y^2 - y_0}{h + h} = \frac{hyotash^2}{h}$ y 2-40 = Ayotashe y2-y0=2 (Dy0 +a2h2), 92- yoz 2 Ayo+2 a2h2. Ayo=y1-y0 y2-y0-2 Ay.0=202h2 Δ2y0=Ay1-Ay0 y2-y0-2(y1-y0)=2a2h2 = y2-y1-(y1-y0) y2-y0-2y1+2y0=2ah2. = y 2-2y 1+y 0, y 2-2y 1 + y 0 = 2ah 2 = 42-4,-41+40 12 y 0 = 2 agh2 $a_2 = \Delta^2 y o$ $U, y = \Delta^{3} y 0$ $3 \mid h^{3}$

24 = 1/h

Further denoting
$$\frac{x-x_0}{h}$$
, $\frac{\Delta^2 y_0}{h}$ $(x-x_0)$, $\frac{\Delta^2 y_0}{h}$ $\frac{\Delta^2 y_0}{$

```
penvation of Newton's backward
 (2)
110/23
     formula.
Lunday
     Let the function:
              f(x) = ao + ail(x-xn) + a2(x-xn)
       (x-xn-1)+...+ an (x-xn) (x-xn-1) (x-x1)
            + (x0) = y0, +(x1) = y1, ... +(xn) = yn
     Let xexh
        fcxn= = ao,
      f(x) = yn+ a1(x-xn)+a2 (x-xn)(x-xn-1)}
                 t . - . + con (x - xu) (x - xu-1) (x - x1)
           x = xn-18
          +(xn-1)=yn+a1 (xn-1-xn)
                   yn-1 = yn + ath)
              yn-1-yn-a(th)
               - 7 yn = a(-h).
                  ai = JAh
     f(x) = Ar + DAr (x-xv) + 00 (x-xv)(x-xv-1) +
           -... + ancx -xn) (x-xn-1)-..(x-x1)
       x =xn-2
           f(xn-2) = yn + \frac{74h}{h} (xh-2-xh) +
                    a2 (xn-2-xn) (xn-2-xn-1)
          yn-2-yn=(xn-2-xn)[ -yn+axh)
      Yn-2-4n = Dyn+ (2)(-h)
         アカーユーエル
```

$$\frac{4^{n-2} - 4^{n}}{(x^{n-2} - x^{n-1}) + (x^{n-1}) - x^{n}} = \frac{\sqrt{3} + \sqrt{3} +$$

1-nx-nx + (xx-x) = (1-nx-x) =

shuth = h cuti). r-rh-2=x-xh+xh-zh-2 = (x-xy)+(xy-xy-xy)= hie + (xn -xn-1+xn-1-xn-2). = hee+(n+h)=hee+2h. $x-x_{n-2}=h(u+2)$ 111.19 x-xn-3=hcut3). of x-x1= K[u+ch-1]; :.f(x) = yn + u Dyn + u (u+1) D2y +... h! cutch-1) Anyh) where $u = \frac{x - xh}{l}$,

13/10/2023

perivarive of Lagrange's formula.

 $f(x) = a o (x - a i) (x - a z) \cdot - (x - x v)$

0

+ an(x-x0)(x-x1)...(x-2 n-1)

```
tet 21 = 200 and + (20) = yo then.
    +1x0) = ao (x0-x1)(x0-x2)...
  yo = ao (xo-x1) (xo-x2) ··· (xox
Q6 =
             (x0-x1) (x0-xx) (x0-xn)
  Let x = ei , f(xi) = yi then.
       f(x) = \alpha \cdot (x - x \circ) (x - x \circ).
       91= a (x1-x0)(x1-x2)...(x1-x)
                   41
      Ce 1 =
             (x1-x2) - - (cx-1x) (0x-1x)
    ll ly
      Q2
                  42
              (x2-x0) (x2-x1) . - - (x2-x
    an =
                     yn
               (xn-xo)(xn-x1). . . (xn-xn)
f(x) = y_0(x-x_1)(x-x_2) - (x-x_n)
      (x_0-x_1)(x_0-x_2) - - (x^0-x_0)
           +41(x-x0)(x-x2) - ---(5-x)
           (201-20) (201-22) ... (X1-X1)
        + 4n (x-x) (x-x1) - - (x - xn-)
           (xn-x0) (xn-x1), ... (xn-xn-)
```

	×	∞ 0	201	JE W	Product
x	-	X-X0	2-21	x-Eh	P
	Xo-X		X6-X1	 10-En	Po
XI	THE	X1-X0	-	x1-EN	p1.
och.	X n-X	IU-50	xn-x!		Ph

$$f(x) = -\left[y_0 \stackrel{\uparrow}{p} + y_1 \stackrel{p}{p} + y_2 \stackrel{p}{p} + \cdots + y_n \stackrel{p}{p} \right]$$

$$\begin{cases} P_1 & P_2 \\ P_3 & P_4 \end{cases} + \cdots + \begin{cases} P_1 & P_2 \\ P_4 & P_4 \end{cases} + \cdots + \begin{cases} P_1 & P_4 \\ P_4 & P_4 \end{cases}$$

1 de is given that

 r	400	50	60	7003	8 O SCY
	9 7	59	63	8	10.2
0	3+	1		-	andin

tind the value of y corresponding to x = 45, using Newton's Losward to smula.

16/10/23

Apply Newton's backward difference toomula to tind a polynomical of degree 3. using the table given below

x 3 4 5 6 y 6 24 60 120

+(x) = 9n+ 4 AAN+ re(a+1) DzAN+ ... +

u(u+1)...[u+cn-n]. Thy h

a(u+1)(u+2) $\sqrt{3}y^3$.

y 27 02y.

193=120-60

120

f(x) = 120 + a(b0) + a (a+1) + a(a+1) = + +

uccet1) cot2) (6).

u = 2-29 = 2-0-6.

f(x) = 120 + (x-6) (60) + (x-6)(x/6+1) (24)

+ (x-b) (x-6+1)(x-6+2)

21

 $= -570 + 60x + [x_5 - 2x - px + 30] (7)$ $= -570 + 60x + [x_5 - 2x - px + 30] (7)$ = (x - p) (x - 2) (x - 4) = (x - p) (x - 2) (x - 4)

= 51+0+60x+ [x2-11x+30] [12] + [x2-12-6x+30] [12] + [x2-12-6x+30] [12]

 $\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}$

 $f(x) = x_3 - 3x_5 + 5x_1$ = 152 - $\pm 5x + 165x_5 + 2x_5 + 2x_5$

@ 16 is given that

y 3.7 4.9 63 8 10.2

Find the value of corresponding to E-45, using Newton's formulas.
Soln:

 $t(x) = y_0 + \frac{u}{11} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \dots + \frac{u(n-1)(u-(n-1))}{n!} \Delta^n y_0$ $u(n-1)(u-(n-1)) \Delta^n y_0$ $h_1 = \frac{u-x_0}{n!} = \frac{1}{10} = \frac{1}{10} = \frac{1}{2} = \frac{1}{2}$ $f(x) = y_0 + \frac{u}{11} \Delta y_0 + \frac{u(u-1)}{2!} \Delta^2 y_0 + \dots$

```
u(u-1)(u-2) Δ3yo + u(u-1)(u-3)(u-3) Δ4yo
  f(x)=40+0.2 DA0+ (0.6)(0.2-1) D3A0+
         (0.2)(0.2-1)(0.2-5) V3ho+ (0.2)(0.2-1)(0.20)
                                 (0.5-3)2990
   4(x)=2,0+0.2 Dd0+(0.2)(0.2) V5A0.
       + (0.2) (0.2) (-1.2) V3λ0 + (0.2) (-12) (-12) (-12))
                             1×2×3×4° 1440
       = yo+(0.5) Ayo + (co.25) A2yo + 0.37 = A3yo
                    + c-0,9375) A440
      = yo+ (0.5) Dyo - 0.1251240 + 0.0625 Ayo
                        -0.0390A440
                    DZY . AZY
     A^{2}y_{0} = 0.5
A^{2}y_{1} = 0.3
A^{3}y_{1} = 0.2
A^{3}y_{1} = 0.2
A^{3}y_{1} = 0.2
60
7 O
               1°43=4.8
86 (0.2
   + (0.5) (1.2) - (0.125) (0.2)
                +(0.0625)(0.1)-(0.0390)(0.1)
```

3.7+0.6-0.025

7 (42) = 11.545/

15/1423

using vewton's tormula , find the value of y when x = 24, trom the tellowing dava '

35.4 32.2 29.1 56.6 33.1. x 10 15 20 25 30 Given:

$$f(x) = 94 + \frac{\alpha}{10} \quad \nabla y_1 + \frac{\alpha(\alpha + 1)(\alpha + 2)(\alpha + 3)}{20} \quad \nabla y_4 + \frac{30}{20}$$

$$\nabla^3 y_4 = \alpha(\alpha + 1)(\alpha + 2)(\alpha + 3) \quad \nabla^4 y_4$$

+ (54) = 58.1 + (-0.0) (-50d 24 (-0.0)(-0.00) (0.2)+ (-0.6)(-0.6+1)(-0.6+2)

== 2311 + 1.14 -0.02 10 -0.01008.

= 24.794721.

using Lagrange's tormula, Find log 10 4 toom the tallowing table when x and logs values are given by X 300 304 305 307

109 x. 2.477 2.4829 2.4843 2.4878

Given:

X = 301 x0 = 3001 X1 = 304 1 X2 = 305 $x_3 = 307$, $+(x) = -P[\frac{40}{p_1} + \frac{41}{p_1} + \frac{42}{p_2} + \frac{43}{p_3}]$ x3 product 72 12 XO X 5-23 X-x2 x-x1 x - xoX Po x0-x3 x 8 -x2 x0-r1 X-0X 30 PI xinz x1 - x2 0 x - 1 X $\propto 1-\infty$ PR X アンーエリ P3 22 x3-x3 x2-x1 23-x x 3

305 307 produce 300 304 301 -70 301 -5 300 4 304 3 305 6 7 3 2 307 10910 = - (-42) 2:11 77 + 2:4829 - 2:4843 + 2:4871 72(0.0176935+0.0689694-0.062103 40,009 86894 = 72 (0.037 4248) log10301 = 2.47 85856. Hence proved. 10 10 5